Supplementary Materials

Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol

Daniel Torres ¹, Pedro Arcelus-Arrillaga ², Marcos Millan ², José Luis Pinilla ^{1,*} and Isabel Suelves ¹

- ¹ Instituto de Carboquímica, CSIC, Miguel Luesma Castán 4, Zaragoza 50018, Spain; dtorres@icb.csic.es (D.T.); isuelves@icb.csic.es (I.S.)
- ² Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; pedro.arcelusarrillaga09@imperial.ac.uk (P.A.-A.); marcos.millan@imperial.ac.uk (M.M.)
- * Correspondence: jlpinilla@icb.csic.es; Tel.: +34-976-733-977

Figure S1. HRTEM images of folds in some selected rFLGO samples.

Figure S2. TEM images of (**a-b**) FLGO flakes; (**c-d**) G/W-rFLGO-400; (**e-f**) W-rFLGO-400; (**g-h**) G/W-rFLGO-500 and (**i-j**) W-rFLGO-500.

Sample	п	Vol			n			Gas yield [mmol			Carbon-to-gas			
	[mmol]	[%]			[mmol]			mmol ⁻¹ glycerol]			efficiency* [%]			
		H2	CO	CH_4	CO_2	H ₂	CO	CH_4	$\rm CO_2$	H ₂	CO	CH_4	CO_2	
G/W-Blank-400	7.4	22.9	29.5	13.1	34.5	1.71	2.19	0.97	2.56	0.21	0.28	0.12	0.32	24.1
G/W-rFLGO-400	7.7	9.2	42.6	17.0	31.3	0.71	3.29	1.31	2.41	0.09	0.41	0.17	0.30	29.4
W-rFLGO-400	1.5	32.2	2.5	0.3	64.9	0.47	0.04	0.01	0.95	NG	NG	NG	NG	NG
G/W-Blank-500	17.5	34.6	5.2	22.5	37.7	6.04	0.91	3.93	6.60	1.03	0.15	0.67	1.12	64.8
G/W-rFLGO-500	13.4	37.5	8.7	15.0	38.8	5.02	1.16	2.01	5.21	0.85	0.20	0.34	0.88	47.4
W-rFLGO-500	0.9	78.6	1.2	0.8	19.5	0.72	0.01	0.01	0.18	NG	NG	NG	NG	NG

Table S1. Compositions, molar quantities, gas yields and carbon-to-gas efficiencies of gas products.

* calculated as $(n_{CO} + n_{CH_4} + n_{CO_2})/3n_{Glycerol} \times 100$; NG = non glycerol tests.

Figure S3. Photographs of liquid intermediates after solid removal by centrifugation (includes the extraction solvent: $CHCl_3/H_2O$).

Table S2, Lig	uids intermed	liates from b	lanks and F	LGO reduction	by SCWG of	olvcerol
Table 02. Liq	ulus internice	naics nom b	and and a	LOO ICuuciion	by SCHOOL	gryceror

	G/W-Blank-400	G/W-Blank-500	G/W-rFLGO-400	G/W-rFLGO-500
Phenol and alkylphenols	-	-	$\checkmark\checkmark$	$\checkmark\checkmark$
Cresol/P-cresol	-	-	✓	\checkmark
Furans	-	-	\checkmark	\checkmark
PAH (including naphthalene,	\checkmark	✓	$\checkmark\checkmark$	$\checkmark\checkmark\checkmark$
alkylnaphthalene and polyaromatic				
compounds with 3 or more rings)				
Phthalate (including alkylphthalates)	\checkmark	\checkmark	\checkmark	\checkmark
Long chain hydrocarbons (C7–C31,	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark\checkmark$
include alkylalcanes)				

Figure S4. TEM images of purified MWCNT.

Figure S5. Schematic of the microbomb batch reactor. (a) Purge inlet, (b) Gas pressure gauge, (c) Gas sampling port, (d) Purge outlet, (e) High pressure-temperature needle valve, (f) Type K thermocouple, (g) ^{1/2} " borethrough tee.

Sample ID	Glycerol	FLGO [mg]	T [°C]	Time [min]
G/W-Blank-400	YES	0	400	120
G/W-Blank-500	YES	0	500	120
G/W-rFLGO-400	YES	130	400	120
W-rFLGO-400	No	130	400	120
G/W-rFLGO-500	YES	130	500	120
W-rFLGO-500	No	130	500	120

 Table S3. Sample identifications and conditions.