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Abstract: The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric
spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated
in this study. The main focus was the influence of processing conditions on percolated
poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP)
and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion
properties, filler distortion from processing, filler percolation, as well as the filler orientation and
distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was
found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites
was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology,
hybrid samples with better dispersion properties lead to a more pronounced strain hardening
behavior, while samples with a higher volume percentage of fillers caused a drastic reduction
in strain hardening. The rheo-dielectric time-dependent response showed that in the case of
nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples.
However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the
CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model,
where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed
hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing
history were emphasized through the rheo-dielectric tests.

Keywords: polymer nanocomposites; graphite nanoplatelets; carbon black; electrical conductivity;
shear rheology; extensional rheology

1. Introduction

Graphene stands out as potential nanofiller in polymeric melts due to its outstanding mechanical,
dielectric, barrier, thermal, etc., properties [1]. However, significant challenges remain to be overcome
in the development of graphene-based consumer products. In this framework, of particular importance
is understanding the flow field-matrix-filler interaction in polymer nanocomposites [2,3]. By the
method of processing, the microstructure can be tailored to attain the desired material properties
by de-agglomerating the particles, improving dispersion and ensuring the desired orientation
of the nanofillers in the melt [4]. Due to the large/fast deformations employed, polymers are
subjected to nonlinear deformations during processing, with the interactions between the flow
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field, e.g., extrusion flow, matrix and fillers dictating the overall microstructure dynamics and
subsequent material properties/performance. Therefore, it is important to probe material linear,
as well as nonlinear rheological properties in simple configurations and to investigate the associated
microstructural effects and their relationship with the materials’ mechanical, electrical, barrier,
etc., properties.

Rheology is an important tool to characterize polymer nanocomposites in relation to understanding
the underlying complex matrix-filler and filler-filler interactions and for the design of processing
operations, e.g., see [5–10], among many others. In particular, Fourier-transform rheology has
been used to determine the percolation threshold, morphological changes and microstructural
interactions in percolated systems, the influence of various particle characteristics and modeling
the rheological material response [11–15]. Changes in the strain amplitude-dependent nonlinearities’
scaling were reported for percolated systems, including a maximum peak in the third relative higher
harmonic of the polycaprolactone/multi-walled carbon nanotube (PCL/MWCNT, 1D thread shape),
polycaprolactone/organomodified montmorillonite (PCL/OMMT, 2D plate shape with high
aspect ratio) and the polyethylene/multi-walled carbon nanotube (PE/MWCNT), but not for
polycaprolactone/precipitated calcium carbonate (PCL/PCC, 3D cubic shape) [14,15]. The nonlinear
rheological behavior of ethylene butyl acrylate (EBA)-carbon black (CB) composites was investigated by
Leblanc and Jäger [13]. Strongly nonlinear viscoelastic properties were observed, as well as an unusual
complexity of carbon black influence on their viscoelastic response. Furthermore, a dual morphology
composed of PE-rich crystallites and CB-rich amorphous butyl acrylate (BA) regions was proposed.
It is known that, among different substances used in composites, carbon black is unique in its ability
to significantly enhance the properties while lowering the cost [16]. However, applications such as
semi-conductive layers for high voltage cables require highly filled carbon black nanocomposites that
can pose problems to the manufacturing of the cables [17,18]. Hybrid EBA-GnP-CB nanocomposites for
semiconductive high voltage cable applications were considered by Arino et al. [3] and took advantage
of synergistic effects due to the particle shape of the two fillers. The electrical conductivity of the
nanocomposites was optimized via melt extrusion with different processing histories with a strong
influence on the electrical percolation behavior [3].

The nanoparticle network in nanocomposites could strongly be affected by nonlinear
deformations, e.g., large amplitude oscillatory shear (LAOS) or extensional flows, which might result
in network failure under large deformations. Extensional properties of nanocomposites, e.g., strain
hardening, are affected not only by the stretching and orientation of the polymer chain matrix, but also
by the interactions between polymer-particle and particle-particle. Hassanabadi et al. [12] investigated
the effect of the shape of particles in nanocomposites and concluded that linear and nonlinear
rheological properties of nanocomposites containing platelet particles, e.g., clay at concentrations
higher than 2.5 wt %, are dominated by particle nanonetworks over polymeric chains’ contribution,
while those containing spherical particles, e.g., CaCO3, behave similar to polymer melts. Sinha Ray
and Okamoto [19] reported a deviation from the Trouton ratio, ηE = 3η, for the shear and extensional
properties of polymer layered silicate nanocomposites in the range of the linear viscoelastic regime.

The combination of rheological measurements with a second characterization method, e.g.,
dielectric spectroscopy, was developed in order to gain unique information about molecular dynamics
and the structure of time- and shear-dependent phenomena [20–24]. Purely rheological methods
provide only information on the macroscopic behavior of the samples. This means that rheology can
only be used to determine macroscopic and averaged material functions. Obtaining simultaneously
additional information on the microstructure or even molecular level structure is often needed for a
better understanding of the rheological behavior. Thus, dielectric spectroscopy has proven to be a very
useful tool for studying the structure and the dynamics of polymeric systems [20]. This knowledge is
very important for the development of new materials for industrial applications, with specific electrical
properties [21,23,25]. Generally, the conductivity of a polymer, rather than being a linear function
of the concentration of the added particles, is almost insensitive for lower concentrations and rises
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abruptly as the electrical percolation threshold is reached. This occurs at a critical concentration where
the particles get in contact with each other, and as a consequence, a continuous electrical path of the
doped particles is built throughout the polymer matrix. That is, when the filler content is low, the mean
distance between conducting particles is large, and the conductivity is restricted by the presence of the
insulating matrix; but by increasing the conductive phase content, the conducting particles get closer,
and at that critical concentration the electrical properties are dominated by them [24,26].

Present Study

In the present study, the influence of processing conditions on percolated ethylene butyl
acrylate (EBA) nanocomposites containing graphite nanoplatelets (GnP) and GnP-carbon black
(CB) was investigated from the rheological point of view. Thermogravimetric analysis, scanning
electron microscopy, optical microscopy and image analysis, X-ray diffraction, mechanical properties
and capillary viscometry (high shear rates) analysis of the samples used in the present study
can be found in Arino et al. [3], and the two studies should be interpreted complementarily.
In this publication, dynamic frequency and strain sweeps, extensional and rheo-dielectric tests
are presented. Overall, the results help with correlating the nonlinear, dielectric and extensional
rheological measurements to the influence of the extrusion processing conditions of GnP-CB-EBA
hybrid nanocomposites and, thus, improve the understanding of process and material design, for
optimal final product properties.

2. Materials and Methods

2.1. Materials and Preparation

The nanocomposites analyzed were composed of poly(ethylene-butyl acrylate), EBA, as the
matrix, graphite nanoplatelets, GnP, and carbon black, CB. The EBA matrix contained 17 wt % butyl
acrylate (BA) and had a melting temperature of 100 ◦C and a density of 0.925 g/cm3 [18]. The CB
was a medium-structured carbon black (CB) ENSACO® 260G, TIMCAL Graphite and Carbon, Bodio,
Switzerland, and the GnP used was xGnP Grade M5 from XG Sciences, Lansing, MI, USA. The CB was
characterized by a surface area of 70 m2/g and a density of 1.8 g/cm3, while the GnP had a thickness
of 6–8 nm, a characteristic diameter of 5 µm, a surface area of 120–150 m2/g and a density of 2.2 g/cm3

(manufacturer data). The composition of the EBA-GnP-CB hybrid nanocomposites was optimized by
Oxfall et al. [2], and Arino et al. [3] further improved the electrical properties of the nanocomposites
by varying the processing conditions, such as screw geometry, temperature profile and screw speed.
A Brabender, Brabender GmbH, Duisburg, Germany, 19/25D (barrel diameter of 19 mm and barrel
length of 19× 25) single-screw extruder, equipped with a 1.5-mm radius circular die was used for
sample preparation. More details on the compounding of the master batches can be found in [3].

Two screw geometries were used for sample preparation: Figure 1a, the C-screw, a conventional
screw with a compression ratio 2:1; and Figure 1b, the M-screw, a distributive mixing screw comprising
a Maillefer region and a Saxton mixing element. As the processing parameters, two screw speeds of 50
rpm and 100 rpm and two die temperatures, 160 ◦C and 180 ◦C, both die temperatures following a
progressive increase in temperature along the barrel, were used [3].
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Figure 1. The screw types used to control the deformation history of the nanocomposites analyzed
using a Brabender 19/25D single-screw extruder: (a) C-screw, conventional geometry with 2:1
compression ratio; and (b) M-screw, distributive mixing screw composed of a Maillefer region a Saxton
mixing element.

Samples optimized by Arino et al. [3] were pelletized and then compression molded into disks
of 0.9–1.2 mm in thickness and 25 mm in diameter for rotational rheometry and into rectangular
specimens of 20 mm in length, 10 mm in width and approximately 1 mm in thickness for extensional
tests. In addition, the EBA and EBA-GnP nanocomposites were used as reference samples. The filler
concentration corresponds to the percolation in the respective compositions [3]. A list of the investigated
samples, their composition and processing conditions are listed in Table 1, namely the die temperature,
−Tp, screw rotational speed, n, apparent shear rate inside the die, γ̇a, characteristic relaxation time,
λ, and the resulting processing Weissenberg numbers, Wi = λγ̇a as the control parameter [27]. The
apparent shear rate in the die was computed as:

γ̇a =
4Q
πR3 (1)

where Q is the flow rate inside the die obtained from applying the mass conservation law between the
barrel/screw zones and the die and R is the die radius. The characteristic polymer relaxation time, λ,
was defined as the inverse of the crossing point between the dynamic moduli in a dynamic frequency
sweep test.

Table 1. Polymer nanocomposite samples characterized: composition and processing method.
The following notations are used: CB, carbon black; GnP, graphite nanoplatelets; Tp, processing
temperature (die); γ̇a, apparent processing shear rate (in the extrusion die) defined in Equation (1); λ,
polymer characteristic relaxation time, defined as the inverse of the angular frequency at the crossing
between the dynamic moduli; and Wi, the Weissenberg number defined as Wi = γ̇aλ.

Sample CB/wt % GnP/wt % Screw Type Tp/◦C n/s−1 γ̇a/s−1 λ/s−1 Wi

EBA - - C 160 100 1080 0.02 22
GnP(1) - 15 (7 vol %) C 160 50 540 0.04 22

CB + GnP = 5 vol %

160C50 20 80 C 160 50 540 0.03 16
160C100 20 80 C 160 100 1080 0.03 32
180C50 20 80 C 180 50 540 0.03 16
180C100 20 80 C 180 100 1080 0.03 32
160M100 20 80 M 160 100 480 0.03 14
180M100 20 80 M 180 100 480 0.03 14

2.2. Rheological Characterization

The rheological characterization was performed on the TA Instruments ARES G2, New Castle,
DE, USA, Anton Paar MCR702 TwinDrive, Graz, Austria, (dynamic frequency sweeps) and TA
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Instruments ARES (dynamic strain sweeps , extensional and rheo-dielectric experiments), New Castle,
DE, USA, rheometers [28]. Plate-plate 25-mm geometries were used, with gap setting according to
the disk thickness. The extensional measurements were performed using the extensional viscosity
fixture (EVF, TA Instruments) New Castle, DE, USA. All rheological tests were performed at 160 ◦C.
Oscillatory shear experiments were performed in the linear and nonlinear regime, i.e., small amplitude
oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) [29]. For nonlinear analysis,
Fourier-transform (FT) rheology was used, an advanced rheological characterization method [29].
In an SAOS test, a sinusoidal input strain signal results in a sinusoidal material response whose Fourier
spectrum is characterized by one characteristic peak corresponding to ω/ωi = 1, where ωi for the
input angular frequency; see Figure 2. In this regime, the the material functions describing the materials’
response are the dynamic moduli, i.e., the storage, G′ and loss G′′ modulus [30]. In an LAOS test,
the sinusoidal input strain signal results in a nonlinear material response whose Fourier spectrum is in
turn characterized by one characteristic peak corresponding toω/ωi = 1 complemented by higher
harmonics; see Figure 2. The nonlinear signal represented in the figure was obtained using a 5-mode
Giesekus model [31]. Thus, the nonlinear shear material stress response in FT rheology can be written
as [29,32]:

σ12(t) = I1 sin(ωt + δ1) + I3 sin(3ωt + δ3) + I5 sin(5ωt + δ5)... (2)

where σ12 is the shear component of the stress tensor, In are the (odd) intensities of the harmonics
and δn the corresponding phase angles. The third relative higher harmonic, I3/1, is generally taken
as a measure of the nonlinearities in the signal, as it holds the dominant nonlinear contribution to
the signal. In contrast to linear viscoelastic experiments, nonlinear tests are more sensitive to the
molecular make-up of the materials, while at the same time being subjected to nonlinear conditions
closer to processing flows. A commonly-used derived material nonlinear parameter, the Q-parameter,
is defined as [33]:

Q =
I3/1

γ2
0

(3)

where γ0 is the applied strain amplitude. An example of a dynamic strain sweep test using the EBA
matrix comparing the dynamic moduli and the third relative higher harmonic, I3/1 is shown in Figure 3.
At low strain amplitudes (SAOS), the dynamic moduli are independent of the applied strain amplitude,
while instrumentation noise characterizes the I3/1 behavior, I3/1 ∝ γ−1

0 . Generically, the limit of
the linear regime (SAOS) is where the dynamic moduli are no longer independent of the applied
strain amplitude. A more accurate change in material response is recorded via an increase in I3/1. At the
onset of the nonlinear regime, I3/1 ∝ γ2

0, the region that is referred to as medium amplitude oscillatory
shear (MAOS) [33] or intrinsic LAOS [34]. Thereafter, the LAOS regime is achieved, with I3/1 expected
to level off at the high strain amplitudes. One of the major benefits of Fourier-transform (FT) rheology
is the improvement in sensitivity, as can be seen when comparing the dynamic moduli varying within
the same order of magnitude compared to I3/1 varying within two orders of magnitude; Figure 3.
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Figure 2. Generic principle of Fourier transform rheology showing time-dependent linear and nonlinear
stress material response to a sinusoidal strain input and corresponding Fourier transform of the output
signal showing the presence of higher harmonics in the nonlinear case.
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Figure 3. Dynamic strain sweep (ω = 5 rad/s) comparing the dynamic moduli, G′ and G′′, and the
relative first higher harmonic, I3/1, for poly(ethylene-butyl acrylate) (EBA) at 160 ◦C.

2.3. Extensional Rheology and the Molecular Stress Function Theory

The extensional rheological properties of EBA, as well as their composites were analyzed using
the molecular stress function (MSF) constitutive equation. This model predicts the strain hardening
in extensional flows using two nonlinear parameters, β and fmax [35]. Constant β and fmax govern
the slope of strain hardening and the steady-state value of the stress growth coefficient, η+E, max,
in extensional flows. Here, a simplified time-strain separable version of the MSF model was used,
which was presented by Abbasi et al. [36] for hyper-branched structures under extension and LAOS
deformation. This constitutive equation was verified for EVA nanocomposites with different particle
shapes [37]:

σ(t) =
N

∑
i=1

∫ t

−∞

gi
τi

e
(t−t′)
τi f 2(t, t′) SIA

DE(t, t′)dt′ (4)

SIA
DE = 5S = 5

[(
1

J − 1

)
B−

(
1

(J − 1(trC + 13/4)0.5)

)
C
]

(5)

J = trB + 2(trC + 13/4)0.5 (6)

∂ f 2

∂ε
=

1
2
β f
(

S11 − S22 −
f 2 − 1

f 2
max − 1

√
S11 + 0.5S22

)
. (7)
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Elements in bold, σ, S, B and C, are the stress, measure of strain, Finger and Cauchy
tensors, respectively. Relaxation spectra gi and τi were obtained by fitting the Maxwell model on
G′ and G′′ data. The stretching function, f , shows the backbone stretch, which causes the strain
hardening phenomenon in the polymer chains and is a function of Hencky strain, ε, and nonlinear
parameters β and f 2

max. Equations (4)–(7) represent an integral time-strain separable constitutive
equation, which was fitted to the uniaxial stress growth coefficient data by adjusting the β and fmax as
fitting parameters. These parameters were used as a bridge between the strain hardening criteria and
the polymer chain and particle network in nanocomposites.

2.4. Combined Rheology: Dielectric Spectroscopy

Experimental data were analyzed by dielectric permittivity vs. frequency formalism.
Dielectric spectroscopy (DES) is a dynamic technique quantifying the molecular dynamics and
conductivity processes in dielectric (insulating or semiconducting) materials due to their interaction
with electromagnetic fields. In a linear system, when an external AC electric field is applied to
a dielectric medium with a permanent dipole moment, the complex dielectric function can be expressed
as follows:

ε*( fe) = ε′( fe)− iε′′( fe) (8)

where ε′( fe) and ε′′( fe) are the real and imaginary parts. The dielectric function ε*( fe) describes
the dielectric behavior of the material and contains information about the molecular transport and
relaxation processes by monitoring the charged ions and electric dipoles existing in the molecule.
In general, transport processes in solids, especially in complex structured polymers, depend on their
internal morphology, as well as on the influence of important physical properties. The dielectric
function ε*( fe) depends on several variables, such as temperature, frequency, the molecular mobility
within the material, the macroscopic orientation of the polymer chains, electromagnetic fields and
the applied mechanical loads, including pressure and tensile stresses [38]. The viscoelastic properties
of the chain reflect a particular average of the chain conformation, i.e., the isochronal orientational
anisotropy of individual entanglement segments. The dielectric property reflects the orientational
correlation of two segments at two separate times (e.g., t0 = 0 and t1 = τ) and can be converted
to the motion and fluctuations of the molecules of the dipole arrangement with respect to the
molecular axis. This means that the chain conformations and motions are differently averaged in
the viscoelastic and dielectric properties. Therefore, the combination of rheological and dielectric
properties (rheo-dielectric properties) can give detailed information about the relation between local
molecular relaxation dynamics and macroscopic response to mechanical forces. As well as the chain
dynamics, the rheo-dielectric combination might be very useful to investigate various materials and
shear-induced changes. For the investigation of short length scale dynamic measurements, the most
prominent development in the field of combined techniques is rheo-dielectric, as can be seen in Figure 4.
The rheo-dielectric measurements were performed in the linear and nonlinear viscoelastic regimes at a
strain amplitude of γ0 = 1% and an angular frequency of ω = 0.5 rad/s and γ0 = 100%, ω = 1 rad/s,
respectively. For the rheo-dielectric measurements, the sample was placed between two custom-made
INVAR steel parallel plate electrodes of 25 mm in diameter and a spacing between of 0.9 and 1.5 mm.
Therefore, the capacitance of the empty cell was between 15 and 7 pF. The accuracy of the rheometer
gap control, which defines the spacing between the electrodes, was in the order of ±0.5µm. Dielectric
measurements were carried out with an ALPHA analyzer (Novocontrol, Hundsangen, Germany)
using a custom-made experimental setup [39,40]. The broadband dielectric measurements were carried
out within the frequency ( fe) range 100 Hz–107 Hz. The resolution of the setup in tan δ for the applied
experimental conditions was approximately ∆ tan δ ≈ 10−5 [41].
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(a) (b)

Figure 4. Simultaneous rheo-dielectric measurements performed to characterize the EBA nanocomposites.
(a) Diagram of the combined rheometer and dielectric analyzer for determining the raw stress data and
the dielectric spectra in situ. (b) Image of the rheo-dielectric geometries.

3. Results and Discussion

3.1. Linear and Nonlinear Oscillatory Shear

Linear viscoelastic dynamic frequency sweeps of the samples investigated are presented in
Figure 5. The influence of the processing history is readily observable: the complex viscosity function
and corresponding dynamic moduli obtained using the conventional compression screw, C, Figure
5a, with a standard deviation up to 1200 Pa·s, show increased scattering between the hybrid
nanocomposites (all containing 5 vol % of filler and the same GnP/CB composition), compared
to the M screw, Figure 5b, with a standard deviation up to 430 Pa·s. The contrast can be due to a
better distribution of the fillers expected for the mixing screw M. This interpretation is consistent
with the optical micrograph image analysis performed by Arino et al. [3]. Their analysis showed
up to a 50% decrease in the length of nanoplatelets/agglomerates in the M-screw samples when
compared to the C-screw samples, in the 10–30 µm size distribution prevalent in the analysis. Thus, a
higher amount of agglomerates was identified using a conventional compression screw, the C-screw.
As expected, an increase in the rheological material functions is recorded for the nanocomposites
with increasing volume fraction when compared with the EBA matrix, with the highest values being
recorded for EBA-GnP having the highest amount of filler content (7 vol %). It should be noted that in
the measurement dynamic range (ωmin = 10−1 rad/s), the percolations of the filled systems cannot
be observed as a plateau in the storage modulus, G′. Linear viscoelastic measurements showing the
existence of the G′ plateau in EBA-CB-GnP systems including the studied filler fractions can be found
in Oxfall et al. [2]. However, the existence of a rheologically-percolated network can be identified using
the increased sensitivity of the nonlinear rheological response of the materials. The strain amplitude
dependence of the relative third higher harmonic, I3/1, for selected samples is presented in Figure 6.
The features outlined using Figure 3 and the comments thereof can be readily observed in the extended
angular frequency range and for the nanocomposite measurements. A change in the scaling behavior
of the nonlinearities for filled samples can be distinguished similar to the results by Lim et al. [15] and
Ahirwal et al. [14]. In addition, and perhaps the most striking difference, the nanocomposites show a
different SAOS-MAOS transition in I3/1 through the existence of a transition plateau; see Figure 6b–d.
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Figure 5. Dynamic frequency sweep measurements in the linear viscoelastic regime of the samples
investigated, prepared using (a) the conventional screw, C, and (b) the distributive mixing screw, M.
In both diagrams, the EBA matrix and EBA-GnP are plotted as references.
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Figure 6. Strain amplitude dependence of the third relative higher harmonic, I3/1, at various angular
frequencies for: (a) EBA, (b) EBA-GnP, (c) 160C100 and (d) 160M100.

Plateaus were recorded in all filled samples and for all processing conditions, with no
distinguishable difference due to their processing history. The nonlinearities at the SAOS-MAOS
transition were higher than those recorded for the unfilled polymer, I3/1 < 10−3, with similar values
at comparable angular frequencies for the hybrids, I3/1 ≈ 1.1× 10−3 for ω = 1 rad/s, and as high
as I3/1 < 1.1× 10−2 forω = 0.6 rad/s for the GnP samples. Given that the nanocomposite samples
investigated have filler compositions above the percolation threshold, the plateaus can be interpreted
as evidence of this. It is important to note that the differences in the SAOS-MAOS transition for
the nanocomposites can be made at angular frequencies as high as ω = 1 rad/s or even higher
when compared to the sharp transition observed in the EBA matrix. Thus, nonlinearities are able to
indicate the percolation in dynamic ranges where linear viscoelastic measurements, e.g., see Figure 5,
cannot emphasize it.

3.2. Extensional Rheology

Figure 7 shows the experimental (symbols) and MSF simulation (solid lines) results of the stress
growth coefficient as a function of time at different extensional rates for EBA and its composites at 160
◦C. Strain hardening phenomenon in EBA proved the presence of branched topologies in the molecules,
which resulted in additional friction during the relaxation period compared to a linear molecule.
The study of branched topologies of EBA was beyond the scope of the current paper; however, the
MSF parameter β = 1.7, for unfilled EBA, being less than two, proves a comb-like architecture rather
than a branch on branch or Cayley-tree molecular topology [36,42]. A comparison between all samples
indicated that neat EBA in Figure 7a showed the highest strain hardening behavior (β = 1.7 and
f 2
max = 100) due to the higher mobility of polymer chains compared to filled polymer. In other words,

the presence of particles in the polymer matrix confined the chain dynamics, which resulted in a
lower maximum stretchability of polymer chains ( fmax), as well as lower onset of strain hardening (β).
Experimental data, as well as MSF fitting parameters (β and f 2

max) in Figure 7a,b demonstrate that the
increasing volume content of GnP drastically decreases the strain hardening. Using a special sample
containing 9.5 vol % GnP (20 wt %), EBA-GnP(2), no strain hardening was observed (Figure 7c), but
rather, strain softening was induced in polymer chains. Polymer composites, including inorganic fillers,
e.g., CaCO3 [12], glass fiber [43] or crosslinked (hard) rubbers [44], exhibit weaker strain hardening
than their matrix polymers. These findings indicated that linear viscoelastic properties in shear (e.g.,
G′ and G′′) or extension (linear viscoelastic envelope, LVE, dashed line, computed from the linear
viscoelastic behavior, η+E ≡ 3η+, with the relaxation data defined by fitting the Maxwell model on the
SAOS dynamic moduli) increased in the presence of rigid particles, whereas the strain hardening factor
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in extensional deformations decreased. This suggested that under elongational flow, a heterogeneous
deformation (a combination of shear, uniaxial and planar extensional flows) is induced around the
hard particles, as they cannot be stretched similar to the matrix [44,45]. This complication in flow field
does not affect the predictions of strain hardening in uniaxial extensional simulations using the MSF
model; however, compared to the neat EBA, some deviations are obvious between the predictions and
extensional experiments of nanocomposites. Figure 7c shows that even increasing the GnP content to
9.5 vol % GnP (20 wt %) induces strain softening behavior, which has been rarely seen in the tensile
stress growth coefficient (transient extensional viscosity, η+E ) and most probably happened in the shear
stress growth coefficient (transient shear viscosity, η+) of branched polymers. The strain softening
phenomenon in extensional experiments (Figure 7c) demonstrates that the region in which elongational
flow exists is significantly reduced. This figure shows that strain softening occurs at large Hencky
strains (εH > 2) where most part of the matrix (EBA polymer chains) is probably pulled out of the
extensional region (middle of the sample, between the EVF drums). Therefore, GnP particles constitute
a major phase in this region, and shear flow field around the particles is the dominant deformation
media in spite of the externally-imposed extensional field. Figure 7d–f shows that screw type M resulted
in higher strain hardening (β = 1.5 and f 2

max = 30) compared to the screw type C (β = 1.2 and f 2
max = 16)

regardless of other processing conditions, such as die temperature and screw speed. This intensive
strain hardening was related to a better dispersive mixing caused by Saxton mixing elements in screw
type M. As a consequence, a better separation between the plates and higher mobility of particles was
achieved. However, this result could also justify that a better dispersive mixing results in a weaker
shear field around many small particles rather than a few agglomerated ones.
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Figure 7. Cont.
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Figure 7. Extensional measurements (symbols) and the MSF theory predictions (solid lines) for
(a) EBA, (b) EBA-GnP(1), (c) EBA-GnP(2), (d) 180C50 (e) 160M100 and (f) 160C100. The EBA-GnP(2)
contains 9.5 vol% of GnP and was analyzed in order to test the limits of the strain hardening behavior.
The dashed line, LVE, represents the linear viscoelastic envelope.

3.3. Time Dependence and Electrical Conductivity

Transient dynamic measurements were performed in order to probe the influence of the linear
and nonlinear viscoelastic material responses on the morphological and dielectric properties of
the samples. Based on the dynamic strain sweep measurements in Figure 6, two experimental
conditions corresponding to linear and nonlinear viscoelastic regimes were chosen, namely γ0 = 1%,
ω = 0.5 rad/s and γ0 = 100%,ω = 1 rad/s. Examples of SAOS tests showing the dynamic moduli and
the Q-parameter, Equation (3) as the nonlinear parameter, are presented in Figure 8. As expected, in the
linear regime, no significant influence of the shear deformation was recorded. The dynamic moduli
showed a fairly stable development, while the Q-parameter falls within the I3/1 instrumentation noise
region, I3/1 ∝ γ−1

0 , as evidenced by the large scattering in the data.
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Figure 8. Transient development of the dynamic moduli and the Q-parameter in SAOS, γ = 1% and
ω = 0.5 rad/s: (a) 160C100 and (b) 160M100. All measurements were performed at 160 ◦ C.

Rheo-dielectric measurements were performed in the nonlinear viscoelastic regime; see Figures 9
and 10. At the beginning of the testing time, a drop in the dynamic moduli is being recorded, evidence
of the destruction of the existing filler structure in all nanocomposite samples analyzed. In the case
of EBA-GnP (Figure 9a), the dynamic moduli and the Q-parameter stabilize towards steady state,
even after over 40,000 s. At this stage, the magnitude of the Q-parameter is below Q < 2× 10−2 for all
samples. For the hybrids, an increase in the Q-parameter is recorded (Figure 9b–d), reaching mean
values of Q ≈ 6× 10−2. This is accompanied by a noisier G′, G” signal. For samples processed using
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the conventional screw, C, the increase in nonlinearities varied significantly between measurements,
as evidenced in Figure 9b after 11,000 s and in Figure 9c after 1800 s. In contrast, for samples processed
with the M-screw, the onset of nonlinearities was observed after approximately 2000 s, limited to
around 40%. The contrast is consistent with the dynamic frequency tests, as M-screw samples have
a superior distribution of fillers compared to the C-screw samples.
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Figure 9. Transient development of the dynamic moduli and the Q-parameter in LAOS, γ = 100%
andω = 1 rad/s, for (a) EBA-GnP, (b) 160C100, (c) 180C50 and (d) 180M100. All measurements were
performed at 160 ◦C.

The corresponding dielectric loss ε′′ is plotted as a function of the frequency and time in
Figure 10. An electric field applied to a medium will provoke the movement of ‘free’ charges and
a local redistribution of ‘fixed’ charges. The mechanism related to the movement of free charges is
the conduction, measured by electric conductivity σ*( fe), and that of fixed charges is polarization,
measured by dielectric permittivity ε*( fe). The permittivity is a complex number that varies with
the frequency. Pure EBA has two regions of frequency dispersion in the permittivity loss: (1) a
broad relaxation peak in the order of MHz, likely caused by polar butyl acrylate groups, and (2) a
characteristic low frequency dispersion that likely is a Maxwell–Wagner response due to a barrier
blocking conduction process. The two regions of relaxation are clearly defined, but the loss peaks
appear to be outside the measured frequency range. Adding nanoparticles to the EBA matrix changes
the low frequency dispersion behavior significantly, which could be explained by the nanoparticles
affecting the charge transport mechanism and, thus, the net interfacial polarization. It should be
noted that the 3D surfaces have been smoothened using an average filter. When at rest, as DES
measurements were started prior to the rheological testing, and at the beginning of the deformation
process, ε′′ discloses electrical conductivity at low frequencies due to the pre-existing filler network.
The initial dielectric signal (t = 0 s) appears to be a strong function of the processing conditions with
a large variation recorded between the C-screw samples, e.g., compare Figure 10b,c at t = 0 s. The
highest ε′′ recorded at the beginning of the dynamic time sweep was recorded for the EBA-GnP
nanocomposite, in contrast to the results obtained directly via extrusion [3]. This suggests that
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the combination of extrusion and compression molding creates sufficient anisotropy for electrical
percolation compared to the typically highly-oriented morphologies obtained via extrusion. The filler
network created by extrusion and compression molding is subsequently destroyed for all samples as
the shear deformation progresses. Two subsequent developments are distinguishable, corresponding
to the EBA-GnP and hybrid samples, respectively. For EBA-GnP samples, no significant change in ε”
was recorded in the testing time, similar to the behavior of the rheological nonlinearities. For the hybrid
samples, however, the increase in nonlinearities, i.e., the Q-parameter, corresponds to an increase in ε′′,
signaling the formation of a new electrically-conductive region. The influence of processing conditions
stands out through the rheo-dielectric measurements, as well. M-screw samples, albeit exhibiting
better dispersion properties compared to C-screw samples, result in a lower dielectric response. This
behavior can be explained by the observations of Arino et al. [3] that GnP filler distortion can be
responsible for their electric conductivity performance.
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Figure 10. Transient development of the dielectric loss, ε′′, spectra for: (a) EBA-GnP, (b) 160C50,
(c) 180C50 and (d) 180M100.

The difference in rheological and dielectric behavior between the sample containing GnP as
filler and the hybrid GnP-CB samples can be explained in the framework of the model proposed
by Leblanc and Jäger [13]; Figure 11. As nanofillers tend to aggregate in BA regions as opposed to
PE regions, when subjected to nonlinear deformations, the initially percolated network is destroyed,
and the nanoplatelets become oriented in the flow direction. For EBA-GnP nanocomposites, this
means that electrical conductivity can no longer be achieved in the direction perpendicular to the flow
direction. In hybrid nanocomposites, however, following the orientation of the GnP, the CB have the
ability to efficiently bridge the gaps between the nanoplatelets, being restricted by the BA regions.
Thus, a second electrically-conductive network could be created using nonlinear shear deformations.
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Figure 11. Interpretation of the dynamic behavior of the hybrid nanocomposites studied in the
nonlinear viscoelastic regime, based on the model of Leblanc and Jäger [13].

Finally, the electrical conductivity as resulted from rheo-dielectric measurements was considered,
as the plateau at low frequencies of the real part of the complex dielectric conductivity [46],
σ′; Figure 12a. In the figure, three σ′( fe) spectra are reported for the reference EBA and a hybrid.
The first spectra is the initial σ′ spectrum recorded before the start of the deformation (see σ′0 at t = 0 s).
The second is an intermediary value, t = 2500 s, while the third corresponds to the conductivity
achieved when the rheological nonlinearities reach a quasi-steady variation; see σ′I3/1

, t = 7000 s for
160C50. The results in Figure 12 capture the transient behavior illustrated in Figure 10. For the hybrid
systems, a clear plateau at low frequencies is recorded at the beginning and towards the end of the
tests, but not in the intermediate spectrum. By comparison, results for EBA show a slightly decreasing
variation, however well within the measurement error, with values two orders of magnitude lower.
The electrical conductivity recorded at the end of the experimental testing, σ′I3/1

, as a function of the
processing Wi number is presented in Figure 12b.
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Figure 12. Electrical conductivity as the plateau at low frequencies of the real part of the complex
dielectric conductivity [46], σ′, for the samples under investigation: (a) examples of the transient
dependence and (b) conductivity at the onset of I3/1 steady variation as a function of the processing
(die) Weissenberg number, Wi.

For the comparison, the electrical conductivity on extruded strands before being pelletized
and compression molded for rheological characterization is shown in Figure 13. The conductivities
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were measured in a circuit using a two-point method [47] by Arino et al. [3]. Their data have
been re-formatted as a dependence of the Weissenberg number, Wi; see Table 1. The two sets of
measurements disclose a similar qualitative behavior.

The electrical conductivities of EBA-CB-GnP extruded hybrid nanocomposites was significantly
influenced by the applied deformation history, i.e., screw type, and the Wi numbers attained. Given
a flow history dominated by shear stresses (C-screw) and at Wi < 20, where the orientation of the
nanoplatelets is less pronounced, electrical conductivities of ca. 0.01 S/cm were recorded in circuit
for extruded samples. More complex deformation histories (M-screw) appeared to generate distorted
nanoplatelets [3] with typical conductivities as low as aproximately 10−9 S/cm regardless of the Wi
number. Similarly, the rheo-dielectric measurements point to a maximum in conductivities achieved for
Wi < 20. In contrast, however, M-screw samples appear to show a better performance in rheo-dielectric
measurements compared to the extruded samples. This could suggest that in the framework of the
model described by Leblanc and Jäger [13], the flow field-matrix-filler interactions during processing
could be further improved.
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Figure 13. Conductivity in the circuit as a function of the Weissenberg number inside the extrusion
die, Wi = λγ̇a, of extruded strands before pelletizing and rheological characterization. Data processed
from Arino et al. [3].

4. Conclusions

The influence of processing conditions on percolated EBA polymers containing GnP and CB was
investigated through linear and nonlinear oscillatory shear, extensional and combined rheo-dielectric
spectroscopy tests. In linear viscoelastic dynamic frequency sweeps, hybrid EBA-GnP-CB samples
processed using a mixing screw (M), composed of a Maillefer region and a Saxton mixer, showed less
scattering in their viscosity data compared to samples processes using a conventional screw
(C; compression ratio 2:1), at identical filler compositions (5 vol % total filler content, out of which 80 wt
% GnP and 20 wt % CB). In dynamic strain sweep tests, the percolation of the samples could be asserted
by quantifying the material nonlinear response, I3/1, at angular frequencies where a plateau in G′ is
not observable in dynamic frequency sweep tests. The most striking feature of the I3/1 dependence on
the applied strain amplitude was related to the existence of a plateau at the small amplitude oscillatory
shear (SAOS)-medium amplitude oscillatory shear (MAOS) transition. The material response of the
EBA matrix showed strain hardening behavior that reveals the branched topology of the polymer.
The effect of the processing history on the dispersion properties of the samples was also evidenced
through the extensional test and predictions. M-screw samples exhibited higher strain-hardening
compared to C-samples. The influence of increasing the volume percent of fillers was also seen
as a limit on the strain hardening behavior (9.5 vol %). Otherwise, the strain-hardening behavior
of the nanocomposites was preserved irrespective of the processing method. In time-dependent
rheo-dielectric tests, there is evidence of dual BA-PE regions, with the fillers mostly concentrated in the
BA region. This can be an explanation also of the lower percolation thresholds required in EBA systems
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compared to other matrix polymers. Thus, in nonlinear measurements, an orientation of the GnP would
cause a non-conductive structure, such as is the case of EBA-GnP; however, in the case of the hybrid
samples, the CB could be employed to bridge the oriented nano-platelets in order to achieve electrical
conductivity perpendicular to the flow direction. The onset on conductivity with time corresponded to
an increase in the nonlinear rheological response, as quantified by the Q-parameter. Variations in the
time-dependent dielectric response could also be attributed to the dispersion properties of the fillers,
with C-screw samples showing greater variation in dielectric response. However, lower dielectric
responses were achieved for M-screw samples, as evidence of the filler distortion in the case of M-screw
samples. When comparing electrical conductivities resulting from the rheo-dielectric measurements to
conductivities measured in circuit for extruded samples, a similar qualitative behavior is observed with
the highest conductivities recorded for Wi < 20. However, M-screw sample conductivities measured
in the rheo-dielectric tests suggested that the flow field-matrix-filler interactions during processing
could be further improved by the application of alternative processing histories.
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Abbreviations

The following abbreviations are used in this manuscript:

FT Fourier-transform
C compression screw (2:1)
CB carbon black
DES dielectric spectroscopy
EBA ethylene-butyl acrylate
GnP graphite nanoplatelets
LAOS large amplitude oscillatory shear
MSF molecular stress function
M mixing screw (Maillefer + Saxton mixer)
MWCNT multi-walled carbon nanotubes
OMMT organomodified montmorillonite
PCC precipitated calcium carbonate
PCL polycaprolactone
PE polyethylene
SAOS small amplitude oscillatory shear
SWCNT single-walled carbon nanotubes
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