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Abstract: Nowadays glucose detection is of great importance in the fields of biological, environmental,
and clinical analyzes. In this research, we report a zinc oxide (ZnO) nanorod powder surface-coated
with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process
and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure
observation, and electrochemical property investigations were carried out. For the cyclic voltammetric
(CV) glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was
attained. The sensitivity was 2.97 µA/cm2mM, which is the most optimized ever reported. With such
good analytical performance from a simple process, it is believed that the nanocomposites composed
of ZnO nanorod powder surface-coated with carbon material are promising for the development of
cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity.
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1. Introduction

In recent years, biosensors have been investigated and applied in new drug discovery,
clinical diagnosis, and forensic science. The goal is to minimize the size of detection instrument,
detection sample, and detection period. The development of biosensors has become prevailingly studied
topic in the biomedical field. In order to achieve specific detection, hybrid biosensors surface-modified with
enzymes have been developed, called enzymatic sensors [1]. However, enzymatic sensors have drawbacks,
including high cost, complicated production procedures, and short shelf lives, facing challenges in market.
Additionally, an enzymatic sensor is impossible to implant into the human body for the long term and
in situ monitoring due to the immobilized enzyme would degrade quickly [2]. In order to overcome
this limitation, researchers place high expectations on non-enzymatic sensors; nevertheless, there are
several critical issues, such as stability, selectivity, sensitivity, and detection limit [3–5].

Zinc oxide (ZnO) is a II–VI semiconductor with a wide direct band gap (3.37 eV) and electron
binding energy (60 meV). Different nano-structures of ZnO can be controlled through various
preparation processes to acquire the desired physical properties, such as vapor–liquid–solid (VLS),
chemical vapor deposition (CVD), hydrothermal processes, solution–liquid–solid (SLS), and capping
agents/surfactant-assisted synthesis [6–9]. In the past 20 years, the ZnO nanostructure-based sensors
have seen growing importance placed on research of various sensor techniques from chemical
and biosensors, to UV and pH sensors [10–15]. In this study, we focused on glucose biosensors
because of the upstream health issue on diabetes [16–18]. For glucose sensing, enzymatic and
non-enzymatic ZnO glucose sensors are commonly reported [19–28]. Here, we have summarized
some of the latest and important studies in Table 1 and the sensing performances are listed.
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Due to the pH-sensitive glucose oxidase, most of the studies were performed in a neutral buffer
solution (pH 6.5–7.5) and cannot be used in severe pH conditions. The enzymatic sensors usually
possess low detection limits and excellent sensitivity; however, the linear detection range is
below human blood glucose concentration, ranging from 4 to 6 mM. Nevertheless, the linear range
can be extended by decorating ZnO with carbon material to enhance the electron conductivity,
surface area, and biocompatibility [20,22]. High conductivity could play an important role in
the direct electrochemistry. Generally, the non-enzymatic sensors show higher detection limits than
the enzymatic ones. A large linear range and an excellent sensitivity are two great benefits for rapid
and direct detection in blood samples. In this study, we propose carbon-coated ZnO to enhance the
performance for direct glucose sensing. We prepared zinc oxide (ZnO) nanorod powder through
a hydrothermal process, and then used a chemical vapor deposition method to surface-coat with
carbon [29,30]. The ZnO and carbon-coated ZnO were immobilized onto a glassy carbon electrode to
form non-enzymatic glucose sensors for comparison. Detailed investigations were then carried out.

Table 1. Important performance of enzymatic and non-enzymatic glucose sensors are summarized.

Sensor Detect Limit
(mM)

Linear Range
(mM)

Sensitivity
(µA/cm2mM) Reference

Enzymatic Glucose Sensor

GOx/ZnO/Au 10−2 0.01–3.45 23.1 Wei et al. 2006 [19]
GOx/C@ZnO nanowire/Ti 10−3 0.01–16 35.3 Liu et al. 2009 [20]

GOx/ZnO 5.6 × 10−3 Not mentioned 21 Ren et al. 2009 [21]
GR–CNT/ZnO–GOx 4.5 × 10−3 0.01–6.5 5.36 Hwa et al. 2014 [22]

GOx/BSA/Nafion/ZnO nanorod/GE 2.2 × 10−4 0.6–1.4 10.911 Marie et al. 2015 [23]
GOx/ZnO nanoparticle/IL/ESM 10−10 10−9–600 Not mentioned Noor et al. 2015 [24]

GOx/Pt-Pb/CNTs 10−3 Up to 11 17.8 Cui et al. 2007 [25]
GOx/Cu/MWCNTs 2.1 × 10−4 0.7–3.5 251.4 Kang et al. 2007 [26]

Non-enzymatic glucose sensor

ZnO nanoparticle Not mentioned 1–10 38.133 Singh et al. 2012 [27]
ZnO–CuO 2.1 × 10−4 0.47 × 10−3–1.6 3066.4 Zhou et al. 2014 [28]

ZnO nanowire/EµPAD 5.95 × 10−2 0–15 8.24 Zhao et al. 2015 [29]
Ni/NiO-rGO-Nafion/SPE 1.8 × 10−3 0.03–6.44 1997 Zhang et al. 2016 [30]

C@ZnO/GC 1 1–13.8 2.97 This study

2. Materials and Methods

In order to prepare the ZnO nanorod powder, 50 mL of 0.01 M Zn(NO3)2 was added dropwise
into 50 mL 1 M NaOH for 15 min under stirring, and then the solution was heated to 95 ◦C and
maintained for two hours. The precipitated ZnO nanorod powder was then centrifuged, thoroughly
washed, and dried. The ZnO nanorod powder was then prepared for carbon coating. Carbon coating
was performed using chemical vapor deposition (Figure 1). The source of carbon was ethanol carried
by argon with a 50 sccm flow rate. The reaction was carried out at 550 ◦C for 1.5 h. Prior to the cyclic
voltammetric (CV) analysis, the structure of the as-synthesized ZnO powder was characterized by
X-ray diffraction and θ/2θ scan ranged from 20◦ to 70◦, where the ZnO was identified according
to joint committee on powder diffraction standards (JCPDS) card No. 36-1451. The structure of
the carbon-coated (ZnO@C) and uncoated ZnO powders was observed from the scanning electron
microscope (SEM) topographies, high-resolution transmission electron microscopy (HRTEM) images,
and selected area electron diffraction (SAED) pattern. Raman spectroscopy was used to identify
the carbon coating.
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Figure 1. Scheme of the chemical vapor deposition (CVD) process.

The materials for sensor electrode were assembled on a 3 mm diameter glassy carbon working
electrode (GC) (CHI104, CH Instrument, Inc., Austin, TX, USA). One milligram of carbon-coated
ZnO (ZnO@C) nanorod powder was well mixed with 1 mL 5% Nafion (Sigma-Aldrich, Shanghai,
China) solution. Afterward, 1 mL of the mixed solution was transferred onto the glassy carbon (GC)
electrode and dried at room temperature for 10 min to serve as a working electrode for CV glucose
detection. In comparison with the ZnO@C/GC electrode, ZnO on a glassy carbon electrode (ZnO/GC)
was carried out using the abovementioned method. Hence, three different working electrodes,
including ZnO@C/GC, ZnO/GC and bare glassy carbon (GC), were used. As for the reference and
the auxiliary electrodes, the commercial Ag/AgCl reference electrode (RE-1B) and the platinum
electrode were utilized, respectively. The CV scan was measured by utilizing a potentiostat CHI611E
with a scanning range from +1 V to −1 V. First, the CV profiles of the three different working electrodes
were assessed in 1 M NaOH(aq) solution (pH = 12.5) and the similar solution with 1 mM glucose to
demonstrate the analytical performance of ZnO and ZnO@C. To further investigate the ZnO@C/GC
detector sensitivity and its limit, different scanning speeds from 10 mV/s to 100 mV/s, pH values from
4 to 12.5, and glucose concentrations from 0 to 11 mM were used. Three standard buffer solutions were
facilitated for pH = 4, 7, and 10, and 1 M NaOH(aq) was utilized for pH = 12.5. Furthermore, the current
vs. time curve of the ZnO@C/GC electrode was measured at 0.38 V in 1 M NaOH(aq) with respect
to the glucose adding under a constant rate of 1 mM/sec, ranging from 1 to 14 mM, from which
the corresponding current vs. glucose concentration was plotted and calibrated. Last, the amperometric
response of ZnO@C/GC electrode to 1.0 mM glucose as well as 1 mM interferents of citric acid (CA),
uric acid (UA), and dopamine (DA) was measured to investigate the specificity in glucose censing.

3. Results and Discussion

The X-ray diffraction (XRD) pattern of the as-synthesized ZnO powder is in Figure 2 and it is
identical to the JCPDS card as shown in the bottom of the figure, indicating a hexagonal close packing
(HCP) ZnO structure. From the interplanar spacing of all (hkl) directions, the lattice parameter of
the a-axis and c-axis can be estimated by combining Bragg’s law and the plane-spacing equation,
and the resultant lattice parameters of a- and c-axes are 3.22 ± 0.02 Å and 5.21 ± 0.01 Å, respectively.
Hence, the c/a ratio is 1.62, which is close to the ideal ZnO wurtzite structure (c/a = 1.633) [12].
The microstructures of the carbon-coated (ZnO@C) and uncoated ZnO nanoparticles were observed
from the SEM image, as shown correspondingly in Figure 3a,b, in both of which ZnO nanorod
structures can be found. Clearly, the carbon coating does not change the microstructure and only
results in slightly larger ZnO particle size.
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A more detailed structural observation of the carbon coating was made by the TEM and HRTEM
images, corresponding to Figure 4a,b. A thin and uniform carbon layer of 1 nm was observed on
the ZnO nanorods; and a preferential growth of basal plane (0001) [0001] was found. In addition,
the SAED pattern (Figure 4c) shows that the ZnO nanorods are close to a single crystal. To analyze
the thin carbon layer on ZnO, Raman spectroscopy was utilized and the comparison with uncoated
ZnO is illustrated in Figure 5. The Raman spectrum of ZnO is labeled according to the B1, E2, and E1
vibration modes, where the E2 mode processing of 426 cm−1 was the most significant peak in both
samples. A group of overlapping peaks corresponding to carbon D and G bands at 1340 cm−1

and 1588 cm−1 was observed. The intensity ratio (ID/IG) was 0.98, and this ratio corresponds to
a tetrahedral amorphous carbon (ta-C) structure [31,32].
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nanorod powder.
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Figure 6. Cyclic voltammetric (CV) profiles of GC, ZnO/GC, and ZnO@C/GC electrodes in 1 M 
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Figure 5. The Raman spectra of ZnO and carbon-coated ZnO nanorod powder. The Raman spectrum
of ZnO was labeled according to the B1, E2, and E1 vibration modes, and those of carbon are D and G.

Figures 6 and 7 depict the CV of the analytical performances of ZnO and ZnO@C in 1 M NaOH(aq)
and 1 mM glucose solutions, respectively. The ZnO@C electrode shows a great improvement of
the sensitivity compared with the ZnO/GC and GC electrode in both solutions, while the ZnO/GC
and GC electrode show similar CV curves in both situations. Evidently, the thin amorphous carbon
layer (1 nm) is a key factor for the impressive improvement for sensing electrons and promoting
the oxidation-redox reaction. Zhou et al. reported a similar ZnO nanowire or nanorod electrode
for glucose sencing [28], for which the ZnO did not exhibit specific redox reaction with glucose.
Without carbon decoration, ZnO does not react directly with glucose in the non-enzymatic detection.
Hence, the role of ZnO in non-enzymatic sensors is inferred to accelerate the electron transfer.
The carbon coating provides binding sites and electron transportation platforms for glucose.
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In order to gain more understanding of the reaction and optimize the detection range,
different scanning speeds (Figure 8) and pH values (Figure 9) were used on the CV scan of the ZnO@C/GC
electrode. The symmetrical forward and backward current vs. the potential plots indicate that the redox
reaction of glucose in 1 M NaOH(aq) solution should be a reversible redox reaction. Moreover, the IPC

increased as the scanning rate increased from 10 mV/s to 100 mV/s, and the IPC was proportional
to the square root of the scan speed following the Randles–Sevcilk equation. By comparing with
the current range, the pH = 12.5 in NaOH(aq) is much more sensitive than rest of the pH values;
still, more complete CV plots are needed and will be further studied in the future. At −0.4V, there was
an additional peak from the enhanced redox reactions. The enhanced redox reaction was attributed to
the great dependence of glucose oxidation on the influx of OH− [25]. The weakly bound hydrogen
atom at glucose is the first to be detached on electrodes at low potentials. Hence, the influx of OH−

might enhance glucose oxidation by neutralizing protons generated during the dehydrogenation
step. At pH 12.5, the current of redox reactions became obvious, and the condition of −0.4 V,
pH 12.5, and a 100 mV/s scan rate was selected as the optimized detection situation. In brief,
the optimized glucose detection using the ZnO@C/GC electrode in this study is pH = 12.5 and
a speed of 100 mV/s. The asymmetry in the CV curves, attributed to three major mechanisms,
including electron transportation between glucose and electrode, complicated kinetic control and
diffusion control. Similar results were also reported in [24–26,28,30].

With the optimized conditions for CV glucose detection, we performed the glucose sensitivity
test using various concentrations, adding at a rate of 1 mM per 100 s (Figure 10). The current increased
linearly with the increasing glucose concentration and the linear regression was calibrated in Figure 10b
with the correlation factor of 0.99. A perfect linear region can be found up to 10 mM, which is right in
the range of human blood (4–6 mM). Since blood contains of lot of different chemicals, the amperometric
response of the ZnO@C/GC electrode was measured to investigate the specificity in glucose sensing
(Figure 11). At 100 s 1 mM glucose was added and the current increased significantly, then stabilized
until the next interferent was added. The other three interferents (CA, UA, and DA) were added at
a time interval of 100 s, and the stabilized currents remained the same as the first glucose addition.
In the last 100 s, 3 mM glucose was added. The current responded similarly to the first glucose
addition, but with an increasingly stabilized current (about 1.7 times), which is slightly smaller than
in Figure 10 (about 2.2 times). The three interferents might influence the current value, but do not
affect the specificity of the glucose sensing. However, the pH value of human blood is normally
around 7 and this means that the blood sample requires some pre-treatment to increase the pH value.
Still, the glucose concentration using ZnO@C can detect, linearly, up to 10 mM, meaning no dilution
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of the sample is needed and, thus, the accuracy will not be influenced. Therefore, the ZnO@C holds
great potential for non-enzymatic glucose sensor applications. The sensitivity was calculated to be
2.97 µA/cm2mM, as shown in Table 1, which is the most optimized ever reported.
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4. Conclusions  

In this study, we investigated a carbon-coated zinc oxide (ZnO@C) nanorod material for non-

enzymatic glucose censing via a combination of hydrothermal synthesis and chemical vapor 

deposition. A series of tests, including crystallinity analysis, microstructure observation, and 

electrochemical property investigations, were carried out. The thin amorphous carbon layer (1 nm) 

is a key factor for the impressive improvement for sensing electrons and promoting the redox reaction. 

For cyclic voltammetric (CV) glucose detection, the optimized conditions for the proposed material 

are pH = 12.5 and a speed of 100 mV/s. Excellent analytical performance from the simple process 

include a low detection limit of 1 mM and a linear range from 1 mM to 13.8 mM. The ZnO nanorod 

powder surface-coated with carbon material is promising for the development of cost-effective non-

enzymatic electrochemical glucose biosensors with high sensitivity.  
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4. Conclusions

In this study, we investigated a carbon-coated zinc oxide (ZnO@C) nanorod material for non-enzymatic
glucose censing via a combination of hydrothermal synthesis and chemical vapor deposition. A series of tests,
including crystallinity analysis, microstructure observation, and electrochemical property investigations,
were carried out. The thin amorphous carbon layer (1 nm) is a key factor for the impressive improvement
for sensing electrons and promoting the redox reaction. For cyclic voltammetric (CV) glucose
detection, the optimized conditions for the proposed material are pH = 12.5 and a speed of 100 mV/s.
Excellent analytical performance from the simple process include a low detection limit of 1 mM and
a linear range from 1 mM to 13.8 mM. The ZnO nanorod powder surface-coated with carbon material
is promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors
with high sensitivity.
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