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Abstract: Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ
approach and then directly applied as the electrode of an electrochemical sensor. The composite foam
electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and
sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the
sensor exhibited high cycling stability, long-term durability and reproducibility. These results were
attributed to the unique porous structure of the composite foam electrode, which enabled the surface
of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become
highly accessible to the metal ion and provided more void volume for the reaction with metal ion.
This work not only proved that the composite foam has great potential application in heavy metal
ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based
on rGO foam and other electrical active materials for various applications.
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1. Introduction

Noble metal particles (e.g., Au, Pt and Ag) have attracted considerable attention due to their
unique physical and chemical properties, as well as their potential use in electronic, photonic, catalytic
and biological applications [1–3]. In particular, Ag nanoparticles are some of the well-developed
materials that have been used for applications in electrochemical detection because they are inexpensive
relative to other noble metal materials and they possess good chemical and physical properties [4–14].
For example, well-dispersed Ag nanoparticles have been successfully utilized in the electrochemical
detection hydrogen peroxide [5,6,10,11,14], glucose [12], norepinephrine [13] and heavy metal ions
including Hg(II) [7], Cr(IV) [8,9]. Unfortunately, in most cases, the Ag nanoparticles generated
by the most methods were often in powder type, which were further coated on the glass carbon
electrode (GCE) for electrochemical detection [4–14]. Therefore, the further electrode preparation led
to additional cost and time. Furthermore, the low interaction and high contact resistance between Ag
powder and glass carbon electrode would greatly decrease sensitivity and cycle stability of electrode,
which greatly precluded their practical application in electrochemical detection. Therefore, there was
still a need for further study to explore and develop the performance of Ag nanoparticles by effective
routes in order to achieve high performance for electrochemical detection application.

Recently, reduced graphene oxide foam (rGO foam) has attracted a great deal of attention due to its
low density, highly porous structures, extremely high electrical conductivity, large specific surface area,
and so on [15,16]. As a result, the rGO foam was possible to serve as the working electrode replacing
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GCE for electrochemical detection application. Firstly, graphene foam not only acted as a working
electrode, but also functions as an effective electrocatalyst. Moreover, the three-dimensional (3D) pore
surface electrode based on graphene foam leaded to the enhanced electrocatalytic characteristics
due to that the three dimensional architecture of rGO foam provided a large surface area, fast
electron transport and allowed high accessibility to the reactants. Secondly, it was a convenient
way of preparing freestanding electrode based on Ag nanoparticles for electrochemical detection
by one step method, in which the Ag nanoparticles (Ag NPs) were in-situ grown on rGO foam.
Moreover, the rGO foam could prevent the aggregation of Ag NPs, which provided its ability to
create sensing system with fast electron transport, revisable, selective, and sensitive recognition over
a wide range of concentrations and with the low detection limit in real-life samples [17]. In a word,
the Ag NPs directly grown on rGO foam could act as a novel and excellent electrode for application
in electrochemical detection sensor. However, there were few works reporting the Ag NPs/rGO
composite foam electrode for application in electrochemical detection, especially, detection of heavy
metal. In addition to this, Hg(II) was considered as one of the most dangerous metal ions for the
environment and has most commonly toxic risks for human contacting areas as a result of natural
processes [18,19]. The electrochemical detection methods were generally used for the detection of
the Hg(II) due to their capability of short analytical time, low power cost, high sensitivity and easy
adaptability for in-situ measurement [20–22]. However, there was still big challenge in terms of
repeatability/reproducibility tests of electrochemical detection Hg(II). Therefore, it was critical to be
able to detect and measure the level of Hg(II) in both environmental and biological samples under
aqueous conditions with high repeatability/reproducibility.

Based on these facts, Ag NPs/rGO composite foam electrode has been fabricated simply through
an in-situ method for a highly sensitive Hg(II) electrochemical sensor. Owing to the unique porous
morphology, the Ag NPs/rGO composite foam electrode delivered significant electrochemical activity
and cycling efficiency.

2. Experimental

2.1. Synthesis of Ag NPs/rGO Composite Foam

The Ag NPs/rGO composite foam was prepared by a facile method as shown in following. Firstly,
graphene oxide (GO) was prepared from natural graphite powders by modified Hummers method,
which has been reported in our previous work [23]. Secondly, the Ag NPs/rGO composite foam
was prepared by the self-assembly method using a combination of L-ascorbic acid (L-AA) and HI as
the reducing agents. In brief, 0.3 g L-AA and 0.3 mL HI were added to the 10.0 mL GO suspension
(3.0 mg/mL) and AgNO3 (1.0 mg/mL). The mixture was sonicated for 10.0 min and then transferred
to an oil bath at 95.0 ◦C for 6.0 h without stirring. The Ag NPs/rGO composite hydrogels was washed
with water for 24.0 h to remove residual impurities and then the wet hydrogel was freeze dried for
12.0 h to obtain Ag NPs/rGO composite foam. In a comparison, the pure rGO foam was also prepared
under the same conditions.

2.2. Characterization

X-Ray diffraction (XRD) (Bruker D8 ADVANCE, Billerica, MA, USA) was used to measure the
crystal structure of the obtained samples, and the XRD patterns of samples (5◦–80◦) were measured.

The microstructure of composite foam was observed by scanning electron microscopy (SEM)
(Su-8100, HITACHI, Tokyo, Japan) with an accelerating voltage of 20 kV.

Raman spectrum was collected on a Jobin-Yvon Lab Ram HR800 Raman spectroscope (JobinYvon,
Paris, France) equipped with a 514.5 nm laser source.

N2 adsorption isotherms were characterized using Micromeritics Tristar BF-JW132 (Beijing JWGB
SCI& Tech Co., Ltd, Beijing, China) and the specific surface area of the samples were calculated using
Brunauer , Emmett and Teller (BET) method.
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2.3. Electrochemical Characterization

All electrochemical measurements, including electrochemical impedance spectroscopy (EIS),
cyclic voltammetry (CV) and differential square wave anodic stripping voltammetry (SWASV), were
performed on a CHI1140A electrochemical workstation (CHI110, Austin, TX, USA). The Ag NPs/rGO
composite foam electrode with 1.0 cm × 2.0 cm, Pt-wire and Ag/AgCl electrodes were used as working,
counter and reference electrodes, respectively. All electrochemical measurements were carried out
at room temperature. To eliminate the effect of dissolved oxygen, the electrolyte was purged with
nitrogen gas for half an hour.

Hg(II) was analyzed by differential SWASV. A preconditioning of the Ag NPs/rGO composite
foam electrode was carried out before each analysis by recording ten CV from −0.2 to +0.6 V at a scan
rate of 100.0 mV·s−1 in electrolyte solution (0.1 M NH3). The Ag NPs/rGO composite foam electrode
was immersed in 25.0 mL magnetically stirred standard solution or sample and Hg(II) were reduced to
Hg(0) by applying a potential of −0.6 V for 180.0 s. Then, the electrode was rinsed with distilled water
and transferred to another cell that contained of 25.0 mL 0.1 M NH3. Hg(II) analysis was carried out
by SWASV from −0.65 to 0.55 V with 10.0 mV·s−1 scan rate, 25.0 mV modulation amplitude, 50.0 ms
modulation time and 5.0 mV step potential.

3. Result and Discussion

Figure 1A showed the XRD patterns of pure rGO foam and Ag NPs/rGO composite foam.
It clearly showed one broad diffraction peak at around 22.0◦, corresponding to the (002) plane of
rGO for both samples [23]. At the same time, excluding the diffraction peak of rGO, there were other
diffraction peaks located at 35.7◦ and 43.3◦, which were ascribed to the (111) and (200) planes of Ag
(JCPDS No. 04-0783), respectively [24]. The full width at half maximum (FWHM) value measured for
(111) plane of reflection was used with the Debye-Scherrer equation to calculate the size of the Ag
nanoparticles, and the average particle size was about 9.7 nm. In addition to this, the diffraction peak
of rGO in Ag NPs/rGO composite foam was blue shift comparing to that of pure rGO foam. The result
was attributed to increase of d-spacing between stack of graphene sheets due to introduce the Ag
nanoparticles adsorbed on surface of rGO [25]. The Raman spectra of pure rGO foam and Ag NPs/rGO
composite foam were shown in Figure 1B. The Raman spectrum of rGO foam showed two peaks at
1351.5 cm−1 and 1582.5 cm−1, corresponding to the D band and G band of rGO, respectively [26].
In comparison to rGO foam, the Raman spectrum of Ag NPs/rGO composite foam indicated that the
D and G band shifted to 1350.0 cm−1 and 1575.5 cm−1, respectively. In addition, a new Raman peak
at 1100.0 cm−1 was present, resulting from the interaction between rGO and Ag nanoparticles [27].

These results indicated the formation of Ag NPs/rGO composite foam, in which the Ag nanoparticles
were anchored on rGO foam by the chemical interaction.
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Figure 1. (A) X-Ray diffraction (XRD) and (B) Raman spectra of pure reduced graphene oxide (rGO)
foam and Ag nanoparticles (Ag NPs)/rGO composite foam.
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The morphologies of pure rGO foam and Ag NPs/rGO composite foam were investigated by the
SEM as shown in Figure 2. Obviously, it could be seen that the rGO foam and Ag NPs/rGO composite
foam both exhibited 3D network with highly open and porous structure as shown in Figure 2A,B,
respectively. The insets of Figure 2A,B showed the optical images of the pure rGO foam and Ag
NPs/rGO composite foam. The surface color of the both foams was clearly black, demonstrating the
formation of rGO foam and Ag NPs/rGO composite foam. By a closer examination of the pure rGO
foam and Ag NPs/rGO composite foam, it was found that the nanoparticles were well dispersed on
surface of pore wall as shown in Figure 2D. In addition, there was not large aggregate on surface
of pore wall. Moreover, this was further characterized by the energy dispersive spectrometer (EDS)
spectrum and elemental mapping image as shown in Figure 2F. It clearly presented the C and Ag
element for the composite foam. Contrarily, there were few particles in surface of pore wall and the
Ag element was not observed, as shown in Figure 2C,E. These results further indicated the formation
of Ag NPs/rGO composite foam, in which the Ag nanoparticles were well dispersed in composite
foam. The 3D network of rGO foam and good distribution of Ag NPs revealed the existence of more
channels and active surface area within the composite foam, which allowed metal ions easily penetrate
to the inner of composite and thus accelerated the interfacial reaction. In addition, the Ag NPs was
anchored on rGO foam by the chemical interaction, which reduced contact resistance and improved
the cycle stability of electrode. So, the Ag NPs/rGO composite foam was suited to applications in
electrochemical detection as shown in Figure 2G.
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Figure 2. Low-magnification scanning electron microscopy (SEM) images of (A) rGO foam and (B) Ag
NPs/rGO composite foam; (C) and (D) are the enlarged view of the black square dashed box marked in
(A,B), respectively. The inset of (A,B) are digital photographs of foams. Energy dispersive spectrometer
(EDS) spectra of (E) rGO foam and (F) Ag NPs/rGO composite foam. The inset of (E,F) are elemental
mapping image of rGO foam and Ag NPs/rGO composite foam, respectively; (G) is the schematic
diagram of the Ag NPs/rGO composite foam structure.

Figure 3 shows the N2 adsorption-desorption isotherms of the pure rGO foam and Ag NPs/rGO
composite foam. All of the curves exhibited type IV isotherms with hysteresis loops of different sizes,
which reflected the propensity of mesoporous material to facilitate electrochemical reaction during the
electrochemical detection process [28]. The BET surface area of the pure rGO foam and Ag NPs/rGO
composite foam was calculated to be about 229.3 m2·g−1 and 327.4 m2·g−1, respectively. The result
was attributed to the synergistic effect of Ag NPs and rGO. The rGO could effectively prevent the
aggregate of Ag NPs. At the same time, the Ag NPs also could prevent the stack of rGO. So, the Ag
NPs/rGO composite foam could offer a larger BET surface area. It was well-known that the surface
area was an important parameter for any material to deliver excellent electrochemical performances.
The large surface area leaded to more active sites to be accessed by metal ion during the electrochemical
reaction [28].
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Figure 3. Nitrogen adsorption-desorption isotherm curve of (A) pure rGO foam and (B) AgNPs/rGO
composite foam.

The pure rGO foam and Ag NPs/rGO composite foam were characterized using CV and EIS as
shown in Figure 4A,B, respectively. Compared with the Ag NPs/rGO composite foam, the pure rGO
foam exhibited the lower intensity current peaks due to the quasi-super hydrophobicity which was
attributed to poor surface wetting leading to a reduced access to and limited utilization of the available
surface area of pristine graphene [29]. In addition to this, the shifting of the cathodic (reduction reaction)
and anodic (oxidation reaction) peaks may be due to the better interaction between Ag NPs and Hg(II)
and more active sites in the Ag NPs/rGO composite foam electrodes [30,31]. These results indicated
that the Ag NPs/rGO composite foam electrode had better electrochemical catalytic behavior and
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promotion of electron transfer process as compared to pure rGO foam [32]. The interface properties of
the pure rGO foam and Ag NPs/rGO composite foam electrode were further investigated using EIS as
shown in Figure 4B. The Nyquist plots include a semicircle portion at higher frequencies corresponding
to the electron-transfer-limited process and a linear part at lower frequency range representing the
diffusion-limited process. Charge transfer resistance (Rct) of the electrode can be obtained from the
diameter of the semicircle. The curves of Ag NPs/rGO composite foam electrode exhibited a gradually
smaller radius of semicircles compared with the pure rGO foam electrode. The results indicated
that the Ag NPs/rGO composite foam could enhance electron-transfer between the electrode and
the electrochemical probe, which was very important to improve the sensitivity of electrochemical
detection [33]. A schematic drawing of Hg(II) detection mechanism for the Ag NPs/rGO composite
foam electrode was shown in Figure 4C. In the progress of detection, the Hg(II) were adsorption by
surface precipitation of metal hydroxide/carbonate onto the surface of Ag NPs/rGO , then reduced
(Hg(II) to Hg(0) ) and deposited on the surface of electrode at a certain potential. At the step of anodic
stripping, the electrodeposited metals Hg(0) were reoxidized to metal ions Hg(II) with the appearance
of stripping peak in a potential range for the identification. Finally, the residual Hg on the electrode
surface was removed at a positive potential. The electrochemical responses could be enhanced, and this
was attributed to the synergistic and amplifying effects of Ag NPs/rGO composite foam.Nanomaterials 2016, 6, 40 7 of 11 
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Figure 4. (A) Cyclic voltammetry (CV) and (B) electrochemical impedance spectroscopy (EIS) of pure
rGO foam and Ag NPs/rGO composite foam (EIS parameters: potential, 0.21 V; frequency range,
100 kHz–0.1 Hz; amplitude, 5.0 mV); (C) Schematic representation of electrochemical detection toward
Hg(II) by Ag NPs/rGO composite foam.
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Under the optimal experimental conditions, Hg(II) was determined on pure rGO foam and Ag
NPs/rGO composite foam electrode using SWASV as shown in Figure 5. Figure 5A showed the
SWASV responses of the pure rGO foam toward Hg(II) over the concentration range of 0.1–1.2 µM in
0.1 M NH3. The limit of detection (LOD) was calculated to be 0.12 µM (3σ method) with a sensitivity of
ca. 1.32 µA/µM. Similarly, Figure 5B presented the SWASV responses of the Ag NPs/rGO composite
foam electrode toward Hg(II) over the concentration range of 0.1–1.8 µM in 0.1 M NH3. As seen from
the calibration plot of Hg(II) in inset of Figure 5B, the peak currents increased linearly versus the
Hg(II) concentrations with the sensitivity of ca. 8.0 µA/µM, and the LOD was calculated to be 0.11 µM
(3σ method). It could be clearly observed that the sensitivity and LOD of Ag NPs/rGO composite foam
for analysis of Hg(II) was better compared with the results of pure rGO foam. The sensitivity and LOD
of the present study, together with previously determined values for electrochemical sensing in various
other electrodes based on Ag nanoaprticles/rGO composite powders, were also summarized in Table 1.
It could be observed that the preferable sensitivity and LOD could be obtained at the Ag NPs/rGO
composite foam electrode. Then the results demonstrated that the Ag NPs/rGO composite foam could
be a free-standing electrochemical electrode applied in electrochemical detection of heavy metal ions.
The high sensitivity and LOD was attributed to the following two reasons: (1) the integration of the
working electrode (rGO foam) and the electrocatalyst (Ag) eliminated the hetero-interface and the
contact resistance between them, leading to fast electron transport; (2) the Ag grown on the surface of
rGO nanosheets in rGO foam had a 3D network structure, which could offer a large active surface area
and more active sites to be accessed by metal ion, and enables rapid ion transport.
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NPs/rGO composite foam electrode towards Hg(II) at different concentrations in 0.1 M NH3 solution.
The insets correspond to the calibration plots of foam electrodes.

Table 1. Comparison of current sensitivity and limit of detection (LOD) with previously reported
values of different electrodes.

Electrodes Sensitivity (µA/µM) LOD (µM) Detection Materials References

Pure reduced grpahene oxide (rGO) foam 1.32 0.12 Hg(II) This work
Ag NPs/rGO composite foam 8.00 0.11 Hg(II) This work

Ag NPs/rGO/Ni composite foam 1.09 14.90 H2O2 [24]
N-rGO/AgNPs/GCE 3.12 × 10−3 1.20 H2O2 [34]

AgNPs/PD-rGO/GCE 0.01 2.07 H2O2 [35]
PDDA-rGO/AgNPs/GCE 9.17 × 10−3 35.00 H2O2 [36]

In order to investigate the interference of the other heavy metal ions to electrochemical detection of
Hg(II), a series of interference measurements were studied as shown in Figure 6. Figure 6A showed the
SWASV responses of the Ag NPs/rGO composite foam electrode toward Hg(II) (0.4 µM) in 0.1 M NH3

with the existing of other heavy metal ions (Cd(II) and Cu(II)). The peak current of Hg(II) was almost
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unchanged in the presence of 1.0 µM Cd(II) and Cu(II). In addition to this, the peak current of Hg(II)
was also almost similar in the presence of Cd(II) with various concentrations. The possible reason for
this was the unobvious interference of Cd(II) and Cu(II) on the adsorption ability of Ag NPs/rGO
composite foam toward Hg(II). The result indicated that the Hg(II) could be detected in complex
samples with minimum interference from other heavy metal ions. In addition, it also indicated that the
Ag NPs/rGO composite foam as binder-free electrodes could be applied in electrochemical detection
of Hg(II) in real waste water.
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Figure 6. (A) Interference studies of typical SWASV responses of 0.4 µM Hg(II) on Ag NPs/rGO
composite foam electrode in 0.1 M NH3 (a) without other metal ion, (b) in the presence of Cd(II),
(c) in the presence of Cd(II) and Cu(II); (B) Interference studies of typical SWASV responses of
0.3 µM Hg(II) on Ag NPs/rGO composite foam electrode in 0.1 M NH3 in the presence of Cd(II)
with various concentration.

The stability of the electrode was very important for practical application in electrochemical
detection. The cycling performance of the Ag NPs/rGO composite foam electrode towards detection
of Hg(II) at 0.11 µM after various cycles of storage in air for 3 days and the peak current was shown
in Figure 7A. The peak current slightly decreased with an increase in cycling test and become stable
after 10 cycling tests. The relative standard deviation (RSD) of peak current was only 0.46% for
the 10th cycling test and storage in air for 30 days, which was far lower than the RSD of the peak
current reported in previous works as shown in Table 1. The result confirmed that the Ag NPs/rGO
composite foam binder-free electrode exhibited better cycling stability and long-term durability as a
sensor of Hg(II) compared with the Ag NPs modified GCE electrode. This result was attributed to the
following two reasons: (1) there was stronger interaction between the working electrode (rGO foam)
and the electrocatalyst (Ag) comparing to GCE and active materials; (2) the Ag NPs grown on the
surface of rGO nanosheets in rGO foam had a 3D network structure, which could reduce volume
expansion/shrinkage. Furthermore, the reproduction stability of the Ag NPs/rGO composite foam
electrode towards detection of Hg(II) at 0.4 µM was shown in Figure 7B. It clearly showed that the
peak current demonstrated a slight change for the three Ag NPs/rGO composite foam electrodes
prepared with the same procedure. The RSD value of the peak current was about 0.58%. The result
indicated that the Ag NPs/rGO composite foam electrode also exhibited reproduction stability as a
sensor of Hg(II). In order to study the kinetics and mechanism of high cycling stability, the EIS of
Ag the NPs/rGO composite foam electrode before and after 10 cycling test was compared as shown
in Figure 7C. It clearly showed that there was almost no change in ESR before and after 10 cycling
tests. The result indicated that the effect of cycling test on the internal resistance of the Ag NPs/rGO
composite foam was slight.
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Figure 7. (A) SWASV responses of Ag NPs/rGO composite foam electrode towards Hg(II) from
1st cycle to 10th cycle; (B) SWASV responses of three Ag NPs/rGO composite foam electrode prepared
at the same procedure; (C) EIS of Ag NPs/rGO composite foam electrode towards Hg(II) from 1st cycle
to 10th cycle.

4. Conclusions

Ag NPs directly grown on rGO foam were successfully synthesized by a one-step in-situ
approach. The Ag NPs/rGO composite foam electrode offered excellent electrocatalytic ability
toward Hg(II). In the amperometric detection of Hg(II), the line arrangement, sensitivity, and limit of
detection were 0.1–1.8 µM (correlation coefficient, R2 = 0.997), 8.0 µA/µM, and 0.11 µM, respectively.
The electrocatalytic current of the Ag NPs/rGO foam electrode toward Hg(II) still remained 97.5% and
became stable after 30 days of storage in atmosphere. The relative standard deviation of current is only
0.46% for 10 cycling tests, indicating the excellent electrode cycling stability and long-term durability.
These findings showed the applicability of the Ag NPs/rGO foam electrode as a reliable Hg(II) sensor.
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