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Abstract: In recent years, the research on supercapacitors has ushered in an explosive growth, which
mainly focuses on seeking nano-/micro-materials with high energy and power densities. Herein, this
review will be arranged from three aspects. We will summarize the controllable architectures of spinel
NiCo2O4 fabricated by various approaches. Then, we introduce their performances as supercapacitors
due to their excellent electrochemical performance, including superior electronic conductivity and
electrochemical activity, together with the low cost and environmental friendliness. Finally, the
review will be concluded with the perspectives on the future development of spinel NiCo2O4 utilized
as the supercapacitor electrodes.
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1. Introduction

Over the past few decades, the rapid development of the global economy has increased
the demands of energy, and the ever-urgent demands to seek other renewable and
environmentally-friendly energy sources to reduce the dependence on fossil fuels prompted
the developments of storage and conversion technologies [1,2]. However, the renewable energy
sources have intermittent features for their access, which can be easily influenced by external
conditions. Though the technologies of harvesting renewable energy, such as fuel cells, lithium-ion
batteries and dye-sensitized solar cells, and so on [3–5], have been remarkably improved, further
appropriate technologies to capture and store the generated energy are still required. In recent years,
supercapacitors, the new devices between conventional physical capacitors and batteries, also known
as electrochemical capacitors, have been extensively studied to serve as one of the most promising
candidates for next-generation energy storage devices due to their intriguing properties, such as high
power densities, long cycling lifespans and fast charge/discharge processes, which can be proven by
the number of literature works shown in Figure 1.

Generally, supercapacitors can be divided into two types, electrical double-layer capacitors
(EDLCs) and pseudocapacitors (PCs), including three major categories of materials: carbonaceous
materials, conducting polymers and transition metal oxides/hydroxides (TMO/Hs), depending on
their different charge storage mechanisms [6,7]. The EDLCs are based on the electrical double-layer
theory, which was put forward by German physicist Helmholtz in 1874 [8], and subsequently revised
by Gouy, Stern, etc. [9,10]. In 1957, the practical application of a double-layer capacitor to store electrical
charge was demonstrated and patented by H.I. Becker [11]. As shown in Figure 2a, the energy storage
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of EDLCs occurs at the interfaces between the electrodes’ active materials and electrolytes, which is
a pure physical charge accumulation at the interfaces [12]. The EDLCs can be simplified to be the
parallel-plate capacitors with the formula as follows [13,14]:

C =
ε0εr

d
A (1)

where εr refers to the dielectric constant of electrolyte, ε0 represents the permittivity of a vacuum, d is
the Debye length and A is the effective area, which contacts electrolyte. The formula obviously shows
that the C is greatly influenced by the specific surfaces. Carbonaceous materials, which possess high
specific surfaces, good electrical conductivity, high chemical stability, low cost, etc., have been widely
utilized for EDLCs. However, carbonaceous materials still suffer from limited specific capacitances
and lower energy density, which restrict their large-scale commercialization [15]. On the contrary,
pseudocapacitance was first investigated by Conway in the 1960s, and the PCs mainly depend on fast
reversible faradic redox reactions on the surface [16–18], which is schematically illustrated in Figure 2b.
Conducting polymers, TMO/Hs, carbonaceous materials enriched in heteroatoms (oxygen, nitrogen)
and nanoporous carbons with electro-absorbed hydrogen can be classified into pseudocapacitive
materials [19–21].
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Figure 2. Schematic illustration of different types of supercapacitors: (a) electrical double-layer
capacitors (EDLCs); (b) pseudocapacitor (PCs) (M represents the metal atom; if anions in the electrolyte
take part in the reversible redox reaction, they will move in the opposite direction to the cations)
(Reproduced with permission from [22]. Copyright the Royal Society of Chemistry, 2014).

Additionally, the performance of a supercapacitor is greatly influenced by a series of significant
fundamental parameters. Energy density and power density possess great significance on evaluating
the performance of supercapacitors, which are mostly accessible for practical application and are
usually significant to evaluate the supercapacitor devices. The energy density and power density can
be calculated from the equations as follows [23–25]:

E =

∫
Iv(t)dt

m
=

1
2× 3600

CmV2 (2)
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P =
V2

4mRs
=

E
∆t

(3)

where E (Wh/kg) refers to the energy density, I (A) is the discharge current of the discharge
process, v(t) is the cell voltage, dt is a time differential, m is the total mass of the whole cell, Cm is
gravimetrically-specific capacitance, V is the potential window, P (W/kg) is the power density,
∆t is the discharging time and Rs refers to the equivalent series resistance (ESR). The equations
show that the specific capacitance, potential window and ESR have great influence on the energy
density and power density. In addition, Ragone plots displaying energy density versus power
density are shown in Figure 3, which points out that the supercapacitors are new devices and have
filled the gap between batteries and conventional dielectric capacitors with higher energy density
than conventional dielectric capacitors and larger power density than batteries [26]. Therefore,
considerable interest has been focused on hunting for high-performance electrode materials with
higher capacitance, a wider potential window and lower resistance to improve the energy and power
density of electrode materials. TMO/Hs have become the representative pseudocapacitor materials
because they have multiple valences for charge transfer and reversible adsorption properties, resulting
in higher specific capacitance and larger energy density, such as Ru-based, Mn-based, Ni-based, etc.,
materials [27–29]. Among them, RuO2 delivered superior electrochemical performance, including
high specific capacitance, energy density and power density on account of its favorable conductivity
and highly reversible redox process [30]. However, its high toxicity, high costs and being a scarce
resource extremely restrict the convenience of application at a large scale. Therefore, it seems very
useful to seek materials with excellent properties containing environmentally-friendly and favorable
electrochemical performance.
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permission from [26]. Copyright Elsevier, 2015).

Spinel NiCo2O4, as one of the most promising candidates of typical TMO/Hs, has attracted
great attention, not only possessing low cost, being an abundant resource and being environmentally
benign compared with Ru-based materials, but also have better electrical conductivity and higher
electrochemical activity than Mn-based and V-based materials [24,25]. Although spinel NiCo2O4

has received considerable research interest due to its series of excellent features, there are few
reviews to summarize the most important related work and achievements of NiCo2O4-based
materials on the application of supercapacitors. Therefore, we will summarize the syntheses
(including various fabrication methods, different architectures) and performance of NiCo2O4 materials
as supercapacitor electrodes.

2. Synthetic Strategies and Performance for NiCo2O4-Based Nanomaterials

Generally, binary metal oxides NiCo2O4 have a cubic spinel structure (as depicted in Figure 4a),
where nickel ions occupy the octahedral sites, and cobalt ions spread on both the octahedral and
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tetrahedral sites [31–33]. Furthermore, the abundant resources and low toxicity of nickel and
cobalt materials signify low cost and environmental friendliness. The electronic conductivity and
electrochemical activity of spinel NiCo2O4 as shown in Figure 4b are superior to those of nickel
oxides and cobalt oxides by at least two orders of magnitude [34,35], which can greatly influence the
supercapacitive performances, especially on the power density. What is more, the supercapacitive
performances of NiCo2O4-based materials are dominated by the richer faradic redox reactions in
alkaline electrolytes originated from both nickel and cobalt ions [33,36]. The redox reactions in alkaline
electrolytes can be ascribed as follows [37–39]:

NiCo2O4 + OH− + H2O↔ 4NiOOH + 2CoOOH + e− (4)

CoOOH + OH− ↔ 4CoO2 + H2O + e− (5)
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2.1. Approaches to Synthesize NiCo2O4 Nanomaterials

To date, many methods have been reported to synthesize and improve the performance of spinel
NiCo2O4, such as hydrothermal, sol-gel, electrochemical deposition, etc. Different architectures of
spinel NiCo2O4 are obtained as shown in Table 1. It is worth mentioning that all of these methods tend
to synthesize the precursor of NiCo2O4 firstly, and a calcination procedure followed to get the spinel
NiCo2O4 is needed. Therefore, in this section, we will describe the most widely-applied procedures to
synthesize spinel NiCo2O4 materials and their products.

2.1.1. Hydrothermal/Solvothermal Method

The hydrothermal/solvothermal method has received much attention, mainly due to its simplicity,
low cost, high efficiency and convenient manipulation combined with flexible control over the sizes
and morphologies of the resulting nanostructures, in which aqueous or other solvents are used as
the reaction mediums to generate a high temperature and high pressure reaction environment by
heating the reaction vessel to a certain temperature [40,41]. Therefore, this method is extensively used
to form the precursors of NiCo2O4 nanomaterials by heating the homogeneous solution of nickel and
cobalt salts and other surfactant agents or structure-controlled agents in a sealed Teflon-lined stainless
steel autoclave. The possible reactions in the hydrothermal process are as described by the following
equations [38,42]:

6CO(NH2)2 → C3H6N6 + 6NH3 + 3CO2 (6)

NH3 + H2O→ NH+4 + OH− (7)

Ni2+ + 2Co2+ + 6OH− → NiCo2(OH)6 (8)

NiCo2(OH)6 + 1/2O2 → NiCo2O4 + 3H2O (9)
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Table 1. Pure NiCo2O4 nanostructures.

Material Preparation Methods
//Annealing Condition

Specific Capacitance
//Loading Mass Rate Performance Capacity Retention Potential

Window//Electrolyte Ref.

urchin-like NiCo2O4

hydrothermal
120 ◦C/6 h

//300 ◦C/3 h in air

1650 F/g
(at 1 A/g)

1348 F/g
(at 15 A/g)

90.8%
(after 2000 cycles )

0–0.41 V vs. SCE//
3 M KOH [33]

flowerlike
NiCo2O4

hydrothermal
180 ◦C/6 h

//300 ◦C/2 h in air

658 F/g
(at 1 A/g)

78%
(at 20 A/g)

93.5%
(after 10,000 cycles)

0–0.55 V vs. Hg/HgO//
6 M KOH [34]

NiCo2O4 nanosheets
electrodeposition
(−1.0 V vs. SCE)

//300 ◦C/2 h

2010 F/g
(at 2 A/g)

//0.8 mg/cm2

72%
(at 20 A/g)

94%
(after 2400 cycles)

−0.1–0.3 V vs. SCE//
3 M KOH [37]

NiCo2O4 double-shell
hollow spheres

hydrothermal
90 ◦C/4 h

//300 ◦C/4 h

718 F/g
(at 1 A/g)

//3.76 mg/cm2

80%
(at 10 A/g)

89.9%
(after 2000 cycles)

0–0.4 V vs. SCE//
6 M KOH [38]

flower-like nickel-cobalt
Oxides

hydrothermal
120◦C/2h

//300 ◦C/2h

750F/g
(at 1A/g)

2.2mg/cm2

498F/g
(at 10 A/g)

102%
(after 3000 cycles)

0-0.5V vs. Ag/AgCl//
2M KOH [39]

NiCo2O4
nanowires

hydrothermal
100 ◦C

//300 ◦C/3 h

1283 F/g
(at 1 A/g)

//1.2 mg/cm2

79%
(at 20 A/g)

100%
(after 5000 cycles )

0–0.4 V vs. SCE//
6 M KOH [42]

NiCo2O4
nanorods/nanosheets

oil bath
80 ◦C/6 h

//300 ◦C/2 h
90 ◦C/4 h

//350 ◦C/2 h

nanorods 1023.6 F/g (at 1 A/g)
nanosheets 1002 F/g (at 1 A/g)

500 F/g (at 20 A/g)
520 F/g (at 20 A/g)

81.5%
(after 2000 cycles)

96.4%
(after 2400 cycles)

0–0.45 V (nanorods)
0–0.55 V (nanosheets)

vs. SCE//
2 M KOH

[43]

chain-like NiCo2O4
nanowires

hydrothermal
100 ◦C/6 h

//300 ◦C/2 h in air

1284 F/g
(at 2 A/g)

72%
(at 20 A/g)

97.5%
(3000 cycles)

0–0.43 V vs. Ag/AgCl//
6 M KOH [44]

NiCo2O4 spinel thin-film potentiostatic deposition
//200 ◦C

580 F/g
(at 0.5 A/g)

570 F/g
(at 50 A/g)

94%
(after 2000 cycles)

0.1–0.45 V vs. Ag/AgCl//
1 M KOH [45]

NiCo2O4 NSs@hollow
microrod arrays

electrochemical deposition
//300 ◦C/2 h

678 F/g
(at 6 A/g)

367 F/g
(at 47 A/g)

96.06%
(after 1500 cycles)

0-0.5 V vs. SCE//
1 M KOH [46]

NiCo2O4 nanosheet electrochemical deposition
//300 ◦C/2 h in air

2658 F/g
(at 2 A g−1)

//0.6 mg/cm2

70%
(at 20 A g−1)

80%
(after 3000 cycles )

−0.1–0.35 V vs. Hg/Hg2Cl2//
3 M KOH [47]

NiCo2O4 nanotubes electrospun
//450 ◦C/2 h in air

1647 F/g
(at 1 A/g)

77.3%
(at 25 A/g)

93.6%
(after 3000 cycles)

0–0.41 V vs. Ag/AgCl//
2 M KOH [48]
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Table 1. Cont.

Material Preparation Methods
//Annealing Condition

Specific Capacitance
//Loading Mass Rate Performance Capacity Retention Potential

Window//Electrolyte Ref.

NiCo2O4 nanosheets
hydrothermal

90 ◦C/10 h
//320 ◦C/2 h in air

3.51 F/cm2

(at 1.8 mA/cm2)
//1.2 mg/cm2

39%
(at 48.6 mA/cm2)

93.3% (8.5 mA/cm2)
82.9% (25 mA/cm2)
(after 3000 cycles)

0–0.45 V vs. SCE//
2 M KOH [49]

NiCo2O4 nanosheets
oil bath

90 ◦C/6 h
//300 ◦C/2 h

899 F/g
(at 1 A/g)

//1.54 mg/cm2

67.9%
(at 20 A/g)

93.2%
(6000 cycles//2 A/g)

84.9%
(6000 cycles//5 A/g)

0–0.45 V vs. SCE//
6 M KOH [50]

NiCo2O4 nanosheets
@halloysite nanotubes

oil bath
90 ◦C/6 h

//350 ◦C/3.5 h in air

1886.6 F/g
(at 6 A/g)

79.5%
(at 30 A/g)

94.74%
(after 6000 cycles)

0–0.5 V vs. SCE//
2 M KOH [51]

NiCo2O4 nanowires precipitate
//250 ◦C/3 h

743 F/g
(at 1 A/g)

78.6%
(at 40 A/g)

93.8%
(after 3000 cycles)

−0.05–0.45 V vs. Ag/AgCl//
1 M KOH [52]

NiCo2O4 spheres
oil bath

180 ◦C/3 h
//300 ◦C/3 h

856 F/g
(at 1 A/g)

60.8%
(at 100 A/g)

98.75%
(after 10,000 cycles)

0–0.5 V vs. Hg/HgO//
2 M KOH [53]

flower-shaped NiCo2O4
microsphere

microwave-assisted
100 ◦C/15 min

//300 ◦C/2 h in air

1006 F/g
(at 1 A/g)

//3 mg/cm2

72.2%
(at 20 A/g)

93.2%
(after 1000 cycles )

0-0.5 V vs. Hg/HgO//
6 M KOH [54]

NiCo2O4 nanoneedle
hydrothermal

85 ◦C/8 h
//250 ◦C/1.5 h

3.12 F/cm2

(at 1.11 mA/cm2)
//0.9 mg/cm2

18.9%
(at22.24 mA/cm2)

94.74%
(after 2000 cycles )

0–0.4 V vs. SCE//
2 M KOH [55]

NiCo2O4 multiple
hierarchical structures

hydrothermal
120 ◦C/7 h

//350 ◦C/3 h

2623.3 F/g
(at 1 A/g)

//2.09 mg/cm2

1785.5 F/g
(at 40 A/g)

94%
(after 3000 cycles)

0–0.5 V vs. Hg/HgO//
3 M KOH [56]

Nickel cobaltite nanowire
hydrothermal

150 ◦C/6 h
//350 ◦C/3 h in air

760 F/g
(at 1 A/g)

//1 mg/cm2

70%
(at 20 A/g)

81%
(after 3000 cycles)

−0.05–0.50 vs. Hg/HgO//
6 M KOH [57]

NiCo2O4 nanowire hydrothermal 120 ◦C /6 h
//400 ◦C/3 h

2681 F/g
(at 2 A/g)

//3 mg/cm2

2305 F/g
(at 8 A/g)

100%
(after 3000 cycles)

0–0.45 V vs. SCE//
3 M KOH [58]

NiCo2O4 square sheet
hydrothermal
180 ◦C/24 h

//350 ◦C/3 h

980 F/g
(at 0.5 A/g)

384 F/g
(at 10 A/g)

91%
(after 1000 cycles)

0–0.5 V vs. Ag/AgCl//
1 M KOH [59]

NiCo2O4
nanosheets

microwave
140 ◦C/30 min

//300 ◦C/3 h in air

560 F/g
(at 2 A/g)//
1 mg/cm2

71%
(at 20 A/g)

95.2%
(after 5000 cycles)

0–0.6 V vs. SCE//
2 M KOH [60]
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The above-mentioned equations are more suitable for a temperature of no higher than 100 ◦C,
and the precursors of (Co, Ni)2CO3(OH)2·nH2O are obtained when the temperature is higher than
100 ◦C [54]. In addition, the intermediate products are also influenced by the surfactant agent and
the organic solvent. However, whatever the procedure of the reactions, all of the end products of the
hydrothermal/solvothermal method need to be appropriately annealed to obtain NiCo2O4.

By the hydrothermal/solvothermal method, the morphologies can be easily adjusted by
temperature, reactions times and reactions substances or other reactions conditions, in order to
advance the supercapacitive performance of NiCo2O4 electrodes. For instance, Zou et al. [44] have
fabricate 3D radial chain-like nanowire NiCo2O4 micro-spheres with different exposed crystal planes
by a hydrothermal method. When applied as electrode materials for supercapacitors, chain-like
NiCo2O4 nanowires exhibited high specific capacitance of 1284 F/g at 2 A/g, favorable rate capability
and excellent cycling stability with only 2.5% loss after 3000 cycles. The results of in situ electrical
properties clearly illustrated that the chain-like nanowires with different exposed crystal planes exhibit
superior electronic conductivity, demonstrating that the electronic conductivity was very essential
for electrode materials in supercapacitors. Moreover, Padmanathan et al. [61] have investigated the
morphology conversions of bimetallic NiCo2O4 nanostructures on carbon fiber cloth (CFC) with
different precursor salts in an equal volume of ethanol and water mixed solvent at 120 ◦C for 8 h,
and they successfully prepared NiCo2O4 nanowall networks and porous nanoflake microstructures.
The as-prepared NiCo2O4 nanowall network structures deliver a maximum capacitance of 1225 F/g at
a high current density of 5 A/g; even at 40 A/g, the specific capacitance still remains 996 F/g, higher
than the NiCo2O4 nanoflakes with only 844 F/g at 1 A/g. As a result, the surface morphology was
successfully induced by the variation of the precursor, which proved the influence of the precursor
on the growth kinetics and structure-property relations. Shen et al. [62] have reported the synthesis
of uniform NiCo2O4 hollow spheres with a one-step hydrothermal method in the mixed organic
solvent of 8 mL glycerol and 40 mL isopropanol, which exhibit excellent electrochemical properties
with the favorable capacitance of 1141 F/g at 1 A/g and good cycling properties of only 5.3% loss
after 4000 cycles. All of these reports demonstrate that the morphologies of the NiCo2O4 can be
simply controlled by hydrothermal conditions and are accessible to pursue higher supercapacitive
performances by adjusting the morphologies and architectures.

2.1.2. Electrochemical Deposition Method

The electrochemical deposition method is also widely employed for preparing NiCo2O4

by a three-electrode construction, in which the samples are precipitated and deposited on the
conductive substrates in an as-prepared homogeneous solution of nickel and cobalt salts. NiCo2O4

nanoarchitectures are obtained by the post-annealed process. The procedure of these electrochemical
reactions and the sequences are as described by the following equations [63–65]:

NO3− + H2O + 2e− → NO2− + 2OH− (10)

NO2− + 6H2O + 6e− → NH4+ + 8OH− (11)

xNi2+ + 2xCo2+ + 6xOH− → NixCo2x(OH)6x (12)

NixCo2x(OH)6x + 1/2xO2 → xNiCo2O4 + 3xH2O (13)

where NO3
− was reduced on the cathodic surface and simultaneously generated OH− ions.

Subsequently, the generation of OH− ions at the cathode combines the Ni2+ or Co2+ to form uniform
precipitation of Ni(OH)2 or Co(OH)2 nanomaterials. Moreover, the solubility constant (Ksp) of Co(OH)2

(2.5 × 10−16) is very close to Ni(OH)2 (2.8 × 10−16) at 25 ◦C, which means that the composition of the
product can be controlled by adjusted the molar ratio of Ni2+ and Co2+. On account of the homogeneous
morphology of production, high efficiency and convenient manipulation, electrochemical deposition
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has been widely used as the technique to synthesize electrode materials with a stably-uniform
morphology, which possess ultrahigh specific capacitances and favorable cycling performances.

As early as 2010, Gupta et al. [45] successfully prepared spinel NiCo2O4 thin-film on stainless-steel
by using a three-electrode electrochemical configuration in a mixed electrolyte of Co(NO3)2·6H2O
and Ni(NO3)2·6H2O (0.55:0.45 in molar ratio) at −1.0 V (vs. Ag/AgCl). Then, to optimize the
performance, they investigated the influence of difference annealing temperatures and found that
the morphology of the as-prepared NiCo2O4 thin-film was greatly affected by the temperature.
When annealed at 200 ◦C, the NiCo2O4 thin-film possesses a porous nanostructure with long-range
interconnectivity promoting electrochemical accessibility of OH− ion electrolyte and a high diffusion
rate through the bulk, corresponding well to the results of high specific capacitance, good rate capability
and cycling performance. Additionally, Yuan et al. [37] synthesized ultrathin mesoporous (with a
size range from 2 to 5 nm) nickel cobaltite (NiCo2O4) nanosheets on conductive nickel foam by
involving co-electrodeposition (electrodeposition potential is −1.0 V vs. SCE) of a bimetallic (Ni, Co)
hydroxide precursor onto a Ni foam and followed thermal transformation to spinel mesoporous
NiCo2O4. These structures promise fast electron and ion transport, a large electroactive surface
area, and excellent structural stability, exhibiting ultrahigh specific capacitance of 2010 F/g at the
current densities of 2 A/g and still remaining at 1450 F/g even at a very high current density of
20 A/g. In addition to the potentiostatic deposition, Wu and his coworkers [35] have prepared
homogeneously thin NiCo2O4 nanosheets on the skeleton of 3D Ni foam/N-CNT by using constant
cathodic current under 1 mA/cm2 for 10 min at room temperature. The 3D Ni foam/N-CNT/NiCo2O4

nanosheet electrode exhibits superior supercapacitive performances with high specific capacitance
(1472 F/g at 1 A/g), a remarkable rate capability and excellent cycling stability (less than 1% loss
after 3000 cycles). Recently, Zeng et al. [66] synthesized NiCo2O4 nanosheets by cyclic voltammetry
(CV) conducted in a potential range of −1.1 V–−0.5 V with a sweep rate of 20 mV/s for 20 cycles.
The high areal capacitance (3.18 F/cm2 at 6 mA/cm2) (2650 F/g at 5 A/g), good rate capability
and cycling stability (76% capacitance retention after 4000 cycles at a high current density of
10 mA/cm2) reveal the feasibility of these methods and these smart structures. These different
approaches of electrochemical deposition demonstrate that the synthesized conditions of NiCo2O4

nanosheets are very flexible. Owing to these many advantages of electrochemically-deposited NiCo2O4

nanomaterials, there are many advanced electrodes, such as NiCo2O4 nanosheet@hollow microrod
arrays [46], 3D interconnected mesoporous NiCo2O4@CoxNi1-x(OH)2 core-shell nanosheet arrays [67],
three-dimensional nickel foam/graphene/NiCo2O4 [68], hybrid composite Ni(OH)2@NiCo2O4 [69]
and hierarchical Co3O4@NiCo2O4 nanowire arrays [70].

2.1.3. Other Methods

The hydrothermal/solvothermal method and electrochemical deposition method are the two
common approaches to synthesize NiCo2O4-based nanomaterials for supercapacitor electrodes. It is
obvious that the hydrothermal/solvothermal method tends to control the size and nanostructure by
adjusting the reagents or concentration and reaction time or temperature to optimize the performance.
By contrast, all of the morphologies of the electrochemical deposition method are inclined toward
the structures of nanosheets. Nevertheless, the merits of the electrochemical deposition method are
quite apparent. These ultrathin nanosheets not only enlarge the specific surface area and increase the
electroactivity, but also retained much interparticle porosity and interspace to facilitate the diffusion of
the electrolyte. Furthermore, it is easy to deposit the NiCo2O4 nanosheets on conductive substrates or
other superior performance materials by the electrochemical deposition method, which can further
stimulate the performance.

However, in addition to the hydrothermal/solvothermal method and electrochemical deposition
method, there are other ways to prepare spinel NiCo2O4 nanomaterials for supercapacitor electrodes,
further demonstrating the advantages of the facile preparation. For instance, Wei et al. [36] first
obtained NiCo2O4 aerogels via an epoxide-driven sol-gel process in 2010, for which the specific
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capacitance can be reached as 1400 F/g under a mass loading of 0.4 mg/cm2 at a sweep rate of
25 mV/s within a potential window of 0.04 V–0.52 V in a 1 M NaOH solution. Li and co-works [46]
synthesized novel porous NiCo2O4 nanotubes by a single-spinneret electrospinning technique followed
by calcination in air. The electrodes assembled by as-prepared NiCo2O4 nanotubes exhibited
excellent properties, for which the specific capacitance reached 1647 F/g at 1 A/g; the rate capability
maintained at 77.3% at 25 A/g; and the cycling stability exhibited only a 6.4% loss after 3000 cycles.
Luo et al. [71] reported porous NiCo2O4-rGO by electro-spray, and Ding et al. [72] successfully
synthesized mesoporous NiCo2O4 nanoparticles via a facile and cost-effective ball milling solid-state
method, followed by a thermal treatment. Besides these approaches mentioned above, there are
still other methods, such as microwave-assisted methods [54,73,74], co-precipitation methods [75,76],
chemical bath deposition [77] and oil bath [43,51,78,79].

2.2. The Morphologies of NiCo2O4 Nanostructures

In order to improve the supercapacitive performances of NiCo2O4-based materials and broaden
their applications, many researchers have dedicated their efforts to modify the structures and
morphologies to further trigger the performance of NiCo2O4-based materials. Herein, we will
summarize the morphologies of NiCo2O4 nanostructures and their performance.

2.2.1. 1D NiCo2O4 Nanostructures

1D nanostructures are usually categorized as those with a large aspect ratio (defined as
the length along the longitudinal axis to the width along the transversal plane) [80], such as
nanorods, nanowires, nanobelts and nanotubes. Among these various morphologies, 1D NiCo2O4

nanostructures are very common nanostructures, which is mainly due to their superior properties. The
1D NiCo2O4 nanostructures possess monodispersity, which ensures every nanowire participates in
the electrochemical reaction relying on the favorable conductivity. Furthermore, the 1D NiCo2O4

nanostructures were formed by many smaller units retaining a large amount of pores, which facilitate
the ion diffusion. What is more, the 1D NiCo2O4 nanostructures have excellent structure stability,
meaning superior cycling performance. Wang et al. [57] synthesized NiCo2O4 nanowires by a facile
hydrothermal method, followed by an annealing treatment. SEM and TEM images in Figure 5a show
that the nanowires have a high aspect ratio with lengths up to several micrometers and diameters
down to about 20 nm. What is more, the specific capacitance of these NiCo2O4 nanowires can
reach as high as 760 F/g at the current density of 1 A/g, and retain 532 F/g at 20 A/g (about 70%,
compared to the specific capacitance at 1 A/g). The specific capacitance is about 81% of the initial
value after 3000 cycles, which indicates that the NiCo2O4 nanowires have high specific capacitance and
remarkable rate capability. Jiang et al. [52] reported hierarchical porous NiCo2O4 nanowires by stirring
the mixture and collecting the precipitates, and a calcination process was subsequently followed.
From the SEM and TEM images (Figure 5b), the porous NiCo2O4 hierarchical nanowires are observed.
These porous NiCo2O4 nanowires show a high specific capacitance of 743 F/g at 1 A/g with excellent
rate performance (78.6% capacity retention at 40 A/g) and superior cycling stability (only 6.2% loss
after 3000 cycles). Recently, Lou’s group [81] reported hierarchical tetragonal microtubes consisting
of ultrathin mesoporous NiCo2O4 nanosheets by a one-step solvothermal method. Additionally,
these advanced structures endow the NiCo2O4 with intriguing performance, showing a high specific
capacitance of 1387.9 F/g at the current density of 2 A/g, and 62% of the capacitance is still retained
when the charge-discharge current density is increased from 2–30 A/g with the capacitance loss
being only about 10.6% after 12,000 cycles. In addition, in order to analyze the mechanism of the
formation, they further investigated the time dependency. Figure 5c reveals the evolution process
of the Ni-Co precursors, where the smooth tetragonal nanoprisms with a pyramid-like apex at the
end are obtained at the initial stage of the solvothermal reaction and evolved into completely hollow
microtubes consisting of nanosheets.
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Figure 5. (a) Scanning electron microscope (SEM) and transmission electron microscope (TEM) images
of NiCo2O4 nanowires (Reproduced with permission from [57]. Copyright John Wiley and Sons,
2011); (b) SEM, TEM and selected area electron diffraction (SAED) of the porous NiCo2O4 nanowires
(Reproduced with permission from [52]. Copyright the Royal Society of Chemistry, 2012); (c) TEM
images of different reaction time and the schematic illustration of the formation process for hierarchical
nickel cobalt layered double hydroxide tetragonal microtubes (Reproduced with permission from [52].
Copyright the Royal Society of Chemistry, 2012).

Although significant achievements have been made for 1D NiCo2O4 nanostructures, there is still
big room for NiCo2O4 nanomaterials as supercapacitors to improve the performance. In the traditional
method, the samples are mixed into a slurry and pasted to the current collector, which will suffer
from inhomogeneity and limits the diffusion of electrolytes. Therefore, it will be of great significance
to directly grow the NiCo2O4 nanostructures on conductive substrates. Shen and co-workers [42]
directly grew NiCo2O4 nanowire arrays on carbon textiles, which displayed good dispersity (Figure 6a)
and excellent supercapacitive performance. The distinctive electrode architectures enhanced the
conductivity, and the large open spaces between neighboring nanowires would ensure every nanowire
participated in the ultrafast electrochemical reaction, which greatly contributed to the electrochemical
performance. The specific capacitance of NiCo2O4 nanowires arrays on carbon textiles was 1283 F/g
at 1A/g, and about 79% was retained even at 20 A/g, revealing the superior specific capacitance and
rate capability. What is more, these porous NiCo2O4 nanowires exhibited remarkable cyclic stability
with negligible specific capacitance decay after 5000 cycles, demonstrating its robust and superior
performance as supercapacitor electrodes. Actually, the excellent electrochemical performance for the
unique binder-free NiCo2O4/carbon textiles benefited from the intrinsic materials’ and architectures’
features. Moreover, Wang et al. [58] reported directly-grown NiCo2O4 nanowires on a conductive
nickel foam substrate by a hydrothermal method (Figure 6b), whose specific capacitance can reach
2681 F/g at 2 A/g and 2305 F/g at 8 A/g. These results demonstrate that the substrates have great
influence of the electrochemical performance, which is consistent with our previous work [41].
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Figure 6. (a) Different magnification SEM images of NiCo2O4 nanowires arrays on carbon textiles
(Reproduced with permission from [42]. Copyright John Wiley and Sons, 2014); (b) SEM image of the
Ni foam and NiCo2O4 nanowires on Ni foam (Reproduced with permission from [58]. Copyright the
Royal Society of Chemistry, 2013).

2.2.2. 2D NiCo2O4 Nanostructures

2D NiCo2O4 nanostructures, such as nanosheets, nanoplates and nanofilms, are other
important architectures with superior supercapacitive performance as electrode materials. These
2D NiCo2O4 nanostructures great enlarge the specific surface area and electroactivity. Furthermore,
the interconnected nanosheets retained massive interspaces, which facilitate the ion diffusion. What is
more, these ultrathin nanosheets tend to combine other intriguing materials to form high dimensional
nanostructures, which not only further improve the performance, but also increase the utilization of the
space. As early as 2010, Gupta et al. [45] synthesized high-performance spinel NiCo2O4 nanosheets on
stainless-steel with potentiostatic deposition by using an aqueous mixed electrolyte in a three-electrode
electrochemical configuration. From the SEM images (Figure 7a), the average thickness of the obtained
nanosheets was about 10 nm. Their specific capacitances reached 580 F/g at 0.5 A/g, and only a 6%
decrease of the initial value was observed after 2000 cycles. Moreover, Lou’s group reported many
substantial methods to synthesize NiCo2O4 nanosheets that exhibited excellent performance, such
as hydrothermal (Figure 7b) [49], oil bath [43,50] and electrodeposition method [37], which made
tremendous contributions to the 2D NiCo2O4 nanostructures. Recently, Du and co-workers fabricated
NiCo2O4 nanosheets by a three-electrode electrochemical configuration [47], in which the specific
capacitance was as high as 2658 F/g at 2 A/g and still retained 1866 F/g at 20 A/g, and the specific
capacitance reduced approximately 20% after 3000 cycles. Additionally, Garg et al. [59] prepared
NiCo2O4 square sheets and hexagonal sheets by tuning the hydrolyzing agents in the hydrothermal
method; these nanosheets showed excellent performance, especially for the square sheets. Mondal
and co-workers [60] prepared NiCo2O4 nanosheets by a facile microwave method with the specific
capacitance of 560 F/g at 2 A/g and superior cycling stability over 5000 cycles (the capacitance loss
was 4.8%). Cheng et al. [82] fabricated novel nanocyclobenzene NiCo2O4 nanosheets on nickel foam
(as shown in Figure 7c) with a high specific capacitance of 1545 F/g at a current density of 5 A/g and
long-term cyclic stability (93.7% capacitance retention after 5000 cycles) in 2 M KOH aqueous solution.

2.2.3. 3D NiCo2O4 Spheres

The vastly reported 3D NiCo2O4 further reflects its controllable morphologies. 3D NiCo2O4

nanostructures retained a large amount of space between neighboring structures, which greatly
enlarge the specific surface area and provide a large volume of 3D continuous electron transport
channels for electrolyte ion accumulation by acting as an ion reservoir. Moreover, 3D NiCo2O4

nanostructures tend to possess more stable structures. What is more, it is feasible to combine other
low dimensional materials to synthesized 3D nanostructures, which exhibit intriguing synergistic
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effects. Wang et al. [33] successfully fabricated urchin-like NiCo2O4 via a facile hydrothermal method
without any template and catalyst, which was formed by numerous small nanorods with diameters
of 100–200 nm and lengths of about 2 mm radially grown from the center, as shown in Figure 8a.
Further studies revealed that the morphologies of the products could be adjusted by urea, and the
morphologies transformed from rods via bundles to urchins with the values of pH from 5.5 to 6.8. These
urchin-like NiCo2O4 structures possessed large surface areas (99.3 m2/g), and the specific capacitance
reached 1650 F/g at 1 A/g with the capacitance loss of about 9.2% after 2000 cycles. Wu et al. [83]
and Zou et al. [44] also reported the syntheses of urchin-like NiCo2O4 structures with superior
electrochemical performances, as shown in Figure 8b,c, which were constructed by one-dimensional
nanowires. In addition, by employing a rapid and template-free microwave-assisted heating (MAH)
reflux approach followed by pyrolysis of the as-prepared precursors, Lei and co-workers [54] obtained
3D hierarchical flower-shaped spinel NiCo2O4 microspheres, as depicted in Figure 8d, which possess
a large specific surface area (148.5 m2/g, pore size 5–10 nm), high specific capacitance (1006 F/g at
1 A/g and 726 F/g at 20 A/g) and superior electrochemical stability (93.2% after 1000 cycles). Similar
3D flower-like hierarchitectures were also reported by other groups (Figure 8e) [39,84,85]. Li et al. [38]
assembled NiCo2O4 double-shell hollow spheres by engaging carbon spheres as the template, as
shown in Figure 8f. Compared with single-shell NiCo2O4 hollow spheres, double-shell NiCo2O4

hollow spheres possessed enlarged surface areas of 115.2 m2/g from 76.6 m2/g and improved specific
capacitance of 568 F/g from 445 F/g at 1 A/g. Furthermore, they improved the electrical conductivity
of these NiCo2O4 hollow spheres by annealing the samples at 300 ◦C in hydrogen for 1.5 h, and
the specific capacitance was simultaneously enhanced to be 718 F/g at a current density of 1 A/g.
However, the template of carbon spheres used in this work would increase the costs, which would
not be beneficial to large commercialization. Shen et al. [62] used a facile way to synthesize NiCo2O4

core-in-double shell hollow spheres with uniform NiCo-glycerate precursor and followed a simple
non-equilibrium heat treatment process (Figure 8g). The specific capacitances were 1141, 1048, 965, 862
and 784 F/g at current densities of 1, 2, 5, 10 and 15 A/g, respectively, and there was only a 5.3% loss
after 4000 cycles, indicating the favorable cycling stability.
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Figure 7. SEM images at different magnifications: (a) NiCo2O4 nanosheets on stainless-steel
(Reproduced with permission from [45]. Copyright Elsevier, 2010); (b) NiCo2O4 nanosheets on Ni
foam (Reproduced with permission from [49]. Copyright John Wiley and Sons, 2013); (c) NiCo2O4

nanocyclobenzene arrays on Ni foam (Reproduced with permission from [82]. Copyright the Royal
Society of Chemistry, 2014).
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microspherical superstructures (Reproduced with permission from [83]. Copyright Elsevier, 2012);
(c) SEM image of as-synthesized NiCo2O4 micro-spheres (Reproduced with permission from [44].
Copyright the Royal Society of Chemistry, 2013); (d) SEM and TEM images of as-fabricated NiCo2O4

(Reproduced with permission from [42]. Copyright American Chemical Society, 2014); (e) SEM images
of as-prepared materials (Reproduced with permission from [39]. Copyright American Chemical
Society, 2015); (f) TEM images of single-shelled and double-shelled NiCo2O4 spheres (Reproduced
with permission from [38]. Copyright Nature Publishing Group, 2015); (g) typical FESEM and TEM
images of NiCo2O4 (Reproduced with permission from [62]. Copyright John Wiley and Sons, 2015).

2.3. NiCo2O4-Based Composites Nanostructures

Composite materials have received increasing concern, which was mainly due to the superior
performance compared to solitary materials induced by the synergistic effect. In addition to pure
NiCo2O4 nanostructures, NiCo2O4-based composites have also been intensively investigated as
electrode materials for supercapacitors. Therefore, in this section, we will review the NiCo2O4-based
composites containing carbonaceous materials and TMO/Hs, etc., as listed in Table 2.

2.3.1. The Combination of NiCo2O4-Based Materials with Carbonaceous Materials

Due to the high specific-area, good electrical conductivity and high chemical stability,
carbonaceous materials, including graphene, carbon nanotubes, etc., have been typically used to
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assemble NiCo2O4-based composite electrodes. Additionally, carbon materials can be obtained by
carbonizing the organics, which can be used to recycle waste materials into profitable materials
and a benefit to the environment. For instance, Xiong et al. [86] fabricated mollusk shell-based
macroporous carbon material (MSBPC) by carbonizing the organic matrix of mollusk shell, as
shown in Figure 9a, which was treated as the conductive scaffolds growing NiCo2O4 nanowires
as supercapacitor electrodes. The electrodes of NiCo2O4/MSBPC composites exhibited superior high
specific capacitance (1696 F/g, at the current of 1 A/g), excellent rate performance (maintained 58.6%
at 15 A/g) and outstanding cycling stability (still remained 88%, after 2000 cycles). The hexangular
and tightly-arranged channels of the MSBPC promoted the efficient penetration of electrolyte and
fast electron transfer, which could be responsible for the excellent performance. Significantly, carbon
nanotubes (CNT) [35,63,87] and grapheme/reduced grapheme oxide (RGO) [68,88–91] have also been
employed to assemble composite with NiCo2O4 nanomaterials. For example, Nguyen et al. [68]
fabricated three-dimensional nickel foam/graphene/NiCo2O4, which displayed a higher specific
capacitance of 1950 F/g at 7.5 A/g; Wang et al. [90] reported RGO/NiCo2O4 nanoflakes with a
high performance of 1693 F/g at 1 A/g; Wu et al. [35] synthesized 3D Ni foam/N-CNT/NiCo2O4

nanosheets with superior supercapacitive performances of 1472 F/g at 1 A/g.
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Figure 9. (a) SEM images of the NiCo2O4/mollusk shell-based macroporous carbon (MSBPC)
composites (Reproduced with permission from [69]. Copyright American Chemical Society, 2014);
(b) SEM and TEM images of carbon fiber paper (CFP) after the growth of NiCo2O4 nanosheets
and Ni(OH)2/NiCo2O4 nanosheets on CFP (Reproduced with permission from [86]. Copyright
American Chemical Society, 2013); (c) As-synthesized networked NiCo2O4/MnO2 branched nanowire
heterostructure (BNH) arrays on Ni foam (Reproduced with permission from [92]. Copyright the Royal
Society of Chemistry, 2015).
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Table 2. NiCo2O4-based composites nanostructures.

Materials Preparation Methods
//Annealing Condition

Specific Capacitance
//Loading Mass Rate Performance Capacity Retention GCD Potential

Window//Electrolyte Ref.

carbon nanotube/NiCo2O4
electrochemical deposition

//300 ◦C/2 h
694 F/g

(at 1 A/g)
82%

(at 20 A/g)
91%

(1500 cycles)
0–0.41 V vs. SCE//

6 M KOH [63]

NiCo2O4 @CoxNi1-x(OH)2
electrochemical deposition

//300 ◦C/2 h

5.71 F/cm
(at 5.5 mA/cm2)

(x = 0.33)
//5.5 mg/cm2

83.7%
(at 273 mA/cm2)

(x = 0.33)

80%
(3000 cycles)
(at x = 0.33)

−0.15–0.45 V vs. SCE//
1 M KOH [67]

graphene/NiCo2O4
electrochemical deposition

//300 ◦C/2 h 15 mg/cm2 1950 F/g
(at 7.5 A g−1)

92.8%
(10,000 cycles)

−0.1–0.3 V vs. SCE//
3 M KOH [68]

Ni(OH)2@NiCo2O4
electrochemical deposition//

300 ◦C/2 h

5.2 F/cm
3200 F/g

(at 2 mA/cm2)
//0.6 mg/cm2

79%
(at 50 mA/cm2)

36%
(1000 cycles)

0–0.45 V vs. SCE//
1 M KOH [69]

NiCo2O4@polypyrrole
nanowires

hydrothermal
110 ◦C/12 h

//300 ◦C/2 h in air

2055 F/g
(at 1 A/g)
//1.67 mg

742 F/g
(at 50 A/g)

90%
(5000 cycles)

−0.2–0.45 V vs. SCE//
3 M NaOH [93]

NiCo2O4 nanowires/mollusc
shell based macroporous carbon

hydrothermal
110 ◦C/12 h

//300 ◦C/2 h

1696 F/g
(at 1 A/g)//
1.5 mg/cm2

24.9%
(at 50 A/g)

88%
(2000 cycles)

0–0.4 V vs. SCE//
2 M KOH [86]

NiCo2O4@graphene
nanoarchitectures

hydrothermal
90 ◦C/12 h

//350 ◦C/2 h

778 F/g
(at 1 A/g)

48%
(at 80 A/g)

90%
(10,000 cycles)

0–0.5 V vs. SCE//
2 M KOH [88]

NiCo2O4–RGO
composite

self-assembly
//800 ◦C/8 h in air

835 F/g
(at 1 A/g)//2 mg/cm2

615 F/g
(at 20 A/g)

higher than the
initial value
(4000 cycles)

0.1–0.5 V vs. Hg/HgO//
6 M KOH [89]

CNT@NiCo2O4
precipitate

//300 ◦C/3 h
1038 F/g

(at 0.5 A/g)
64%

(at 10 A/g)
100%

(1000 cycles)
−0.1–0.36 V vs. SCE//

6 M KOH [87]

NiCo2O4@CoMoO4

hydrothermal
120 ◦C/6 h

//400 ◦C/3 h in air

14.67 F/cm
(at 10 mA/cm2)
//2.3 mg/cm2

65.8%
(at 60 mA/cm2)

89.3%
(1000 cycles)

−0.1–0.5 V vs. SCE//
2 M KOH [94]
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Table 2. Cont.

Materials Preparation Methods
//Annealing Condition

Specific Capacitance
//Loading Mass Rate Performance Capacity Retention GCD Potential

Window//Electrolyte Ref.

Co3O4/NiCo2O4
double-shelled nanocages

template
70 ◦C/10 h

//350 ◦C/2 h

972 F/g
(at 5 A/g)

//1 mg/cm2

63.2%
(at 50 A/g)

92.5%
(12,000 cycles)

0–0.42 V vs. SCE//
1 M KOH [95]

NiCo2O4@MnO2
nanowire arrays

hydrothermal
120 ◦C/6 h

//300 ◦C/2 h

2.224 F/cm2

(at 2 mA/cm2)
//1.2 mg/cm2

55.3%
(at 50 mA/cm2)

113.6%
(8000 cycles)

0–0.45 V vs. SCE//
1 M NaOH [96]

NiCo2O4@MnO2
core-shellnanowire arrays

hydrothermal
90 ◦C/8 h

//350 ◦C/2 h

3.31 F/cm2

(at 2 mA/cm2)
//1.4 mg/cm2

1.66 F/cm2

(at 20 mA/cm2)
88%

(2000 cycles)
0–0.6 V vs. SCE//

1 M LiOH [97]

NiCo2O4@NiCo2O4
nanoflake arrays

hydrothermal
120 ◦C/3 h

//350 ◦C/2 h in argon

1.55 F/cm2

(at 2 mA/cm2)
//1.97 mg/cm2

1.16 F/cm2

(at 40 mA/cm2)
98.6%

(4000 cycles)
0–0.55 V vs. Hg/HgO//

2 M KOH [98]

NiCo2O4@Ni3S2
nanothorn arrays

hydrothermal
85 ◦C/9 h

//350 ◦C/3 h in air

1716 F/g
(at 1 A/g)

//2.1 mg/cm2

1104 F/g
(at 20 A/g)

83.7%
(2000 cycles)

0–0.5 V vs. Hg/HgO/
2 M KOH [99]

nickel-cobalt double hydroxide
nanosheets on NiCo2O4

nanowires (x = 0.67)

hydrothermal
120 ◦C/16 h (x = 0.67)
//300 ◦C/2 h in air

1.64 F/cm2

(at 2 mA/cm2) (x = 0.67)
//1 mg/cm2

67.55%
(at 90 mA/cm2)

(x = 0.67)

81.3%
(2000 cycles )

(x = 0.67)

−0.1–0.45 V vs. SCE//
1 M KOH [100]

carbon–CoO–NiO-NiCo2O4
nanosheet hybrid

hetero-structured arrays

hydrothermal
120 ◦C/6 h

//350 ◦C/3 h

5.23 F/cm2

2602.0 F/g
(at 2 mA/cm2)
//2 mg/cm2

76.1%
(at 50 mA/cm2)

higher than the
initial value
(7000 cycles)

0–0.48 V vs. SCE//
6 M KOH [101]

sponge-like NiCo2O4/MnO2
ultrathin nanoflakes

electrochemical deposition
//250 ◦C/2 h

935 F/g
(at 1 A/g)

//0.55 mg/0.4 cm2

74.9%
(at 50 A/g)

103.1%
(25,000 cycles)

−0.1–0.5 V vs. Ag/AgCl//
1 M KOH [102]

NiCo2O4/MnO2
branched nanowire

heterostructure arrays

hydrothermal
180 ◦C/8 h

//300 ◦C/2 h in air

2827 F/g
(at 2 mA/cm2)

//0.92 mg/0.4 cm2

66.8%
(at 100 mA/cm2)

98.4%
(3000 cycles )

0–0.5 V vs. SCE//
1 M KOH [92]
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2.3.2. The Combination of NiCo2O4-Based Materials with TMO/Hs

Since spinel NiCo2O4 possesses high electronic conductivity and controllable morphologies, it is
of great significance to use the spinel NiCo2O4 structures as the conductive scaffold to synthesize
other TMO/Hs materials or deposit NiCo2O4 structures to other materials in the expectation
of synthesizing smart architectures to realize a strong synergistic effect for high performance
supercapacitors. For example, Huang et al. [69] successfully fabricated NiCo2O4 nanosheets loading
Ni(OH)2 nanosheets as supercapacitor electrodes, as depicted in Figure 9b, which were grown on
carbon fiber paper (CFP) by a facile two-step electrodeposition. By comparing Ni(OH)2/NiCo2O4/CFP
with Ni(OH)2/Co3O4/CFP, they discovered that 3D hybrid composite Ni(OH)2/NiCo2O4/CFP
electrodes demonstrated higher performance with 5.2 F/cm2 (3200 F/g) at 2 mA/cm2, which were most
likely due to the higher conductivity of NiCo2O4 than Co3O4. However, the specific surface area of the
Ni(OH)2/NiCo2O4/CFP decreased more than 80% after 1000 cycles; meanwhile, the areal capacitance
dropped over 64% after 1000 cycles. Zou and co-workers [92] prepared networked NiCo2O4/MnO2

branched nanowire heterostructure (BNH) arrays on Ni foam substrates, as shown in Figure 9c. The
specific capacitances of the NiCo2O4/MnO2 BNH were as high as 2827 F/g at 2 mA/cm2 and 1891 F/g
at 100 mA/cm2, and the overall capacitance loss of the initial product is only 1.6% after 3000 cycles,
indicating the excellent cycling stability.

In addition to the carbonaceous materials and TMO/Hs, the spinel NiCo2O4 has been widely
employed as a conductive scaffold and been used to assemble composites with other materials, such as
conductive polymers [86,103], transition metal sulfide [99,104], TiN [105] and halloysite nanotubes [51].

It is of great significance to combine the NiCo2O4 with other materials, which induced synergistic
performance to further improve the supercapacitive performance. However, many composites suffer
from a complicated fabrication process. Therefore, it is feasible to simplify the synthesis process to
optimize the performance and cost.

3. Conclusions

Supercapacitors cover the power gap between batteries and conventional dielectric capacitors
with higher energy density than conventional dielectric capacitors and larger power density than
batteries, which carry much expectation for next-generation energy storage devices due to their high
power densities, long cycling lifespans and fast charge/discharge processes. Since the performance
was greatly influenced by the electrode materials, it is significant to endeavor to enhance the electrode
performance. In this review, we summarized the syntheses and the performance of supercapacitor
electrodes of spinel NiCo2O4 and its composites with various morphologies. Owing to the easy
controllability on the morphologies of NiCo2O4, many architectures, from 1D nanorods/nanowires,
2D nanosheets/nanoplates and to 3D structures, have been fabricated. The displayed excellent
supercapacitive performance can be ascribed to the higher electronic conductivity, electrochemical
activity and the richer faradic redox reactions in alkaline electrolytes. Additionally, the robust spinel
NiCo2O4 structures have been widely employed as scaffolds to grow other composites materials.

Although the spinel NiCo2O4 demonstrates remarkable properties, there still are many challenges
to overcome before commercialization. Firstly, the supercapacitive mechanisms of the NiCo2O4 still
lack agreement about whether NiCo2O4 can be classified as pseudocapacitor materials. Though
almost all of the literature for supercapacitors of the spinel NiCo2O4 declared that this material was a
pseudocapacitor material, NiCo2O4, as a well-known battery-type electrode material, has not been
designated as a pseudocapacitive material. It is better for there to be agreement about the spinel
NiCo2O4 material as a hybrid supercapacitor or battery-type supercapacitor. Secondly, the theoretical
capacitance of spinel NiCo2O4 materials would be clearly given, and the causes for the differences
of the same material being so great should be further expatiated, instead of explaining them merely
from morphologies and structures. Thirdly, the narrow potential window of the spinel NiCo2O4

in alkali electrolyte (only approximately 0.45 V–0.5 V, as shown in Tables 1 and 2) means lower
energy and power density. Then, it is dramatically significant to assemble an asymmetric device
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by combining NiCo2O4-ased materials with the carbonaceous materials possessing a wide potential
window. Fourthly, it is better to have a uniform standard about the electrodes’ preparation, especially
on the mass loading of active material, which should be combined with the commercial application.
Fifthly, it is unwise to sacrifice the power density to improve the energy density, which requires the
balance between them. Sixthly, although the performances of NiCo2O4 are greatly dominated by
the morphology, it is feasible to develop other similar nanomaterials, such as NiCo2S4, to further
improve the performance because of its even higher conductivity [106–108]. Finally, the self-discharge
of the supercapacitors should have enough attention paid to it and be included in the evaluation
of supercapacitors.

All in all, we firmly believe that the supercapacitors will have tremendous developments, and
the spinel NiCo2O4 as a supercapacitor material will be commercialized in the near future, which
possesses supercapacitors’ high power density and batteries’ high energy density.
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EDLCs Electrical double-layer capacitors
PCs Pseudocapacitors
TMO/Hs Transition metal oxides/hydroxides
ESR Equivalent series resistance
Ksp Solubility constant
SCE Saturated calomel electrode
SEM Scanning electron microscope
TEM Transmission electron microscope
SAED Selected area electron diffraction
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