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Abstract: Li3V2(PO4)3−xBrx/carbon (x = 0.08, 0.14, 0.20, and 0.26) composites as cathode materials
for lithium-ion batteries were prepared through partially substituting PO4

3− with Br−, via a
rheological phase reaction method. The crystal structure and morphology of the as-prepared
composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM),
and electrochemical properties were evaluated by charge/discharge cycling and electrochemical
impedance spectroscopy (EIS). XRD results reveal that the Li3V2(PO4)3−xBrx/carbon composites
with solid solution phase are well crystallized and have the same monoclinic structure as the pristine
Li3V2(PO4)3/carbon composite. It is indicated by SEM images that the Li3V2(PO4)3−xBrx/carbon
composites possess large and irregular particles, with an increasing Br− content. Among the
Li3V2(PO4)3−xBrx/carbon composites, the Li3V2(PO4)2.86Br0.14/carbon composite shows the highest
initial discharge capacity of 178.33 mAh·g−1 at the current rate of 30 mA·g−1 in the voltage range
of 4.8–3.0 V, and the discharge capacity of 139.66 mAh·g−1 remains after 100 charge/discharge
cycles. Even if operated at the current rate of 90 mA·g−1, Li3V2(PO4)2.86Br0.14/carbon composite
still releases the initial discharge capacity of 156.57 mAh·g−1, and the discharge capacity of
123.3 mAh·g−1 can be maintained after the same number of cycles, which is beyond the discharge
capacity and cycleability of the pristine Li3V2(PO4)3/carbon composite. EIS results imply that the
Li3V2(PO4)2.86Br0.14/carbon composite demonstrates a decreased charge transfer resistance and
preserves a good interfacial compatibility between solid electrode and electrolyte solution, compared
with the pristine Li3V2(PO4)3/carbon composite upon cycling.

Keywords: lithium-ion batteries; Li3V2(PO4)3/carbon composites; cathode materials; bromine ion
doping; enhanced electrochemical performances

1. Introduction

Lithium-ion batteries (LIBs) as advanced electrochemical power sources are considered to be the
ideal choice for numerous portable consumer electronics, such as smartphones, tablets, notebook PCs,
and camcorders, due to their high energy density (both volumetric and gravimetric), low self-discharge
rate, wide operating temperature range, lack of a memory effect, and environmental friendliness.
Especially in recent years, LIBs have been regarded as the most promising power sources for hybrid
electric vehicles (HEVs) and electric vehicles (EVs), which require very high energy and power densities
for LIBs [1–7]. However, LIBs still have some problems, such as an unsatisfactory energy density,
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high cost, and safety risk. In particular, the energy density of LIBs cannot support the longer driving
range of EVs. At present, to a great extent, the electrochemical properties of LIBs are dominated by
the electrochemical performances of cathode materials. Therefore, it is of great importance to develop
new cathode materials with a large capacity, high working voltage, excellent safety, good cycling
life, and low-cost [8]. Among the vast number of reported cathode materials, NASICON-structured
monoclinic Li3V2(PO4)3 (LVP) has drawn much attention, because of an average 4.0 V (~0.6 V higher
than LiFePO4) extraction/reinsertion voltage obtained between 3.0 and 4.8 V, a higher theoretical
capacity of 197 mAh·g−1 for the complete removal of three Li+ ions [9,10], and a low cost. However,
the main drawback of pure LVP is its very low intrinsic electronic conductivity, which causes high
electrode polarization and restricts its application in the field of dynamic batteries [11–13].

To overcome this problem, strenuous efforts have been devoted to improving the electronic
conductivity of LVP, including lattice doping with metal ions [10,14–17], surface coating with carbon
sources [18–20] or high electrical conductivity metal oxides [21–23], reducing particle size [24,25],
and controlling particle morphologies [26–28]. Among these modified techniques, it is common to
combine carbon with high electron conductivity and form Li3V2(PO4)3/carbon (LVPC) composites. On
this basis, it is preferable to dope LVP with trace elements to produce lattice defects and further
enhance its intrinsic conductivity. Over the years, studies relating to cation doping have been
extensively explored, such as V-site substitutions with Zn2+ [10], Mg2+ [29], Fe2+/Fe3+ [15,30], Cr3+ [31],
Co2+ [32], Ce3+ [16], Al3+ [17], and La3+ [33], and Li-site substitutions with Na+ [34,35] and K+ [14].
However, anion doping has been less often attempted and it is mainly substituted at the polyanion
PO4

3−-site of LVP. Zhong et al. [36] have synthesized Li3V2(PO4)3−xFx/carbon (x = 0, 0.05, 0.10,
and 0.15) composites, in which PO4

3− was partially substituted with F−, through a sol-gel synthesis
method. The Li3V2(PO4)3−xFx/carbon composite showed a good electrochemical performance with
an initial discharge capacity of 117 mAh·g−1 at the current rate of 10 C in the voltage range of
3.0–4.2 V and a capacity retention of 90.6% after 30 cycles. Yan et al. [37] adopted Cl− doping and
prepared Li3V2(PO4)3−xClx/carbon composites, in which PO4

3− was partially substituted with Cl−.
In their work, the Li3V2(PO4)2.88Cl0.12/carbon composite yielded a discharge capacity as high as
106.9 mAh·g−1 after 80 cycles at the current rate of 8 C in the voltage range of 3.0–4.3 V. The reports
mentioned above show that anion doping is an effective way to improve the electrochemical properties
of LVP. However, to the best of our knowledge, there are no reports concerning Br−-doped LVP. In fact,
the radius of Br− is 196 pm, which is much closer to that of PO4

3− (236 pm), compared to the radius
of F− and Cl−. Hence, it may be more suitable to partially replace the PO4

3− with Br− in LVP, and
prepare the Li3V2(PO4)3−xBrx/carbon (LVPBC) composites with enhanced electrochemical properties.

In the present work, a series of Br−-doped LVPC composites were synthesized through the
rheological phase reaction method. A comparison of the LVPBC composites with the pristine LVPC
composite, and the effects of Br−-doping on the crystal structure, morphology, and electrochemical
properties of LVPC, have been studied in detail.

2. Experimental

The LVPBC composite cathode materials were prepared by the rheological phase reaction method,
in a similar manner to those reported in previous references [38–40]. All of the chemicals used in
this work were of an analytical grade, without any pre-treatment. Firstly, stoichiometric amounts
of LiOH·H2O, V2O5, NH4H2PO4, LiBr, and C6H8O7·H2O (3:1:(3−x):x:2) as raw materials, were
mixed thoroughly by grinding in an agate mortar. Secondly, the solid-liquid rheological body
(muddy state) was obtained by adding a proper amount of deionized water. Next, the rheological
body was transferred to a cylindrical Teflon-lined stainless autoclave. Thirdly, the sealed autoclave
was humidified at 80 ◦C in a blast oven for 6 h and then dried at 100 ◦C for another 10 h, to obtain
pale blue precursor. Afterwards, the obtained precursor was carefully ground and pre-heated at
350 ◦C for 3h under a flowing argon atmosphere in a tube furnace, followed by a slow cool to room
temperature. Finally, the preheated powder was reground and sintered at 800 ◦C for 8 h under the
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same atmosphere, to yield a series of LVPBC (Li3V2(PO4)3−xBrx/carbon, x = 0.08, 0.14, 0.20, and 0.26)
composites. For convenience, the four Br−-doped LVPBC composites are referred to as LVPBC-0.08,
LVPBC-0.14, LVPBC-0.20, and LVPBC-0.26, respectively. In order to investigate the effect of Br− doping,
the pristine LVPC composite was also synthesized under the same conditions, but without the addition
of LiBr powder. According to our previous study [39,41], the carbon content in a LVPC composite is
around 15 wt %.

The structure of the as-prepared samples were characterized by X-ray diffraction (XRD), using a
Rigaku D/Max-2500 X-ray diffractometer (Rigaku Corporation, Tokyo, Japan) with a Cu-Kα radiation
source in the 2θ range of 10◦−80◦. The surface morphologies of the as-prepared composites were
observed using a JSM-6510LV scanning electron microscope (SEM, JEOL Ltd, Tokyo, Japan).

The galvanostatic charge/discharge tests were evaluated using2016 coin-type cells. The cathode
electrodes were fabricated by roll-pressing the as-synthesized active powder, super carbon, and
PTFE microemulsion (60 wt %) ata weight ratio of 80:10:10, into a thick film, and then pressing
the film onto an aluminum current collector (pressure of 20 MPa). Lithium metal was used as a
counter-electrode, the commercial polyethylene (PE) film (ND420 H129-100, Asahi Kasei Chemical Co.,
Osaka, Japan) as a separator, and the 1M LiPF6 in Ethylene Carbonate (EC) and Dimethyl Carbonate
(DMC) (1:1, by volume ratio, provided by Zhangjiagang Guotai-Huarong New Chemical Materials
Co., Ltd., Suzhou, China) as an electrolyte. The cells were assembled in an argon-filled glove box
(JMS-3, Nanjing Jiumen Automation technology Co., Ltd., Nanjing, China). The charge/discharge
cycles were performed utilizing a multi-channel CT-3008W-5V5mA-S4 battery tester (Shenzhen Neware
Electronics Co., Ltd., Shenzhen, China) between 3.0 and 4.8 V at room temperature, with different
current densities. Electrochemical impedance spectroscopy (EIS) was recorded using a CHI660D
electrochemical workstation (Shanghai Chenhua Co., Ltd., Shanghai, China) at a frequency range
of 100 kHz to 10 mHz, with a potential amplitude of ±5 mV. In order to detect changes in the
crystal structure of the LVPBC-0.14 composite electrode during cycling, ex-situ XRD examination was
performed at the states of fully discharged to 3.0 V vs. Li+/Li. Fully discharged coin cells were allowed
to equilibrate before they were moved to an argon filled glove box, where the electrodes were removed
from the cells and rinsed with DMC solvent, in order to remove any residual salt.

3. Results and Discussion

Figure 1 shows the XRD patterns of the pristine LVPC composite and LVPBC composites with
various Br−-doping amounts. As illustrated in Figure 1, the diffraction peak positions of the LVPBC
composites are almost identical to the pristine LVPC. However, the Bragg diffraction peaks of the
LVPBC composites become sharper, indicting the good crystallinity for the as-synthesized LVPBC
composites. No impurity peaks are detected in the XRD patterns, which indicates that a small amount
of Br−-doping does not change the basic crystal structure [39]. But then, the main diffraction peak
intensities of the LVPBC composites are heightened. The reason for this may be that Br− ions enter
into the lattice of LVP and form a solid solution, which brings about a certain effect on the crystal
microstructure. In addition, no peaks of carbon can be seen in XRD patterns, which may be ascribed
to its amorphous structure. The lattice parameters of the pristine LVPC and LVPBC composite are
calculated by Jade software refinement and listed in Table 1. From Table 1, it can be seen that the cell
volume of LVPBC-0.08 and LVPBC-0.14 composites shrunk, when compared with the pristine LVPC
composite. This may be consistent with the fact that the radius of Br− (196 pm) is smaller than that of
PO4

3− (238 pm) [15]. However, the cell volume of the LVPBC-0.20 composite is larger than that of the
undoped one, which has the appearance of mixed valence of V3+/V2+ ions after partial substitution of
PO4

3− ions with Br− ions, due to the requirement of electrical neutrality [32,42]. Because the radius of
V2+ is larger than that of V3+, the cell volume of the LVPBC-0.20 composite is expanded. Due to the
common effect by these two opposite factors, the cell volume of theLVPBC-0.26 composite begins to
contract, in comparison to the pristine LVPC composite.
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Table 1. The lattice parameters of the Li3V2(PO4)3−xBrx/carbon (LVPBC) and pristine Li3V2(PO4)3/
carbon (LVPC) composites.

Samples a (Å) b (Å) c (Å) β (◦) V (Å3)

LVPC 8.5120 8.6014 11.9180 89.3033 872.51
LVPBC-0.08 8.4698 8.5820 11.8675 89.2170 862.54
LVPBC-0.14 8.5314 8.5912 11.8956 89.4719 871.84
LVPBC-0.20 8.4836 8.5853 12.0350 89.5916 876.54
LVPBC-0.26 8.4545 8.5495 12.0230 88.6421 868.79
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Figure 1. X-ray diffraction (XRD) patterns of the LVPBC and pristine LVPC composites.

Figure 2 shows the SEM images of the LVPBC and pristine LVPC composites. As shown in
Figure 2, the pristine LVPC composite is composed of regular particles with small particle size.
However, the particles of the LVPBC composites become inhomogeneous and irregular, and the
particle size gradually increases with an increase in the Br−-doping concentration. In terms of the XRD
patterns, the higher the Br−-doping amount is, the stronger the intensity of the diffraction peak is,
and the bigger the particle size is. Therefore, the SEM results reveal that Br−-doping can increase the
particle size of LVPBC composites, and are in accordance with the XRD patterns in Figure 1 and the
previous literature [36].
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Figure 2. Scanning electron microscopy (SEM) images of the LVPBC and pristine LVPC composites.
LVPBC-0.08 (a); LVPBC-0.14 (b); LVPBC-0.20 (c); LVPBC-0.26 (d); and LVPC (e).

Figure 3 presents the initial charge/discharge curves of the LVPBC and pristine LVPC composites
at the current rate of 30 mA·g−1 between 3.0 and 4.8 V. As illustrated in Figure 3, the initial discharge
capacities of the LVPBC-0.08, LVPBC-0.14, LVPBC-0.20, LVPBC-0.26, and pristine LVPC composites, are
166.95, 178.33, 161.31, 152.11, and 160.39 mAh·g−1, respectively. Obviously, the LVPBC-0.14 composite
exhibits the highest discharge capacity. Although the substitution of Br− with PO4

3− causes the cell
volume of the LVPBC-0.14 composite to decrease, the lattice volume of the LVPBC-0.14 composite
still reaches 871.84 Å3, where the Li+ ions can diffuse relatively freely. On the other hand, it is
generally believed that the occurrence of a mixed valence of V3+/V2+ in the LVPBC-0.14 composite can
enhance its electronic conductivity [32]. All of what is mentioned above results in the lowest charge
plateau, highest discharge plateau, and maximal discharge capacity for the LVPBC-0.14 composite,
compared to all of the other composites. However, it is found that the discharge capacities of the
LVPBC composites are not monotonously raised with an increasing Br−-doping content. A decreased
discharge capacity is observed for the LVPBC-0.26 composite, compared with the pristine LVPC
composite. The possible reason for this is that excessive Br−-doping leads to a large particle size in the
LVPBC-0.26 composite (Figure 2), which extends the transport length for Li+ ions and electrons during
the charge/discharge process and elevates the electrode polarization. In the mean time, the shrinkage
of the cell volume is not conducive to moving the Li+ ions in the solid phase, thus reasonably resulting
in the highest charge platform, lowest discharge platform, and minimal discharge capacity for the
LVPBC-0.26 composite. As a result, the appropriate Br−-doping amount is essential for improving the
electrochemical performance of the LVPC composite.

Figure 4 shows the cycling performance of the LVPBC and pristine LVPC composites, at the
current rate of 30 mA·g−1 in the voltage range of 3.0–4.8 V within 100 cycles. It is observed that
the LVPBC-0.14composite demonstrates the highest discharge capacity and the best cycle stability.
Its initial discharge capacity reaches 178.33 mAh·g−1 and the discharge capacity of 139.66 mAh·g−1 is
still retained after 100 cycles. Moreover, apropos of the LVPBC-0.08 composite, it manifests an excellent
cycle performance, which is second only totheLVPBC-0.14 composite. Although the discharge capacity
of the LVPBC-0.20 composite is almost equal to that of the pristine LVPC composite in the first few
cycles, its discharge capacity surpasses that of the latter after 30 cycles. However, as for the LVPBC-0.26
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composite, its discharge capacity and cycling performance are inferior to those of the pristine LVPC
composite, which should be attributed to its larger particle size and smaller cell volume, and which is
unfavorable to the movement of Li+ ions. In addition, when the cell is charged to the high voltage of
4.8 V, the appearance of the high oxidizing V5+ ions makes LVPC more vulnerable to side reactions
with the electrolyte [13,43]. After Br−-doping, the number of V5+ ions will decrease upon charging,
due to the requirement of electronical neutrality, which decreases the probabilities of a side reaction
between the LVPBC composites and the electrolyte to a certain extent, thus improving the cycling
performance of the LVPBC composites, with the exception of the LVPBC-0.26 composite.
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30 mA·g−1 in the voltage range of 3.0–4.8 V.

Comparisons of the charge/discharge curves of the LVPBC-0.14 composite, together with those
of the pristine LVPC composite at the 10th, 30th, 50th, and 80th cycle at the current density of
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30 mA·g−1 in the voltage range of 3.0–4.8 V, are shown in Figure 5. As depicted inthe selected
charge/discharge curves, the shape of the charge/discharge curves of the LVPBC-0.14 composite is
basically consistent with those of the pristine LVPC composite, and there are only differences in the
length of charge/discharge voltage plateaus at the different cycles, demonstrating that Br−-doping
does not change the phase transition of the LVPBC composite during the charge/discharge process [37].
With ongoing cycling, the discharge capacity of both of the composites gradually decays. Accordingly,
the charge/discharge voltage platforms of the two composites are gradually shortened. However, the
discharge capacity of the LVPBC-0.14 composite still attains 162.36, 151.27, 143.88, and 138.07 mAh·g−1

at the 10th, 30th, 50th, and 80th cycle, respectively. By contrast, the pristine LVPC composite only
delivers a discharge capacity of 146.78, 136.96, 130.08, and 120.65 mAh·g−1, respectively, at the same
cycle. It is clearly seen in Figure 5 that the LVPBC-0.14 composite exhibits a high discharge capacity
and excellent cycle performance after Br−-doping, which is ascribed to a reduction in the resistance
for Li+ ions intercalation/de-intercalation in the LVPBC-0.14 composite, and will be evidenced in the
following EIS results.
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Figure 6 presents the rate capabilities of the LVPBC-0.14 and pristine LVPC composites in the
voltage range of 3.0–4.8 V, at the different current densities. It can be seen that the LVPBC-0.14
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composite reveals a great improvement in both the discharge capacity and cycle performance,
compared with the pristine LVPC composite. For instance, the first discharge capacities of the
LVPBC-0.14 composite amount to 180.31, 178.33, 173.61, 164.28, and 156.57 mAh·g−1 at the current
densities of 15, 30, 45, 60, and 90 mA·g−1, respectively. Conversely, those of the pristine LVPC
composite are 162.41, 160.39, 154.54, 152.90, and 151.67 mAh·g−1, under the same conditions. After 100
cycles, the discharge capacities of the LVPBC-0.14 composite still deliver 141.23, 139.66, 133.97, 129.48,
and 123.27 mAh·g−1, respectively, whereas the pristine LVPC composite only yields 122.36, 116.00,
114.41, 113.93, and 111.87 mAh·g−1. Overall, the LVPBC-0.14 composite manifests a desirable rate
capability, indicating that Br−-doped LVPC composites are suitable as high-rate capability cathode
materials in LIBs.
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EIS were measured to understand the kinetic process of the LVPBC-0.14 and pristine LVPC
composites under a fully discharged state at the 10th and 20th cycles. The Nyquist plots of the two
composites are shown in Figure 7. All of the spectra are composed of a semicircle in the high and
middle frequency regions, and an inclined line in the low frequency region. It is well known that the
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semicircleis related to the charge transfer resistance (Rct) between the electrode and electrolyte interface,
while the sloping line in the low frequency is the Warburg impedance (Zw), attributed to the Li+ ion
diffusion in the solid electrode [44,45]. The equivalent circuit is inserted into Figure 7, where Re and Rf
stand for the resistance of the whole reaction system, including the electrolyte resistance, interparticle
contact resistance, and other physical resistances between the electrode and electrolyte interface, and
the CPE (constant phase element) is a double layer capacitance on the electrode surface. By fitting EIS
of these two composites at the same cycle, it is found that Rct of the LVPBC-0.14 composite is much
smaller than that of the pristine LVPC composite, indicating that the charge transfer reaction is more
favorable on the LVPBC-0.14 composite. Table 2 gives the Rct fitting values of the LVPBC-0.14 and
pristine LVPC composites at different cycles, in view of the fact that Rct is a major part of the internal
resistance of a battery. As indicated in Table 2, Rct of the LVPBC-0.14 composite is relatively stable,
compared to the pristine LVPC composite at the different cycles. EIS results show that the LVPBC-0.14
composite can preserve good interfacial compatibility between the solid electrode and electrolyte
solution, compared with the LVPC composite, which is a very important factor in improving the
electrochemical properties of LVP.

Nanomaterials 2017, 7, 52 9 of 12 

 

two composites at the same cycle, it is found that Rct of the LVPBC-0.14 composite is much smaller than 

that of the pristine LVPC composite, indicating that the charge transfer reaction is more favorable on 

the LVPBC-0.14 composite. Table 2 gives the Rct fitting values of the LVPBC-0.14 and pristine LVPC 

composites at different cycles, in view of the fact that Rct is a major part of the internal resistance of a 

battery. As indicated in Table 4, Rct of the LVPBC-0.14 composite is relatively stable, compared to the 

pristine LVPC composite at the different cycles. EIS results show that the LVPBC-0.14 composite can 

preserve good interfacial compatibility between the solid electrode and electrolyte solution, 

compared with the LVPC composite, which is a very important factor in improving the 

electrochemical properties of LVP. 

 

 

Figure 7. Electrochemical impedance spectroscopy (EIS) of the LVPBC and pristine LVPC composites 

under fully discharged state at the 10th (a) and 20th (b) cycles. 

Table 2. Rct fitting values of the LVPBC-0.14 and pristine LVPC composites at different cycles. 

Samples LVPBC-0.14 (10th) LVPC (10th) LVPBC-0.14 (20th) LVPC (20th) 

Rct (Ω) 55.33 111 30.4 42.12 

To further confirm the excellent reversibility described above, ex-situ XRD characterization of 

the LVPBC-0.14 composites were carried out at a current density of 30 mA·g−1 after different cycles 

under the full discharged states, and the XRD patterns are shown in Figure 8. Compared with the 

uncharged LVPBC-0.14 composite, the main LVP diffraction peaks of the LVPBC-0.14 composite at 

the fully discharged states have emerged, in addition to the diffraction peaks of aluminum mesh. It is 

Figure 7. Electrochemical impedance spectroscopy (EIS) of the LVPBC and pristine LVPC composites
under fully discharged state at the 10th (a) and 20th (b) cycles.



Nanomaterials 2017, 7, 52 10 of 13

Table 2. Rct fitting values of the LVPBC-0.14 and pristine LVPC composites at different cycles.

Samples LVPBC-0.14 (10th) LVPC (10th) LVPBC-0.14 (20th) LVPC (20th)

Rct (Ω) 55.33 111 30.4 42.12

To further confirm the excellent reversibility described above, ex-situ XRD characterization of
the LVPBC-0.14 composites were carried out at a current density of 30 mA·g−1 after different cycles
under the full discharged states, and the XRD patterns are shown in Figure 8. Compared with the
uncharged LVPBC-0.14 composite, the main LVP diffraction peaks of the LVPBC-0.14 composite at
the fully discharged states have emerged, in addition to the diffraction peaks of aluminum mesh. It is
only the intensity of the diffraction peaks which change, in comparison with the reported ex-situ XRD
result of the LVPC composite operated in the voltage range of 3.0–4.3 V [39]. Obviously, the structural
reversibility of LVP in the voltage range of 3.0–4.8 V is slightly poorer than that of LVP in the voltage
range of 3.0–4.3 V, because the former involves three Li+ ion intercalations/deintercalations. However,
the four electrodes at the different cycles display the almost same diffraction patterns, disclosing that
the LVPBC-0.14 composite with a stable crystal structure can be used as a high-performance energy
storage cathode material for LIBs.
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Figure 8. Ex-situ XRD patterns of LVPBC-0.14 electrode under fully discharged state at the
different cycles.

4. Conclusions

In sum, a series of Br−-doped LVPC composites have been successfully synthesized by a
rheological phase reaction method in this work. Galvanostatic charge/discharge measurements
indicate that the LVPC-0.14 composite exhibits the best performance in both discharge capacity and
cycling performance, in the voltage range of 3.0–4.8 V. The LVPC-0.14 composite reaches the initial
discharge capacity of 178.33 mAh·g−1 with a capacity retention of 78.32% (higher than the pristine
LVPC, ca. 72.32%), after 100 cycles at the current density of 30 mA·g−1, and still delivers a high initial
capacity of 156.57 mAh·g−1, even at a high current density of 90 mA·g−1, with a small capacity decay
rate of ca. 0.2% (lower than the pristine LVPC, ca. 0.263%) at each cycle for the first 100 cycles. The lower
charge transfer resistance and structural stability are responsible for the outstanding electrochemical
properties of the LVPC-0.14 composite. The strategy of anion doping in this study offers a convenient
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and effective technology for increasing the capacity and cycleability of LVP for LIBs, and more studies
on the anion doping of LVP are in progress.
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