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Abstract: SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple
microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray
powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic
activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation
was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic
activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes
and electrons on SnO2-CNTs.
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1. Introduction

In recent years, a great deal of effort has been devoted to decomposing harmful organic
pollution [1,2]. Compared with the conventional oxidation processes, semiconductor photocatalysis
is an attractive candidate because of its many advantages, such as complete mineralization of the
pollutants, application of the ultraviolet (UV) or solar light, and low cost [3–6]. Considering that
sunlight contains only 5% ultraviolet light (λ < 380 nm), there is a need for the development of visible
light-responsive photocatalysts with high activity.

SnO2—a stable and large n-type bandgap (Eg = 3.6 eV) semiconductor [7,8]—has excellent
photoelectronic properties, gas sensitivity, and superior chemical stability, which has already been
used in sensors [9], solar cells [10], lithium-ion batteries [11], and photocatalysts [12]. Recently,
a nanocomposite of SnO2-CNTs (carbon nanotubes) and SnO2 coated on nitrogen-doped carbon
nanotubes was synthesized, and exhibited excellent photocatalytic activity due to the electron transfer
between SnO2 and CNTs [13,14]. However, the photocatalytic properties of SnO2-CNTs prepared by
microwave-hydrothermal method have been scarcely investigated.

CNTs-metal oxide hybrid materials have been suggested as a new material for heterogeneous
photocatalysis due to the large surface area and unique electrical properties of CNTs. Some studies on
TiO2-CNTs composites have proved that the conductive structure of the CNTs facilitates accepting
and transferring the light-excited electrons from the conduction band (CB) of the semiconductor to
the CNTs surface, which hampered the recombination of the electron-hole pairs [15–18]. In addition,
CNTs as supports would probably promote the catalysts separation during the recycling use compared
with solo semiconductor nanoparticles [19].

Microwave-hydrothermal reaction has been used as an effective method for the synthesis of
semiconductor nanoparticles. The microwave hydrothermal process used only 0.5–2 h for synthesis
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of rutile titania, while conventional hydrothermal process needed more than 72 h for rutile phase
using the same chemicals. They controlled particle size, morphology, and polymorph of titania under
microwave-hydrothermal conditions by adjusting the various reaction parameters, such as pH, heating
time, and pressure [20]. Very recently, Ponzoni et al. successfully synthesized lanthanum-doped
bismuth ferrites using a microwave-assisted hydrothermal method, which strongly confirms the
effectiveness of microwave hydrothermal reaction as a fast method for the synthesis of nanoparticles
having specific properties [21]. Yin et al. synthesized nitrogen-doped titania nanoparticles by the
microwave hydrothermal method in 5–60 min, and they showed excellent photocatalytic ability for the
oxidative destruction of nitrogen monoxide under irradiation by both visible light and UV light [22,23].
In this work, SnO2-CNTs hybrid nanostructures were prepared via simple microwave-hydrothermal
method and the photodegradation of Rhodamine B (RhB) was investigated for the first time.
In addition, the photocatalytic mechanism of SnO2-CNTs is also discussed in detail.

2. Materials and Methods

Synthesis of SnO2-CNTs: The synthesis of SnO2-CNTs was carried out via microwave-
hydrothermal method optimized by Cao research group for pure SnO2 [12]. In a typical procedure,
2 mmol of SnCl4·5H2O and 30 mg CNTs were added to a stirred deionized water (20 mL) while stirring
for 10 min at room temperature. Then, 20 mL Lysin solution (10 mmol) was added dropwise to above
solution. After being vigorously stirred for 30 min at room temperature, the final clear solution was
transferred to a Teflon vessel of the MDS-6 (Microwave Digestion/Extraction System, Shanghai Sineo
Microwave Chemical Technology Co. Ltd., Shanghai, China). The reaction mixture was heated up to
180 ◦C in 3 min, then this temperature was maintained for 10 min. After the Teflon vessel was cooled
down, the as-prepared powders were repeatedly washed with the distilled water and ethanol several
times, filtered, and dried in an oven at 60 ◦C.

Characterization of SnO2-CNTs: Samples were characterized by using X-ray diffraction (XRD)
with a Bruker D8 Advance diffractometer (Karlsruhe, Germany) using Cu Kα (λ = 1.5418 Å) and
operating at 40 kV and 40 mA. Transmission electron microscopy (TEM) images were obtained
by using a JEM-2100 transmission electron microscope (Japan Electron Optics Laboratory Co. Ltd.,
Tokyo, Japan) operating with an accelerating voltage of 100 kV. Raman spectrum was recorded on
a RM-1000 (Renishaw plc, New Mills, UK) with excitation from the 514 nm line of an Ar-ion laser
with a power of about 5 mW. Infrared spectra (IR) measurements were carried out on a NICOLET 560
(Thermo Nicolet Corporation, Madison, WI, USA) Fourier transform infrared spectrophotometer.

Photocatalytic activity test of SnO2-CNTs: The photocatalytic activities of the as-synthesized
SnO2-CNTs were evaluated in terms of the degradation of RhB in an aqueous solution. A 500-W
Xenon lamp (Institute of Electric Light Source, Beijing, China) with a maximum emission of about
470 nm was the visible light source. A cutoff filter (λ > 420 nm) controlled the light’s wavelength.
Sample (50 mg) was suspended in 50 mL of an aqueous solution of 10−5 mol/L RhB. The solution
was continuously stirred for about 30 min at room temperature to ensure the establishment of an
adsorption–desorption equilibrium among the photocatalyst, RhB, and water before irradiation with
visible light. The concentration of RhB was monitored by using a UV-1600 UV-Vis spectrometer
(Shanghai Meipuda Instrument Co. Ltd., Shanghai, China).

3. Results and Discussion

To characterize the crystalline structure of the samples, the XRD patterns of SnO2 and SnO2-CNTs
nanocomposites are displayed in Figure 1. For SnO2 and SnO2-CNTs nanocomposite catalysts, all of
the diffraction peaks observed in the XRD patterns belong to the tetragonal rutile structure of SnO2

(JCPDS card No. 41-1445). The diffraction angle for SnO2-CNTs composites at 2θ = 26.3◦, 33.6◦,
and 51.8◦ can be assigned to the 110, 101, and 211 planes of the cassiterite SnO2, respectively. It is
noteworthy that the characteristic peaks of the CNTs can hardly be identified from SnO2-CNTs
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nanocomposite. The reason may be that the main peak of CNTs at 25.9◦ is overlapped with the main
peak of anatase SnO2 at 26.6◦. The SnO2 average crystalline size can be estimated by Scherrer’s formula:

D = Kλ/Bcosθ (1)

where D is the grain diameter, K (0.89) is the shape factor, λ is the X-ray wavelength of Cu Kα radiation
(0.154 nm), θ is the Bragg angle, and β is the experimental full-width half-maximum (FWHM) of the
respective diffraction peak. The crystallite grain size of SnO2 were calculated to be about 4.5 nm for
pure SnO2 and 5.0 nm for SnO2-CNTs nanocomposite.
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Figure 1. X-ray diffraction (XRD) patterns of SnO2-CNTs (carbon nanotubes) nanocomposite and SnO2.

Figure 2 shows the Raman spectrum SnO2-CNTs nanocomposites. Typically, the Raman spectrum
exhibits bands at 473, 632, 775, 1354, and 1596 cm−1 in the range of 200–2000 cm−1 The Raman peaks
appearing at 473 cm−1 can be attributed to the Eg mode, 632 cm−1 to the A1g mode, and 775 cm−1 to the
B2g mode of SnO2, respectively [24]. The Raman peaks appearing at 1576 cm−1 and 1352 cm−1 can be
attributed to the G band corresponding to the sp2 hybridized carbon and the D band originating from
the disordered carbon of CNTs. The Raman analysis demonstrates that the as-synthesized samples
comprised rutile-type SnO2 and CNTs.
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Figure 2. Raman spectrum of SnO2–CNTs nanocomposites.

Figure 3 shows the TEM images of SnO2-CNTs nanocomposites. It can be found that the carbon
nanotubes with an external diameter of 20–30 nm are uniformly distributed. After coating with SnO2,
all CNTs are uniformly coated with a layer of SnO2 nanoparticles, and very few free nanoparticles
were found. The SnO2 nanoparticles deposited on the surface of CNTs are separated, and the particle
size is about 5–8 nm (in agreement with the XRD data), estimated using the Scherrer equation.
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Figure 3. Transmission electron micrographs (TEM) of SnO2-CNTs nanocomposites. (a) low magnification;
(b,c) high magnification

The ultraviolet-visible diffuse reflection (UV-Vis DRS) spectrum of SnO2 and SnO2-CNTs were
measured using a UV-Vis spectrophotometer with an integrating sphere (Hitachi U-3900), as shown in
Figure 4. The absorption threshold of pure SnO2 is 372 nm. It presents a strong absorption band only
in the UV region. However, SnO2-CNTs sample extended the absorption range to the visible region,
and the absorption edge red-shifted from 372 nm to 425 nm compared to pure SnO2, suggesting that
SnO2-CNTs has the potential to be an efficient visible-light-activated photocatalyst.
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Figure 4. Ultraviolet-visible diffuse reflection (UV-Vis DRS) spectra of SnO2-CNTs and SnO2.

The photocatalytic activities of the as-synthesized nanocomposites were investigated by the
photocatalytic oxidation of RhB dye. Figure 5a shows that the spectrum changes during RhB
(10−5 mol/L) photodegradation by SnO2-CNTs with different reaction time. The normalized temporal
concentration changes (C/C0) of RhB during the photocatalytic process are proportional to the
normalized maximum absorbance (A/A0), as can be derived from the change in the RhB absorption
profile at a given time interval. The blank experiments show that the degradation of RhB is less than
5% only under visible light irradiation at 150 min (Figure 5b). With the increase of irradiation time,
the intensity of the maximum adsorption peak located near 553 nm gradually decreased, indicating the
degradation of the RhB dye solutions. When SnO2-CNTs nanocomposites were used as photocatalysts,
the degradation of RhB reached 95.60% after 150 min, which is much higher than pure SnO2, with 64.4%
degradation of RhB.
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Figure 5. (a) The UV-Vis spectrum changes during Rhodamine B (RhB) (10−5 M) photodegradation by
SnO2-CNTs photocatalysts; (b) Plots of photocatalytic degradation of RhB concentration vs. irradiation
time in the presence of SnO2-CNTs samples; (c) dependence of −ln(C/C0) on irradiation time.

To further understand the reaction kinetics of RhB degradation, the apparent pseudo-first-order
model expressed by Equation (2) was applied in our experiments [25]:

−ln(C/C0) = kt (2)

where k is the apparent pseudo-first-order rate constant (min−1), C is the RhB concentration in aqueous
solution at time t (mol/L), t is irradiation time and C0 is initial RhB concentration (mol/L). Figure 5c
shows the first-order linear fit from the experimental data; the k value of SnO2-CNTs and SnO2 were
0.07434 (R2 = 0.99) and 0.01197 (R2 = 0.99) min−1. The result shows that the SnO2-CNTs nanocomposite
is a much more effective photocatalyst than pure SnO2.

The photocatalytic performance of SnO2-CNTs is superior to that of SnO2 due to the synergy effect
of CNTs as a photosensitizer. The most probable mechanism for the photocatalytic degradation of RhB
dye by SnO2-CNTs is proposed (Figure 6). Under visible irradiation, considering the semiconducting
property of carbon nanotubes, CNTs may absorb visible light and inject the photo-induced electron
into the SnO2 conduction band, which can trigger the formation of very reactive radicals, superoxide
radical ion O2·−, and hydroxyl radical OH·—both responsible for the degradation of the organic
compound. The probable electron transfer mechanism between carbon and semiconductor was
experimentally supported by the observed enhanced photocurrent of the composite materials in other
investigations [26–29]. The rapid transferring of electrons on SnO2-CNTs and the larger production of
reactive radical species coming from oxygen reduction probably result in the enhanced photocatalytic
activity of SnO2-CNTs hybrid nanostructures for the degradation of RhB.
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4. Conclusions

SnO2 nanoparticles were successfully coated on CNTs via a simple microwave-hydrothermal
method. The composites showed excellent photocatalytic activity compared to pure SnO2. The rapid
transferring of electrons on SnO2-CNTs led to the dramatically enhanced photoactivity. The SnO2-CNTs
composites would be an excellent photocatalyst for application in environmental protection.
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