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Abstract: Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics,
optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties
have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate
the biosafety of ZnO nanowires and their biological effects. In this study, the cellular level biological
effects of ZnO nanowire arrays are specifically tested on three types of excitable cells, including
NG108-15 neuronal cell line, HL-1 cardiac muscle cell line, and neonatal rat cardiomyocytes. Vertically
aligned and densely packed ZnO nanowire arrays are synthesized using a solution-based method and
used as a substrate for cell culture. The metabolism levels of all three types of cells cultured on ZnO
nanowire arrays are studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assays of a full factorial design. Under the studied settings, the results show
statistically significant inhibitory effects of ZnO nanowire arrays on the metabolism of NG108-15
and HL-1 cells in comparison to gold, glass, and polystyrene substrates, and on the metabolism of
cardiomyocytes in comparison to gold substrate.
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1. Introduction

ZnO nanowires have attracted great research and industrial interest in their applications
in photocatalysts, field-effect transistors, solar cells, and generators, for their semiconducting,
piezoelectric, and optical properties [1–4]. These properties along with their nanomaterial
attributes have also stimulated interest in their biomedical applications such as bioimaging,
biosensing, antibacterial treatment, and nanogenerators powering wearable and implantable medical
devices [2,5–7]. Such interest involves the handling and/or implantation of ZnO nanowires and thus
calls for scrutiny on the biosafety of ZnO nanowires.

The biocompatibility or cytotoxicity of nanomaterials is shape-dependent [8]. For example,
ZnO rod-shaped nanoparticles induced lower cytotoxicity on ANA-1 macrophage cells in comparison
to ZnO spherical nanoparticles [9]. Despite numerous studies on the biosafety of ZnO nanoparticles,
there have been only a few studies covering the biocompatibility of ZnO nanowires. ZnO nanowires
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or nanorods were shown to be biocompatible to HeLa cells and have a quantity-dependent toxicity
on L929 fibroblast cells [10,11]. High aspect ratio ZnO nanowires also showed toxicity on human
monocyte-derived macrophages [12]. Among the limited number of studies, little work has been done
on the biological effects of ZnO nanowires on excitable cells, including neuronal cells or cardiac muscle
cells which are both important classes of cells relevant to the application of ZnO nanowires. In addition,
intraperitoneally administered ZnO nanoparticles were shown to cause cognitive impairment in
rats [13], and accumulate in the heart of ICR mice [14]. Therefore, it is imperative to study the
biological effects of ZnO nanowires on excitable cells.

As the cytotoxicity of nanomaterials also depends on the cell type [15], in this work, we assessed
the biocompatibility of ZnO nanowire arrays to three types of excitable cells, including NG108-15
neuronal cell line, HL-1 cardiac muscle cell line, and primary neonatal rat cardiomyocytes. Specifically,
we tested the metabolism of the cells cultured on ZnO nanowire arrays. We selected NG108-15 neuronal
cell line as a neuronal cell model [16], HL-1 cardiac muscle cell line as a cardiomyocyte cell model [17],
and neonatal rat cardiomyocytes as a primary cardiomyocyte cell model. Our data showed that after
one day in culture ZnO nanowire arrays caused inhibitory effects on NG108-15 and HL-1 cells in
comparison to gold, glass, and polystyrene substrates, and inhibitory effects on cardiomyocytes in
comparison to gold substrate.

2. Results

2.1. Synthesis of ZnO Nanowire Arrays

ZnO nanowire arrays were grown on gold (Au)-coated cover glasses, resulting in a thin and
uniform grayish layer over the Au coating. By examining the weight differences of six coated cover
glasses before and after ZnO nanowire growth using an analytical balance, we found that on average,
approximately 4 mg of ZnO nanowires were grown on each cover glass after 24 h of growth.

2.2. Scanning Electron Microscopy (SEM) Images of ZnO Nanowire Arrays

The surface feature of the as-synthesized ZnO nanowire arrays was imaged with scanning electron
microscopy (SEM) (Figure 1). The ZnO nanowires were uniformly distributed, vertically aligned, and
densely packed into arrays as shown in Figure 1a (2500× magnification). The nanowires showed a
U-shaped tip with the majority measuring about 300 nm in width (Figure 1b, 10,000×magnification).
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Figure 1. Scanning electron microscopy (SEM) images of zinc oxide (ZnO) nanowire arrays: (a) SEM 
image at a magnification of 2500×; (b) SEM image at a magnification of 10,000×. 

2.3. X-ray Photoelectron Spectroscopy (XPS) Spectra of ZnO Nanowire Arrays 

The surface chemistry of ZnO nanowire arrays was analyzed using X-ray photoelectron 
spectroscopy (XPS), with Au-coated cover glass serving as a control. All the peak positions with 
respect to binding energy were calibrated by fixing the peak of adventitious carbon 1s (C 1s) to 285 

Figure 1. Scanning electron microscopy (SEM) images of zinc oxide (ZnO) nanowire arrays: (a) SEM
image at a magnification of 2500×; (b) SEM image at a magnification of 10,000×.
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2.3. X-ray Photoelectron Spectroscopy (XPS) Spectra of ZnO Nanowire Arrays

The surface chemistry of ZnO nanowire arrays was analyzed using X-ray photoelectron
spectroscopy (XPS), with Au-coated cover glass serving as a control. All the peak positions with
respect to binding energy were calibrated by fixing the peak of adventitious carbon 1s (C 1s) to
285 eV [18,19]. As shown in the survey spectra of Au-coated cover glass (Figure 2a) and ZnO nanowire
arrays (Figure 2b), there was no detectable level of elements other than gold and adventitious carbon
on the surface of coated cover glass, while after ZnO nanowire growth, the surface of ZnO nanowire
arrays mainly contained zinc, oxygen, and adventitious carbon. In the zinc 2p (Zn 2p) spectrum
(Figure 2c), the doublet peaks of Zn 2p1/2 at 1044.6 eV and of Zn 2p3/2 at 1021.5 eV were characteristic
of a hexagonal structure of nanowires [1,20]. In the deconvoluted oxygen 1s (O 1s) spectrum (Figure 2d),
the peak of O 1s was fitted to two components at 530.2 eV and 531.7 eV. The component at 530.2 eV was
attributed to the oxygen from ZnO, and the component at 531.7 eV was attributed to the chemisorbed
oxygen [21,22]. As shown in Table 1, the ratio of percentage atomic concentrations of Zn 2p to O 1s
(530.2 eV) was approximately 1 (19.51%:20.92%), which matched the stoichiometric ratio of Zn to O
in ZnO.
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Figure 2. X-ray photoelectron spectroscopy (XPS) spectra of Au-coated cover glass and ZnO nanowire
arrays: (a) survey spectrum of Au-coated cover glass; (b) survey spectrum of ZnO nanowire arrays;
(c) Zn 2p spectrum of ZnO nanowire arrays; (d) deconvoluted O 1s spectrum of ZnO nanowire arrays.

Table 1. Percentage atomic concentrations of regions and components detected on the surface of ZnO
nanowire arrays by X-ray photoelectron spectroscopy (XPS).

Regions and Components Percentage Atomic Concentration (%)

Zn 2p 19.51
O 1s (531.7 eV) 20.58
O 1s (530.2 eV) 20.92

C 1s 38.99

2.4. MTT Assay of NG108-15 Cells

The significance level of all statistical analyses was pre-set as α = 0.05, so a p-value smaller
than 0.05 indicated statistical significance. As shown in Table 2, MTT assays for all three cell
types were conducted following a full factorial 2 × 4 design of two independent factors, substrate
material (factor A) and existence of cells (factor B). Factor A was a discrete variable of four levels
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(ZnO nanowire arrays (ZnO), Au-coated cover glasses (Au), uncoated cover glasses (GL), and
cell culture-treated polystyrene multi-well culture plates (PS)); Factor B was a discrete variable of
two levels (with cells (cells) and with culture medium only (medium)). Thus, there were a total of
eight combinations (ZnO + cells, Au + cells, GL + cells, PS + cells, ZnO + medium, Au + medium,
GL + medium, and PS + medium). The metabolism of cells cultured on a specific substrate material
was studied by subtracting the absorbance of material + medium from the absorbance of corresponding
material + cells. All metabolism of cells was normalized to that of the cells cultured on PS, which
served as the baseline.

Table 2. MTT assays of a full factorial 2 × 4 design (ZnO nanowire arrays (ZnO), Au-coated cover
glasses (Au), uncoated cover glasses (GL), and cell culture-treated polystyrene multi-well culture
plates (PS)).

ZnO Au GL PS

Cells ZnO + Cells Au + Cells GL + Cells PS + Cells
Medium ZnO + Medium Au + Medium GL + Medium PS + Medium

For the MTT assay of NG108-15 neuronal cell line (Figure 3 and Table 3), the absorbance of
material + cells was higher than that of corresponding material + medium. The cells cultured on ZnO
showed a metabolism level of 5.10% of the baseline, whereas the cells cultured on Au and GL showed
metabolism levels of 81.61% and 61.20% of the baseline, respectively.
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Figure 3. MTT assay of NG108-15 cells showed the absorbance of material + NG108-15 cells and
material + medium, and the absorbance for the metabolism of NG108-15 cells (data were presented
as mean + standard deviation; standard deviation was shown as the plus direction of the error bar;
+ and ∆ represented a significant difference compared to the absorbance of Au-coated cover glasses
(Au) + medium and uncoated cover glasses (GL) + medium, respectively; Λ, ∇, and ∴ represented a
significant decrease or increase compared to the metabolism levels of the cells cultured on Au, GL, and
cell culture-treated polystyrene multi-well culture plates (PS), respectively).

Table 3. The absorbance of the MTT assay of NG108-15 cells.

ZnO Au GL PS

Cells
Mean 0.1783 0.784389 0.619722 0.9331

SD 0.002201 0.072758 0.07081 0.030728

Medium
Mean 0.137311 0.128267 0.1277 0.129122

SD 0.001835 0.001212 0.00145 0.006888

Metabolism
Mean 1 0.040989 0.656122 0.492022 0.803978

SD 2 0.002865 0.072768 0.070825 0.031491
1 The mean value (mean) of the absorbance for metabolism was calculated by subtracting the absorbance of the
corresponding material + medium from the absorbance of the corresponding material + cells; 2 The standard
deviation (SD) of the absorbance for metabolism was calculated by extracting the square root of the sum of squares
of the standard deviations of the corresponding material + cells and material + medium.
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A two-factor analysis of variance (ANOVA) test with replication (n = 3) showed statistical
evidence to suggest that substrate material and existence of cells had significant effects on absorbance.
For comparisons among the absorbance of substrates with culture medium only, an F-test indicated
that there were significant differences between the variances of the absorbance of Au + medium and
PS + medium, and GL + medium and PS + medium, and that there were no significant differences
between the variances of the absorbance of every other two groups. Thus, a corresponding two-tailed
t-test with unequal variances or equal variances indicated that there were significant differences
between the absorbance of ZnO + medium and Au + medium, and ZnO + medium and GL + medium.
To compare the metabolism of NG108-15 cells cultured on different substrate materials, a single-factor
ANOVA showed a significant effect of substrate material on metabolism. A Tukey’s test indicated that
the metabolism level of the cells cultured on ZnO showed a significant decrease compared to those of
the cells cultured on Au, GL, and PS, that the metabolism levels of the cells cultured on Au and GL
showed a significant decrease compared to that of the cells cultured on PS, and that the metabolism
level of cells cultured on Au showed a significant increase compared to that of the cells cultured on GL.

2.5. MTT Assay of HL-1 Cells

For the MTT assay of HL-1 cardiac muscle cell line (Figure 4 and Table 4), the absorbance of
material + cells was higher than that of corresponding material + medium. The cells cultured on ZnO
showed a metabolism level of 8.34% of the baseline, whereas the cells cultured on Au and GL showed
metabolism levels of 88.05% and 78.95% of the baseline, respectively.
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Figure 4. MTT assay of HL-1 cells showed the absorbance of material + HL-1 cells and material +
medium, and the absorbance for the metabolism of HL-1 cells (data were presented as mean + standard
deviation; standard deviation was shown as the plus direction of the error bar; +, ∆, and * represented a
significant difference compared to the absorbance of Au-coated cover glasses (Au) + medium, uncoated
cover glasses (GL) + medium, and cell culture-treated polystyrene multi-well culture plates (PS) +
medium, respectively; Λ, ∇, and ∴ represented a significant decrease compared to the metabolism
levels of the cells cultured on Au, GL, and PS, respectively).

Table 4. The absorbance of the MTT assay of HL-1 cells.

ZnO Au GL PS

Cells
Mean 1.075189 1.663778 1.598511 1.696133

SD 0.043464 0.0558 0.039735 0.070086

Medium
Mean 1.023422 1.117367 1.108578 1.075533

SD 0.03335 0.012897 0.014967 0.008013

Metabolism
Mean 1 0.051767 0.546411 0.489933 0.6206

SD 2 0.054784 0.057271 0.04246 0.070542
1,2 The mean and SD of the absorbance for metabolism were calculated by using the same methods described in the
footers of Table 3.
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A two-factor ANOVA test with replication (n = 3) showed statistical evidence to suggest that
substrate material and existence of cells had significant effects on absorbance. For comparisons
among the absorbance of substrates with culture medium only, an F-test indicated that there were
no significant differences between the variances of the absorbance of every two groups. Thus, a
two-tailed t-test with equal variances indicated that there were significant differences between the
absorbance of ZnO + medium and Au + medium, ZnO + medium and GL + medium, Au + medium
and PS + medium, and GL + medium and PS + medium. To compare the metabolism of HL-1 cells
cultured on different substrate materials, a single-factor ANOVA showed a significant effect of substrate
material on metabolism. A Tukey’s test indicated that the metabolism level of the cells cultured on
ZnO showed a significant decrease compared to those of the cells cultured on Au, GL, and PS.

2.6. MTT Assay of Neonatal Cardiomyocytes

For the MTT assay of neonatal cardiomyocytes (Figure 5 and Table 5), the absorbance of
material + cells was higher than that of corresponding material + medium. The cells cultured on
ZnO showed a metabolism level of 88.63% of the baseline, whereas the cells cultured on Au and GL
showed metabolism levels of 136.46% and 119.79% of the baseline, respectively.
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Figure 5. MTT assay of cardiomyocytes showed the absorbance of material + cardiomyocytes
and material + medium, and the absorbance for the metabolism of cardiomyocytes (data were
presented as mean + standard deviation; standard deviation was shown as the plus direction of
the error bar; * represented a significant difference compared to the absorbance of cell culture-treated
polystyrene multi-well culture plates (PS) + medium; Λ and ∴ represented a significant decrease or
increase compared to the metabolism levels of the cells cultured on Au-coated cover glasses (Au) and
PS, respectively).

Table 5. The absorbance of the MTT assay of cardiomyocytes.

ZnO Au GL PS

Cells
Mean 0.353844 0.389156 0.354022 0.320267

SD 0.003833 0.010207 0.002787 0.008732

Medium
Mean 0.262844 0.249044 0.231022 0.217589

SD 0.020086 0.010065 0.010703 0.010902

Metabolism
Mean 1 0.091 0.140111 0.123 0.102678

SD 2 0.020449 0.014335 0.01106 0.013968
1,2 The mean and SD of the absorbance for metabolism were calculated by using the same methods described in the
footers of Table 3.

A two-factor ANOVA test with replication (n = 3) showed statistical evidence to suggest that
substrate material and existence of cells had significant effects on absorbance. For comparisons
among the absorbance of substrates with culture medium only, an F-test indicated that there were no
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significant differences between the variances of the absorbance of every two groups. Thus, a two-tailed
t-test with equal variances indicated that there were significant differences between the absorbance of
ZnO + medium and PS + medium, and Au + medium and PS + medium. To compare the metabolism of
cardiomyocytes cultured on different substrate materials, a single-factor ANOVA showed that substrate
material had a significant effect on metabolism. A Tukey’s test indicated that the metabolism level of
the cells cultured on ZnO showed a significant decrease compared to that of the cells cultured on Au,
and that the metabolism level of the cells cultured on Au showed a significant increase compared to
that of the cells cultured on PS.

3. Discussion

ZnO nanowire arrays as characterized by the SEM images (Figure 1) and XPS data (Figure 2 and
Table 1) were synthesized using a seedless solution-based method (Figure 6), which is a versatile way
to grow vertically aligned and densely packed ZnO nanowires [23,24]. NG108-15 cells, HL-1 cells,
and cardiomyocytes usually have a diameter of around 10–100, 20, and 13 µm, respectively [25,26],
Compared to the dimensions (width of ~300 nm) and distribution of the ZnO nanowires shown in
Figure 1, each single cell should cover plenty of nanowires when cultured on the nanowire arrays.
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The biological effects of ZnO nanowire arrays were tested by measuring the mitochondrial
activities of the cells cultured on the nanowire arrays using the MTT assays [27]. Yellow colored MTT
was reduced by the mitochondria of living cells (rather than dead cells) into purple colored formazan,
which could be dissolved into certain solvents to form a homogeneous solution for colorimetric
measurement. The absorbance of the solution indicated the amount of the formed formazan and
therefore the cellular metabolism.

For the MTT assays, acidic isopropanol and dimethyl sulfoxide (DMSO) are the two most common
solvents used to dissolve formazan [27,28]. DMSO was used in this study instead of the acidic
isopropanol. One reason for this was that DMSO enabled colorimetric reading to be completed on the
same experiment day without overnight incubation of the solution, as is required by acidic isopropanol.
More importantly, DMSO did not dissolve ZnO nanowires, while the metal oxide nanowires were
readily dissolved in the acidic isopropanol.

Interestingly, substrate material showed a significant effect on the absorbance of material +
medium for all three types of culture media, making the direct comparisons of the absorbance of
material + cells within each cell type meaningless. Therefore, for the MTT assays of all three types of
cells, a full factorial experiment design was adopted, and the metabolism of cells was evaluated by the
net absorbance, calculated by subtracting the absorbance of material + medium from the absorbance of
corresponding material + cells.

The MTT assay results showed that ZnO nanowire arrays induced inhibitory effects on all three
types of excitable cells after one day in culture. The metabolism level of the NG108-15 cells cultured
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on ZnO was 5.10% of that of the cells cultured on PS, which was significantly lower than those of the
cells cultured on Au, GL, and PS; the metabolism level of the HL-1 cells cultured on ZnO was 8.34%
of that of the cells cultured on PS, which was significantly lower than those of the cells cultured on
Au, GL, and PS; the metabolism level of the cardiomyocytes cultured on ZnO was 88.63% of that of
the cells cultured on PS, which was significantly lower than that of the cells cultured on Au but not
significantly different from those of the cells cultured on GL and PS.

The inhibitory effects could be due to the cell membrane penetration of nanowires and/or
decreased cell adhesion [29]. The effect of the cell membrane penetration of nanowires particularly
depends on the diameter of nanowires. The nanowires in this work had a width of around 300 nm,
and nanowires with a comparable diameter of approximately 400 nm induced cell death in mouse
embryonic stem cells within one day [30]. Additionally, the cell adhesion could be reduced due to the
topography of ZnO nanowire arrays, resulting in the inhibitory effects [31]. Cell adhesion on nanowire
arrays is highly dependent on the density and spacing of the nanowires [32]. The high density of
nanowires and plentiful spacing (Figure 1b) could result in insufficient planar surface and binding
sites for focal adhesion, leading to reduced cell adhesion [29,32].

Other than the physical factors, the chemistry of ZnO nanowires could also induce cytotoxicity
similarly to ZnO nanoparticles mainly via the overproduction of reactive oxygen species and/or
release of free Zn2+ ions [33–35]. The overproduction of reactive oxygen species could cause excessive
oxidative stress and oxidant injury in cells [36]. As zinc oxide nanowires were biodegradable in
biological fluids [37], the cytotoxicity could also be due to the excess of released zinc ions resulting from
the extracellular degradation of ZnO nanowires [38]. Cells could also phagocytize ZnO nanowires, and
the zinc ions released from the intracellular degradation of the internalized ZnO nanowires in the acidic
environment of lysosome could also induce cytotoxicity [12]. However, it would be more difficult for
cells to phagocytize ZnO nanowires from the immobilized arrays compared to the disperse nanowires.

Interestingly, after one day in culture, the metabolism levels of NG108-15 and HL-1 cells decreased
to 5.10% and 8.34% of their corresponding baselines, respectively, while the metabolism level of primary
cardiomyocytes only decreased to 88.63% of the baseline. Also, NG108-15 and HL-1 cells cultured
on ZnO nanowire arrays both showed a significant decrease in metabolism compared to the ones
cultured on gold, glass, and polystyrene substrates, whereas primary cardiomyocytes cultured on ZnO
nanowire arrays only showed a significant decrease in metabolism compared to the ones cultured
on gold substrate, which showed a significant increase in metabolism compared to the ones cultured
on polystyrene substrate. Primary cardiomyocytes seemed to better tolerate the inhibitory effects
induced by ZnO nanowire arrays, which was consistent with previous studies showing that ZnO
nanoparticles induced selectively higher cytotoxicity on rapidly dividing cell lines than on primary
cells [39–43]. The cytotoxicity of ZnO nanomaterials depends on multiple factors, such as cell type,
the size of nanomaterial, the shape of nanomaterial, culture condition, etc. [35]. The difference in the
inhibitory effects on NG108-15 cells, HL-1 cells, and primary cardiomyocytes could also be due to
differences in the serums and phosphates in the culture media and in the proteins used to pre-coat the
substrates [44–46].

Although biocompatibility can be improved by decreasing the amount of ZnO nanowires, it would
be difficult to do so for vertically aligned and densely packed high aspect ratio ZnO nanowire arrays,
as most of the given surface area was occupied by nanowires in spite of their dimensions. However,
varying the dimensions and spacing of ZnO nanowires could change the topography of the arrays and
therefore could affect the interactions between the substrate and cells. The extracellular degradation of
nanowires and release of free zinc ions would be another challenge to make the ZnO nanowire arrays
biocompatible for long-term applications. Thus, the mechanism of these inhibitory effects on excitable
cells needs to be further addressed in future research, as this is critical for the biomedical applications
of ZnO nanowire arrays.
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4. Materials and Methods

4.1. Materials

Zinc nitrate hexahydrate, hexamethylenetetramine, ammonium hydroxide solution (28.0%–30.0%
NH3 basis), sodium bicarbonate (NaHCO3), sodium chloride (NaCl), potassium chloride (KCl), sodium
phosphate dibasic (Na2HPO4), magnesium sulfate (MgSO4), Hepes, glucose, Claycomb medium, fetal
bovine serum (FBS) for HL-1 cells, norepinephrine, L-glutamine, gelatin, fibronectin, pancreatin,
and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) were purchased from
Sigma-Aldrich (Saint Louis, MO, USA). Dulbecco’s modified eagle’s medium (DMEM) without sodium
pyruvate, DMEM, distilled water, phosphate-buffered saline (PBS, pH 7.4), penicillin-streptomycin,
hypoxanthine-aminopterin-thymidine, collagenase type II, newborn calf serum (NCS), horse serum,
and charcoal-stripped FBS for neonatal cardiomyocytes were purchased from Thermo Fisher Scientific
(Waltham, NA, USA). Non-heat-inactivated FBS for NG108-15 cells was purchased from GE Healthcare
Life Sciences (Pittsburgh, PA, USA). Circular cover glasses of 18 mm diameter were purchased from
Fisher Scientific (Hampton, NH, USA).

4.2. Synthesis of ZnO Nanowire Arrays

ZnO nanowire arrays were synthesized via a solution-based method as shown in Figure 6 [23,24].
Circular cover glasses of 18 mm diameter were washed in sequence in acetone, 2-propanol, and
distilled water in an ultrasonic bath for 5 min in each solvent. The cover glasses were thereafter dried
with an air gun and baked on a 200 ◦C hot plate for 5 min to remove remaining moisture (I). A 10 nm
thick layer of titanium (II) and a 50 nm thick layer of gold (III) were sequentially deposited onto
the cover glasses using an e-beam evaporator (DV-502A, Denton Vacuum, Moorestown, NJ, USA).
The coating was annealed in a 300 ◦C furnace for 1 h. With the gold coating in contact with the solution,
three coated cover glasses were gently placed in a Petri dish to float on the top of 40 mL of aqueous
solution containing 25 mM zinc nitrate hexahydrate, 12.5 mM hexamethylenetetramine, and 0.70 M
ammonium hydroxide in an 80 ◦C oven (Gravity Ovens, Fisher Scientific, Hampton, NH, USA) for
24 h (IV). The lid of the Petri dish was kept on during the entire reaction. The ZnO nanowire arrays (V)
grown on the gold-coated surface were washed thoroughly with distilled water and air dried.

4.3. SEM

The morphological features of the ZnO nanowire arrays were imaged by a scanning electron
microscope (Nova NanoSEM 400, FEI, Hillsboro, OR, USA) using an Everhart-Thornley detector in
high vacuum mode. No coating was applied. Images were processed and analyzed using ImageJ
(Research Services Branch, NIH, Bethesda, MD, USA).

4.4. XPS

The surface chemistry of the ZnO nanowire arrays was analyzed by an X-ray photoelectron
spectroscopy (Axis Ultra, Kratos Analytical, Manchester, UK) using a monochromatic A1 Kα X-ray
source operated at 12 kV and 10 mA. The XPS data were processed and analyzed using CasaXPS (Casa
Software Ltd., Devon, UK).

4.5. Cell Culture

NG108-15 glioblastoma and neuroblastoma hybrid cell line was purchased from ATCC (Manassas,
VA, USA). NG108-15 cells were cultured in DMEM without sodium pyruvate supplemented with 10%
non-heat-inactivated FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, 0.1 mM hypoxanthine, 400
nM aminopterin, 0.016 mM thymidine, and 1.5 g/L NaHCO3 under 5% carbon dioxide (CO2) and 95%
air at 37 ◦C.
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HL-1 cardiac muscle cell line was a courtesy gift from William C. Claycomb at Louisiana State
University Health New Orleans, New Orleans, LA, USA. HL-1 cells were cultured in Claycomb
medium supplemented with 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, 0.1 mM
norepinephrine, and 2 mM L-glutamine in the gelatin (200 µg/mL) and fibronectin (5 µg/mL)
pre-coated flasks under 5% CO2 and 95% air at 37 ◦C.

Neonatal cardiomyocytes were harvested from 2 days old Sprague-Dawley rat pups according
to a protocol by Richard Pattern at Tufts Medical Center, Boston, MA, USA [47]. Briefly, hearts
from eleven neonatal Sprague-Dawley rat pups were surgically removed and temporarily immersed
in a dissociation buffer solution (116 mM NaCl, 5.4 mM KCl, 0.8 mM Na2HPO4, 0.8 mM MgSO4,
20 mM Hepes, and 5.6 mM glucose, pH 7.35). After the extraction of all the hearts, tissue was
transferred into an enzyme buffer solution (dissociation buffer solution with 0.06% pancreatin and
0.04% collagenase type II) and was finely chopped into pieces. The tissue suspension was placed
in a 37 ◦C shaker at approximately 80–86 rpm for serial digestion. Four rounds of digestion were
performed for 5 min, 20 min, 25 min, and 25 min, respectively. After each digestion, the cell suspension
was placed immediately in 2 mL of NCS and then centrifuged at 100 G for 5 min. The resultant
pellet was then re-suspended in 4 mL of NCS and kept at 37 ◦C in the incubator. After all digestions,
all the cell suspensions in NCS were mixed together and centrifuged again at 100 G for 5 min, and
then the pellet was re-suspended in 4 mL of culture medium (DMEM supplemented with 10% horse
serum, 7% charcoal-stripped FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin). To remove
non-dissociated tissue, the suspension was passed through a 70 µm nylon filter. Finally, to remove
fibroblasts, a 75-min pre-plating procedure was conducted by plating the suspension on two 60 mm2

Petri dishes at 37 ◦C in the incubator. The cell suspension was ready for counting and plating after
pre-plating. The cardiomyocytes were cultured in the culture medium in the fibronectin (25 µg/mL)
pre-coated flasks under 5% CO2 and 95% air at 37 ◦C. Animal experiments followed protocol approved
by the Institutional Animal Care and Use Committee at The Ohio State University.

4.6. MTT Assays

MTT assays were conducted following the standard protocol [27,28]. ZnO nanowire arrays,
Au-coated cover glasses, and uncoated cover glasses were first sterilized by being immersed in
an aqueous 70% ethanol solution for 30 min and then thoroughly washed with PBS three times.
Each substrate was placed into a well of a 12-well microplate with the nanowire arrays and Au coating
facing up. The polystyrene wells of the microplate served as another substrate. All groups were
repeated in triplicate (n = 3).

Before plating HL-1 cells, all substrates were pre-coated with gelatin (200 µg/mL) and fibronectin
(5 µg/mL) for 1 h, and before plating neonatal cardiomyocytes, all substrates were pre-coated with
fibronectin (25 µg/mL) overnight. 1 mL of cell suspension of NG108-15 cells, HL-1 cells, or neonatal
cardiomyocytes at a cell density of 1 × 105 cells/mL was plated into each well. After the cells were
incubated under 5% CO2 and 95% air at 37 ◦C for 20 h, the culture medium was replaced with another
1 mL of fresh culture medium, and 100 µL of sterile filtered 0.5% MTT in PBS was added to each well.
After another 4-h incubation, 750 µL of culture medium was removed, and 1 mL of sterile filtered
DMSO was added to each well to dissolve the formazan. Until the formazan was observed to be fully
dissolved under the microscope forming homogeneous solutions, each solution was transferred to a
96-well microplate for reading. The absorbance was read at the wavelengths of 540 nm and 690 nm
using a microplate reader (FlexStation 3, Molecular Devices, Sunnyvale, CA, USA). The absorbance at
690 nm served as a reference and was subtracted from the absorbance at 540 nm.

5. Conclusions

The biological effects of nanomaterials can depend on a variety of factors, including their
physiochemical attributes and the type of the cells they interact with. Thus, their biosafety needs
to be assessed under the settings for a specific application. This work studied the biological effects
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of vertically aligned and densely packed high aspect ratio ZnO nanowire arrays on excitable cells
cultured on top and revealed that the ZnO nanowire arrays caused inhibitory effects on a neuronal
cell line and a cardiac muscle cell line, whereas primary neonatal rat cardiomyocytes showed better
tolerance to the inhibitory effects. Therefore, for the biomedical applications of ZnO nanowire arrays,
particularly to interact with the nervous system or heart, their biosafety needs to be specifically studied
and addressed, with inhibitory effects to be more likely.
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