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Abstract: A novel conductive DNA-based nanomaterial, DNA-peptide wire, composed of a DNA
core and a peripheral peptide layer, is presented. The electrical conductivity of the wire is found
to be at least three orders in magnitude higher than that of native double-stranded DNA (dsDNA).
High conductivity of the wires along with a better resistance to mechanical deformations caused by
interactions between the substrate and electrode surface make them appealing for a wide variety of
nanoelectronic and biosensor applications.
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1. Introduction

During the last two decades, DNA has become one of the cornerstones of nanotechnology.
Its self-assembling properties, robustness, and well-developed enzymatic machinery have led to the
design of intricate nanodevices, ranging from DNA arrays to nanorobots (see for review [1]). On the
other hand, the presence of nearly parallel stacked aromatic groups in dsDNA with a distance similar
to that between graphite layers has also placed DNA in the focal spot for molecular electronics and
led to a vast array of different studies with often controversial results (for a thorough discussion
we address the reader to reviews [2,3]). Although the understanding of both experimental and
theoretical aspects of DNA conductivity is far from complete, the growing body of evidence suggests
that short dsDNA molecules (<40 nm) generally exhibit semiconductor-like behavior with a gap in
the range of ~1–2 V [4,5]. This was first reported by Porath et al. [4], who studied electrical transport
through relatively short (10 nm) dsDNA molecules deposited between platinum nanoelectrodes at
different temperatures. This type of behavior was later observed in several other studies, confirming
reproducible semiconducting behavior with a gap [5,6]. Although both hole and electron transport
are possible in DNA according to photophysical studies [7], electrical studies indicate that the charge
transport is dominated by holes, presumably due to the positioning of the HOMO (Highest Occupied
Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) levels of DNA with respect to
the Fermi energy of common metal contacts (e.g., Au and Pt). As a result, a DNA molecule behaves as
a p-type nanowire in electrical measurements [8]. The charge transport in DNA occurs predominantly
through guanine bases due to their lowest electrochemical oxidation potential. Three main mechanisms
have been proposed to explain charge transport in DNA molecules: single-step-electron-tunneling,
thermal hopping, and domain hopping [9].

The conductivity of long (hundreds of nanometers) DNA strands appears to be the most
complicated part of this puzzle. Once a DNA molecule is adsorbed on a solid surface, its conformation
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is perturbed due to van der Waals, electrostatic, and hydrophobic interactions with the substrate.
The behavior of long DNA molecules is thus affected by a number of experimental parameters such as
DNA sequence, substrate and contact properties, temperature, and humidity [10–13]. Since the charge
transport properties of DNA critically depend on π-orbital stacking along the molecule [9], even local
perturbations of the double-stranded structure could lead to a dramatic reduction of the ability of
DNA to conduct electrical current. This “fragility” of charge transport through DNA is also supported
by electrochemical measurements in solution [14]. While observed currents through well-matched
17-mer and 100-mer dsDNA monolayers are rather similar, even a single mismatch breaking π-stacking
at one point is sufficient to reduce the current by half. One of the ways to overcome this issue is by
forming more rigid DNA structures that are less prone to surface-induced deformations. Recently,
Livshits et al. [15] performed electrical measurements on guanine quadruplex DNA (G4-DNA) which
is uniform in composition consisting of only G-nucleotides and exhibits a greater bending rigidity
compared to dsDNA due to the guanine tetrad as a repeating unit. Although these molecules have
been found to support long range charge transfer at distances approaching 100 nm, the conductive
behavior of the molecules is described as variable-range hopping. This indicates that even such a rigid
DNA structure experiences significant perturbation when deposited on a solid substrate, which leads
to the reduction of electron delocalization down to a few tetrads. A different approach can involve the
reduction of the DNA-surface interaction through, e.g., introducing electrostatic repulsion between the
DNA and the surface [13], which also leads to a certain improvement in dsDNA conductivity.

In the present study, we addressed another route to stabilize the native structure of DNA on a
surface by coating it with a layer of cationic molecules, specifically, cationic peptides. Short cationic
peptides have recently attracted significant interest due to their antimicrobial properties and ability to
form very stable self-assembled structures with or without templates [16–18]. Some of them have been
proven to form stable uniform coatings around dsDNA [19].

In the present study, we investigated the conductivity of DNA-peptide nanowires both contactless
(using Electric Force Microscopy (EFM)) and through direct I–V measurements with nano-fabricated
contacts. The results clearly demonstrate that coating with KA6, a cationic peptide composed of one
lysine and six alanine residues, leads to almost a thousand-fold increase in conductivity of the DNA.

Metallic Carbon Nano Tubes (CNTs) were used as a fiducial reference 1D conductor during all
procedures, since the electrical properties of this material has been well studied using both EFM and
I–V measurements [20,21].

2. Results and Discussion

The results of the reference experiments performed using metallic CNTs for both EFM and
I–V measurements are illustrated in Figure 1. In line with the previous studies [20,22,23], CNTs
displayed a clear phase-shift signal in the EFM phase images (Figure 1a, inset), often referred to as
EFM polarizability, and produced linear I–V curves indicating that functionalization with silanes does
not significantly affect the contact properties of Pt electrodes.

Under the same experimental conditions, dsDNA stretched on the substrate exhibited a very poor
electrostatic contrast, even when the tip bias voltage in EFM experiments was increased to ±8 V and
the lift distance was lowered down to 10 nm (Figure 2a). The contrast quickly disappeared at higher
lift distances of 20 and 30 nm (data not shown), in line with the previous studies [22]. Consistent with
the results obtained by Maragakis et al. [24] and Heim et al. [25] on the absence of conductivity in
over-stretched DNA, in our experiment the signal was completely absent for over-stretched DNA
molecules, most probably due to drastic changes in the conformation and induced perturbation in
π-stacking. In agreement with the EFM measurements, the I-V curves obtained for dsDNA molecules
combed across two adjacent nanoelectrodes (Figure 2b) indicated currents within the noise level
(~50 fA).
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Figure 1. (a) Topography image of metallic carbon nanotubes (CNT) deposited on silicon wafer 
obtained using an atomic force microscope (AFM) operating in the intermittent contact mode. The 
insert shows a phase image of the same sample acquired using two-pass electrostatic force microscopy 
(EFM) at a tip bias of +3 V and a lift distance of 20 nm. CNTs are visible as white lines in the 
topography image due to their height, and as black shadows in the EFM phase image due to their 
conductivity; (b) AFM topography image (3D representation) of CNTs deposited across two 
nanoelectrodes; (c) The corresponding I–V curve obtained with a voltage sweep from −1 V to +1 V 
with voltage steps of 0.1 V. The insert shows a schematic representation of the I–V measurement 
setup. The electrodes were bridged by several CNTs at distances ranging from 60 to 600 nm. 

 

Figure 2. (a) AFM topography of dsDNA molecules combed on a silicon substrate. The inset shows a 
very poor phase contrast obtained in EFM at +8 V bias and 10 nm lift height; (b) AFM image of dsDNA 
combed across nanoelectrodes. 

Interestingly, both the EFM polarizability and I–V behavior of DNA were drastically changed 
when DNA was conjugated with KA6 peptides. DNA-KA6 conjugates deposited and combed on 
functionalized silicon substrates produced a strong phase shift in EFM measurements at the same 
parameters at which dsDNA exhibited no signal. Figure 3b–e shows the results of EFM 
measurements on a DNA-KA6 conjugate. The phase shift due to electrostatic interactions between the 
metal-coated tip and the conjugate is visible as a dark shadow around the conjugate. It can be seen 
that the contrast vanishes at zero voltage between the tip and the substrate and gradually broadens 
and disappears as the tip is removed from the surface (as the lift height increases). The phase-shift 
signal was still detectable at distances as high as 100 nm, suggesting significantly enhanced 
conductivity of the DNA-peptide wire with respect to the non-coated DNA. 

Figure 4a demonstrates the deposition and combing of DNA-KA6 conjugates across nano-
fabricated electrodes used for I–V tests. In agreement with our EFM results, the I–V characteristics 
measured on DNA-KA6 conjugates showed a significant improvement compared to the native form 
of DNA. The I–V curves for the DNA-peptide wire were nonlinear with a fairly symmetric gap from 
approximately −5 to +5 V (it should be noted that the actual voltage applied to the conjugate is lower 

Figure 1. (a) Topography image of metallic carbon nanotubes (CNT) deposited on silicon wafer
obtained using an atomic force microscope (AFM) operating in the intermittent contact mode. The insert
shows a phase image of the same sample acquired using two-pass electrostatic force microscopy (EFM)
at a tip bias of +3 V and a lift distance of 20 nm. CNTs are visible as white lines in the topography
image due to their height, and as black shadows in the EFM phase image due to their conductivity;
(b) AFM topography image (3D representation) of CNTs deposited across two nanoelectrodes; (c) The
corresponding I–V curve obtained with a voltage sweep from −1 V to +1 V with voltage steps of
0.1 V. The insert shows a schematic representation of the I–V measurement setup. The electrodes were
bridged by several CNTs at distances ranging from 60 to 600 nm.
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Figure 2. (a) AFM topography of dsDNA molecules combed on a silicon substrate. The inset shows a
very poor phase contrast obtained in EFM at +8 V bias and 10 nm lift height; (b) AFM image of dsDNA
combed across nanoelectrodes.

Interestingly, both the EFM polarizability and I–V behavior of DNA were drastically changed
when DNA was conjugated with KA6 peptides. DNA-KA6 conjugates deposited and combed on
functionalized silicon substrates produced a strong phase shift in EFM measurements at the same
parameters at which dsDNA exhibited no signal. Figure 3b–e shows the results of EFM measurements
on a DNA-KA6 conjugate. The phase shift due to electrostatic interactions between the metal-coated
tip and the conjugate is visible as a dark shadow around the conjugate. It can be seen that the contrast
vanishes at zero voltage between the tip and the substrate and gradually broadens and disappears
as the tip is removed from the surface (as the lift height increases). The phase-shift signal was still
detectable at distances as high as 100 nm, suggesting significantly enhanced conductivity of the
DNA-peptide wire with respect to the non-coated DNA.

Figure 4a demonstrates the deposition and combing of DNA-KA6 conjugates across nano-fabricated
electrodes used for I–V tests. In agreement with our EFM results, the I–V characteristics measured on
DNA-KA6 conjugates showed a significant improvement compared to the native form of DNA. The I–V
curves for the DNA-peptide wire were nonlinear with a fairly symmetric gap from approximately
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−5 to +5 V (it should be noted that the actual voltage applied to the conjugate is lower due to the
contact resistance). We performed measurements on two different devices, both of which showed a
qualitatively similar behavior with a similar gap and activation energy values. Our consecutive atomic
force microscopy (AFM) measurements on one of the devices indicated the length of the DNA-peptide
wire to be about 300 nm. The current produced after sweeping the voltage up to 8 V was almost three
orders in magnitude higher for DNA-peptide wires (~40 pA) than for native DNA (~50 fA). This seems
to be a logical extension of the established results on short DNA strands, which reported nonlinear
I–V characteristics with a voltage gap [4,5], and are qualitatively in line with the conductivity data
obtained on extended DNA structures reported earlier [6,10,13,15].
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Figure 4. (a) AFM topography image (3D representation) of DNA-KA6 conjugate deposited and 
combed across two adjacent electrodes; (b) The corresponding I–V curve obtained with voltage 
sweeps of −8 V to +8 V with voltage steps of 0.1 V, three consecutive sweeps overlaid. The inset shows 
the schematics of the experiment. The electrodes were bridged by a single conjugate of ca. 300 nm; (c) 
Space-filling model of KA6, a surfactant-like peptide with charge separation. At moderate pH values 
(pH 4–8) the peptide possesses two positive charges at one end (N-terminus and lysine) and a 
negative charge at the opposite end (C-terminus). The inset shows an electrostatic map indicating the 
charge distribution at pH = 7 [18]. The electrostatic map was calculated using TITRA [26] and mapped 
onto the molecular surface of the peptide with DELPHI [27]. 

Figure 3. (a) Topography of a DNA-KA6 conjugate combed on a silicon surface. The inset shows the
height profile of the conjugate (the arrow in the main panel marks the position of the cross-section).
Corresponding phase images of the same feature obtained in EFM mode at: (b) +3 V bias voltage and a
lift distance of 20 nm; (c) 0 V and a lift distance of 20 nm (d) −3 V and a lift distance of 20 nm; and
(e) +3 V and a lift distance of 50 nm. The phase-shift signal (the dark region around the conjugate
location), which broadens as the lift distance increases and vanishes when the tip bias voltage goes to
zero, is clearly visible. The scale is the same in all panels.
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Figure 4. (a) AFM topography image (3D representation) of DNA-KA6 conjugate deposited and
combed across two adjacent electrodes; (b) The corresponding I–V curve obtained with voltage sweeps
of −8 V to +8 V with voltage steps of 0.1 V, three consecutive sweeps overlaid. The inset shows
the schematics of the experiment. The electrodes were bridged by a single conjugate of ca. 300 nm;
(c) Space-filling model of KA6, a surfactant-like peptide with charge separation. At moderate pH values
(pH 4–8) the peptide possesses two positive charges at one end (N-terminus and lysine) and a negative
charge at the opposite end (C-terminus). The inset shows an electrostatic map indicating the charge
distribution at pH = 7 [18]. The electrostatic map was calculated using TITRA [26] and mapped onto
the molecular surface of the peptide with DELPHI [27].
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It should be noted that cationic peptides, due to their positive charge, have a tendency to induce
the aggregation of DNA. As can be seen in Figures 3 and 4, the KA6-DNA conjugates commonly form
ropes, up to 10 nm in diameter, containing several DNA molecules. A similar tendency and similar
size of DNA ropes were observed with other short cationic peptide used in the study: IL, IL4, KA5, and
KA6W. However, conjugation with these peptides did not lead to enhanced electrical properties and
the conjugates showed no EFM contrast and I–V characteristics similar to that of bare DNA molecules.
Figure 5 presents EFM and AFM measurements on a KA5-DNA conjugate. The size of the horseshoe
structure is very similar to that in Figure 3, however, no EFM polarizability was observed; only a small
signal due to the van der Waals forces was visible.
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Figure 5. (a) Topography of a DNA-KA5 conjugate combed on a silicon surface. The inset shows the
height profile of the conjugate (the arrow in the main panel marks the position of the cross-section).
Corresponding phase images of the same feature obtained in EFM mode at: (b) +3 V bias voltage and a
lift distance of 30 nm and (c) −3 V and a lift distance of 30 nm. No phase shift signal corresponding to
EFM polarization (dark shadow) is observed. The scale is the same in all panels.

We attribute the enhanced EFM contrast and higher conductivity of the DNA-KA6 conjugates
to a stabilizing effect of the cationic peptide on the surface-bound DNA molecule. It can be expected
that the peptide coat reduces the interaction with the surface and therefore helps to stabilize the
native (solution) conformation of the DNA. Furthermore, the conjugated peptides can contribute to
maintaining the proper hydration of DNA molecules. As has been shown, both theoretically [28,29] and
experimentally [11–13], the hydration degree of a DNA molecule strongly (up to one thousand-fold)
affects its conductivity. Although the nature of this phenomenon is highly debated, it has been
shown that dehydration of DNA significantly increases the band gap of a DNA molecule from ~3.0
to ~8.0 eV [28], and moreover destabilizes the DNA structure, creating structural irregularities [29].
Interestingly, condensation of DNA into ropes by positively charged spermidine has been observed
to drastically increase the spreading of the injected charge compared to bare DNA fibers of similar
dimensions [25]. On the other hand, small bundles of bare DNA (up to ca. 10 molecules) deposited on
a solid surface showed no conductivity under similar measurement conditions [10].

The general assumption is that the cationic peptides are attracted to the negatively charged
backbone of DNA and can cover DNA by (partially) replacing the counter ions [16]. We have earlier
observed the formation of a coating layer around dsDNA using IL and IL4 peptides [19]. The molecular
modeling for the peptide interaction with the DNA template suggests that although the electrostatic
interactions drive the peptide molecules towards the DNA, the hydrophobic interactions as well as the
actual shape of the peptide are also critically important for peptide docking onto a DNA molecule.
For instance, aromatic side chains present in IL and IL4 peptides can significantly alter the structure
of the helix, possibly leading to a reduction of the DNA conductivity. Further experimental and
computational studies are required to elucidate the interaction mechanism and geometry of DNA-KA6

conjugates and explain why KA6 produced a remarkable effect on DNA conductivity, while other
peptides had no effect at all.
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3. Materials and Methods

The experiments were performed on a linearized dsDNA plasmid, 2686 base pairs long (pUC19
DNA plasmid/SmaI digest, 25 ng/µL, Fermentas Life Sciences, Vilnius, Lithuania). The DNA solution
was buffer exchanged to 20 mM ammonium acetate (Sigma Aldrich, St. Louis, MO, USA) solution. IL,
IL4, KA5, KA6, and KA6W peptides were produced using automated solid phase peptide synthesis
(Activo-P11, Activotec, Cambridge, UK) and were HPLC-purified before use.

Platinum nanoelectrodes were fabricated using a combination of optical and e-beam lithography
followed by the evaporation of 1 nm of Cr and 5–10 nm of Pt in a Cryofox Explorer 600 (Polyteknik
A/S, Oestevraa, Denmark) and subsequent lift-off. In this way, we could achieve thin continuous
Pt/Cr electrodes (width of 30–40 nm, electrode spacing down to 40 nm). The silicon substrate (NOVA
Wafers, Flower Mound, TX, USA) on which the nanoelectrodes were fabricated consisted of a layer of
thermally grown SiO2 (100 nm thick) on top of highly p-doped silicon that could also be used as a back
gate. Silicon substrates, both plain and bearing nanoelectrodes, were rinsed with acetone followed
by UV-ozone cleaning (Bioforce Nanosciences, Salt Lake City, UT, USA) and were functionalized by
vapor phase deposition of N-Octyldimethylchlorosilane (Sigma Aldrich, St. Louis, MO, USA) for 2 h
in a sealed evacuated chamber. The advancing and receding angles of the substrates were measured
using the sessile droplet method, yielding an average contact angle of ~90◦. The substrates for CNT
measurements were treated in the same way but using (3-Aminopropyl) trimethoxysilane (APTMS)
(Sigma Aldrich, St. Louis, MO, USA) during the vapor deposition step.

A droplet of DNA or DNA-peptide solution in ammonium acetate buffer (20 mM, pH = 5.1) was
deposited on silanized substrates, incubated (6 min) at room temperature and then combed using a
variation of the combing technique recently reported by us [30]. Generally, the combing techniques
rely on a partial melting of DNA ends under certain conditions and their attachment to solid substrates
(see [31] for a review). Then, the DNA molecules can be stretched and aligned on the substrate by
applying, e.g., a meniscus force in a given direction.

The stock peptide solutions of KA5 (8 mM), KA6 (4 mM), and KA6W (4 mM) in ammonium
acetate (20 mM) were sonicated (30 min) prior to mixing with DNA. IL (680 µM) and IL4 (20 µM) were
used without sonication. The DNA solution was mixed in a ratio of 1:15 with the stock solution of
peptide in question and incubated for 2 h. Interestingly, our variation of the combing method proved
to be efficient in combing both dsDNA and DNA-peptide conjugates, while other commonly used
combing recipes were ineffective for the combing of DNA-peptide conjugates.

Predominantly metallic single-wall carbon nanotubes were obtained from Carbon Nanotechnologies,
Inc., Houston, TX, USA. De-bundling of CNTs was achieved by sonication in 1.5% sodium cholate
solution (Sigma Aldrich, St. Louis, MO, USA). Prior to the deposition, the silicon substrates were
treated with APTMS vapor for 1 h as described above.

AFM and EFM measurements were carried out using a Multimode AFM with Nanoscope IIIa
controller (Bruker, Billerica, MA, USA), operating in tapping and lift (two-pass) modes, respectively.
OMCL-AC200TS, OMCL-AC240TS (Olympus, Tokyo, Japan), and HR-SCC (Team Nanotec GmbH,
Villingen-Schwenningen, Germany) cantilevers were used for AFM imaging. For EFM studies,
conductive cantilevers were prepared by evaporating layers of 1 nm Cr and 5 nm Pt on OMCL-AC240TS
cantilevers. The EFM measurements followed the method for contactless evaluation of conductivity
developed in [20,22]. AFM and EFM images were processed using the WSxM software package [32].
I–V characteristics were acquired with a Model 6517A (Keithley Instruments Inc., Cleveland, OH,
USA) source-electrometer using a custom LabView (National Instrument, Austin, TX, USA) program.
The measurements were carried out in a two-point geometry using a PM5 probe station (SÜSS MicroTec,
Garching bei München, Germany) placed inside a Faraday cage, leading to a typical noise level below
150 fA rms. To exclude a possible leakage through the oxide layer to the silicon back gate, additional
I–V measurements between bare electrodes as well as the electrodes and the back gate were carried
out on all measured devices. Data from several voltage sweeps were acquired to ensure that the curves
are reproducible. A voltage up to ±10 V applied to the back gate did not produce any current
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leakage within the experimental accuracy. The measurement equipment was located in an ISO Class
5 clean room with a continuous control of temperature and humidity, set to 21 ± 1 ◦C and 45 ± 5%
RH, respectively.

4. Conclusions

We demonstrated that the binding of a cationic peptide, KA6, leads to a dramatic increase in the
conductivity of dsDNA, measured both contactless using EFM and by direct I–V measurements on
molecules placed on nanoelectrodes. The observed EFM phase shift above DNA-KA6 conjugates was
comparable to that observed on metallic carbon nanotubes and Pt nanoelectrodes. The DNA-peptide
nanowires exhibited strong non-linear I–V behavior with a thousand-fold higher current as compared
with bare dsDNA. The results of this work indicate that cationic peptides self-assembled on dsDNA
can be used to maintain and possibly control the structure of DNA when deposited on a surface.
Interestingly, this route to protect and stabilize fragile DNA molecules in a hostile environment is
widely used in nature, e.g., in viruses such as M13 bacteriophage, where a DNA molecule is encased
in a robust self-assembled protein tube. Our results suggest that this approach can be mimicked
to stabilize and control the conductivity of long DNA stretches for applications in biosensors and
molecular electronics.
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