Supplementary Nanomaterials: Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by A Double Passivation Method

Shuai Han ^{1,2}, Tao Chang ¹, Haiping Zhao ², Huanhuan Du ¹, Shan Liu ¹, Baoshuang Wu ¹ and Shenjun Qin ^{2,*}

- ¹ College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China; hansh04@163.com (S.H.); changt03@sina.com (T.C.); hebei123hh@sina.com (H.D.); ls10280924@sina.com (S.L.); hebeiwbs@163.com (B.W.)
- ² Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan 056038, China; hansh04@163.com (S.H.); zhaohaiping609@163.com
- * Correspondence: qinsj528@hebeu.edu.cn (S.Q.); Tel.: +86-0310-857-7902

Nanomaterials 2017, 7, 155

Figure S1. TEM images of ECD (a), Ca-1-CD (b), Ca-2-CD (c).

	ECD	Ca-1-CD	Ca-2-CD
QY(%)	73.1	81.3	86.1
	E.	3	
		5	
	(0)	- 25	
	South State		
	ami		

Table S1. The QY results of the three CD samples in aqueous solution.

Figure S2. The Ca-2-CD aqueous solution under natural light irradiation (0.1 µg·mg⁻¹).

Figure S3. The cyclic voltammogram of the ECD (a), Ca-1-CD (b), Ca-2-CD (c) and 0.1 mol/L KCl aqueous solution (the scan rate: 30 mV/s).

Data notes:

To estimate their HOMO and LUMO energy levels, cyclic voltammetry (CV) was carried out by using a standard three-electrode system, which consisted of glassy carbon electrode as the working electrode, a platinum wire as the counter electrode, and calomel electrode as the reference electrode. CV was recorded in DI-water containing CMCD and 0.1 M KCl as the supporting electrolyte. The HOMO and LUMO energy levels in eV of CMCD were calculated according to the following equations:

$$E(\text{HOMO}) = -e(E_{\text{ox}} + 4.4) (eV)$$
 (1)

$$E(LUMO) = -e(E_{red} + 4.4)(eV)$$
 (2)

$$E_{\rm g} = -e\Delta E \tag{3}$$

$$\Delta E = E_{\rm ox} - E_{\rm red} \tag{4}$$

where E_{ox} and E_{red} are the onset of oxidation and reduction potential, which are the potentials corresponding to the maximum forward current and the backward current. E_{g} is the energy gap, respectively.^[S5]

Finally, we could calculate the energy gaps listed as below:

EECD = 3.57 eV, ECa-1-CD = 3.60 eV, ECa-2-CD = 3.62 eV

where *E*_{ECD}, *E*_{Ca-1-CD} and *E*_{Ca-2-CD} are the energy gaps of ECD, Ca-1-CD and Ca-2-CD, respectively.

Figure S4. Luminescence decay curve of the three CD samples recorded at room temperature in aqueous solution (a. ECD , b. Ca-1-CD, c.Ca-2-CD).

Data notes:

The emission decay curve was monitored under the excitation wavelength at 360 nm, and two exponents were shown for the three curves (Table S2). The average lifetime $\langle \tau \rangle$ is estimated by the following equation:

$$\langle \tau \rangle = \frac{\sum A_i \tau_i^2}{\sum A_i \tau_i}$$

where A_i is the preexponential factor related to the statistical weights of each exponential and τ_i represent the lifetimes of each exponential decay. The lifetimes of the CD samples are shown below:

Table S2. The lifetimes (τ) and the average lifetimes (τ) of the three CD samples.

ECD	Ca-1-CD	Ca-2-CD

Figure S5. The results of the longevity-observing tests (left, the longevity of ordinary carnations; right, the longevity of fluorescent carnations).