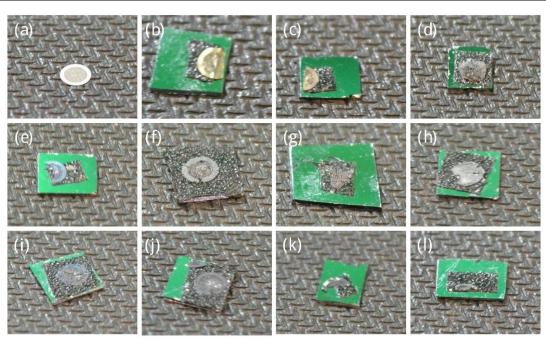
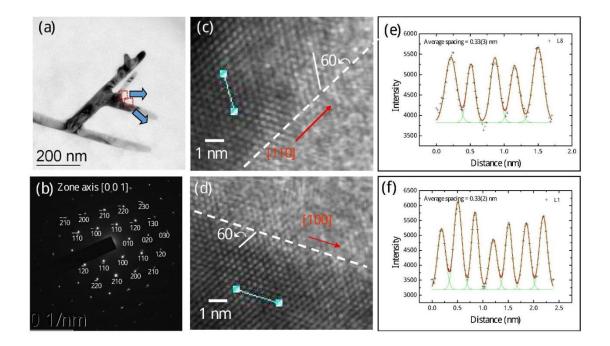


Supplymentary information


Growth Mechanism Studies of Multi-Dimensional ZnO Nanowires: Experimental Observations and Theoretical Simulations

Po –Hsun Shih and Sheng Yun Wu*


Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan

Hexagonal Structure					
	Sspace group	a(nm)	c(nm)	Angles	
Zn	P63/mmc	0.267	0.494	$\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$	
Ti	P63/mmc	0.295	0.469	$\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$	
ZnO	P63mc	0.324	0.520	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	

Table S1. A list of s	pace groups and lattice i	parameters of Zn, Ti and ZnO.
I UDIC 01. I I II 01 01 0	puce groups and fattice	

Figure S1. Optical images for various annealing temperature of samples (**a**) an unheated Ti grid and a series of samples synthesized at (**b**) 300 °C; (**c**) 350 °C; (**d**) 400 °C; (**e**) 450 °C; (**f**) 500 °C; (**g**) 550 °C; (**h**) 600 °C; (**i**) 650 °C; (**j**) 700 °C; (**k**) 750 °C; and (**l**) 800 °C, respectively.

Figure S2. (a) TEM image; (b) corresponding selected-area electron pattern; (**c**–**d**) high-resolution images of selected regions (marked in (a)) of ZnO nanowires for T500; (e) and (f) show the height-position intensity along the lines taken from HR-TEM marked in (c) and (d), respectively.

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).