Nanomaterials

Electronic Supplementary Material

Spectroscopic characterization and nanosafety of Ag-modified antibacterial leather and leatherette

Maria Chiara Sportelli, Rosaria Anna Picca, Federica Paladini, Annarosa Mangone, Lorena Carla Giannossa, Cinzia Di Franco, Anna Lucia Gallo, Antonio Valentini, Alessandro Sannino, Mauro Pollini, Nicola Cioffi

Table S1. Operating conditions used for ICP-MS analysis. ^a atomic mass unit.

Plasma Power	1600 W
Plasma (Ar) gas flow	18 mL/min
Auxiliary(Ar) gas flow	1.2 mL/min
Sample transport (Ar)	1.0 mL/min
Collision chamber (He)	2.0 mL/min
Nebulizer, spray chamber and flow	Meinhard, Cyclonic, 1 mL/min
Isotopes monitored	107 Ag, 109 Ag
Dwell time per AMU ^a	50 ms
Integration time	1 s

Figure S1: UV-Vis spectrum (a) and TEM micrographs (b, c) of control AgNPs synthetized by the chemical route described in the experimental section.

Figure S2: Agar diffusion tests on *E. coli* before (a-d) and after (A-D) surface abrasion on pristine (UT) and Ag-treated (T) leather and leatherette.

Figure S3: Agar diffusion tests on *S. aureus* before (e-h) and after (E-H) surface abrasion on pristine (UT) and Ag-treated (T) leather and leatherette.