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Abstract: Nanostructures of MIL-100 were synthesized and used as a drug delivery platform
for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline
hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were
abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR,
XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework
of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC
were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100.
The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the
free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated,
and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in
a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount
of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented
amount in comparison with other methods.

Keywords: doxycycline monohydrate; drug delivery; nano-MIL-100; sustain release;
Tetracycline hydrochloride

1. Introduction

Drug delivery is an approach in which a pharmaceutical compound is safely transported through
the body to reach its target. Various techniques may be used, i.e., increasing the solubility of an insoluble
drug, enhancing the duration of drug presence in the body, or optimizing the therapeutic effect [1].
A drug delivery system consists of two main parts: a carrier and a drug. Its favorable features are
tuned by choosing the proper drug and carrier. Since different drugs require different treatments,
numerous carriers have been incorporated. Until today, many carriers have been utilized, such as
inorganic mesoporous silica, organic polymers, micelles, liposomes, and dendrimers [2–6]. However,
the application of these conventional methods is limited due to their low cargo capacity and
unchangeable release kinetics [7].

Metal-organic frameworks (MOFs) are able to overcome the limitations of organic and inorganic
carriers [8]. The diverse methods that are used for the synthesis of MOFs provide the opportunity
to design and control the chemical and physical properties of these materials [9,10]. The assembly
of inorganic clusters and various organic linkers by strong bonds build MOFs. Their high porosities
(ϕ up to 6 nm, pore volume up to 2.3 cm3 g−1) makes them great candidates for encapsulating
pharmaceutical compounds and biomedical applications. The surface area could be further enhanced
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by reducing the dimensions to nanoscale [11,12]. Better drug interactions will be achieved as
a consequence of engineering the structure, porosities, and hydrophobic/hydrophilic entities [13].

MIL-100 (MIL: Materials of Institut Lavoisier) was isolated as a polycrystalline powder from iron
and benzene tricarboxylic acid by Horcajada et al. [14]. Large pores and a high surface area makes
MIL-100 an ideal carrier for drug delivery purposes [15]. It has previously been used for encapsulating
several drugs such as doxorubicin, ibuprofen, caffeine, and aspirin in high loading capacities compared
to conventional methods [16,17].

The tetracycline class of compounds has different applications, like broad spectrum antibiotics
that act against gram-positive and gram-negative bacteria. Although the bacterial resistance decreased,
the demand for these antibiotics, they remained especially useful in the treatment of various bacterial
infections such as chlamydia, acne, mycoplasma, periodontitis, and rickettsia. More recently, aspects
of their “non-antibiotic applications,” such as on/off switching of the transcription of distinct genes,
were also discovered [18]. Their structure is also very interesting due to several coordination sites
that can bind to metals and establish non-covalent bonds [19]. There are several reports indicating
that the pharmacological behavior of these compounds depends heavily on metal coordination sites.
Ions like calcium and magnesium form complexes with tetracycline compounds and modify their
antibiotic activities [20,21]. Considering these facts, it is very important to deliver these compounds
to their target safely and sustain release them. Domingues and her co-workers used bioactive glass
as a drug delivery system of tetracycline. The amount of released Tetracycline did not exceed 25% in
80 days in SBF solution [22]. In another approach, Aguzzi and his co-workers intercalated tetracycline
into layered clay mineral material and used it as a platform for release. The release profile, in this
case, showed a “burst effect” and their effort for slowing the release decreased the released amount
to 60% [23].

In the current research, Tetracycline hydrochloride (TC) as a soluble drug and Doxycycline
monohydrate (DOX) as a slightly soluble drug in water were encapsulated separately in nano-MIL-100,
and their release was investigated. This MOF was chosen due to its compatibility (pore size of
1.7 nm and 1.2 nm) with the molecular size of tetracycline hydrochloride (1.10 nm) and doxycycline
monohydrate (1.10 nm). Structural analysis revealed that these two antibiotics have same dimensions,
and their difference is in some functional groups (Tables S1 and S2). TC has six hydrogen bond
donor and nine hydrogen bond acceptor sites. Encapsulation of these drugs in nano-MIL-100 has
two important advantages: (1) eliminating any chance of complexation by protecting them from ions
and shielding the available coordination sites and (2) mediating their solubility in water which affects
the release profile of both drugs.

2. Results and Discussion

Transition metal ions such as iron and copper are important components of biological processes.
These processes have been implicated in many diseases including microbial infections, cancer,
and neurodegenerative disorders. Considering the fact that many transition metals such as nickel,
chromium, and cobalt are toxic and their high dosage in body would be harmful, choosing
an appropriate metal for building a biological-friendly MOF could be a challenging issue. Among the
suitable metals for building MOFs, we can name iron, zinc, calcium, magnesium, and manganese. Iron,
however, has shown the capacity to form a safe and nontoxic cluster as a node for many MOFs including
MIL-100. There are also several reports suggesting nano-MIL-100 (Fe) as a safe and stable capsule for
several small molecule drugs. As in Figure 1a, benzene tricarboxylic ligands in MIL-100 have lost all of
their hydrogens, and all acidic functional groups are attached to the metallic cluster [24]. Considering
that the π-π interactions between aromatic rings act in the range of 3.5 Angstroms [25], and the
distance between the two BTC rings in a pore of MIL-100 is about 5.763 Å, a non-covalent π-π stacking
between BTC aromatic rings and aromatic rings of TC or DOX can be anticipated. Figure 1b illustrates
a proposed orientation of TC in the MIL-100 pore which will favor a π-π stacking (distance of 2.67 Å)
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between its aromatic ring and BTCs. Therefore, it is perhaps this type of non-covalent interactions that
holds a molecule of TC or DOX into the pore.Nanomaterials 2017, 7, 215  3 of 14 
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Figure 1. (a) The distance between two BTC rings in a pore of MIL-100; (b) the proposed π-π stacking
between BTC rings (Ball and Stick) and TC rings (capped sticks).

Among the various methods that are used for determining the particle sizes, the X-ray diffraction
pattern is a useful resource for crystalline materials [26]. Calculations on the XRD pattern of
nano-MIL-100 (Figure 2) using Scherrer Equation confirm a nano-crystalline material with nano-sized
domains (ES 1, Equation 1 in Supplementary materials). Calculations suggest that the mean size of the
particles is approximately 88 nm. Further characterizations using Dynamic Light Scattering indicated
that the mean size of particles is 90.4 nm. As seen in Figure 3, the distribution chart has a Gaussian
distribution. As the polydispersity index (PDI) (0.25) suggests, there is a moderate polydispersity in
the sample as a result of aggregation of nano particles which could explain the difference between
theoretical calculations (Sherrer equation) and the results of scanning electron microscopy.

In order to confirm the stability of the nanoparticles, Zeta (ÿ) potential measurements were made
for the nano-MIL-100 and DOX@MIL-100. The results, as shown in Figure 4a,b, reveal that Zeta
potential values were found to be 8.6 and 17.5 mV, respectively. The ÿ potential in the range of ±10
to ±30 mV indicates incipient stability, which is expected for metal-organic frameworks, and the
coagulation of nanoparticles in some regions is obvious in the SEM images and the PDI index. It is also
noteworthy that in the current study, loading of DOX and TC into nanoparticles of MIL-100 causes an
increase in the zeta potential, thus leading to a higher stability.
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Figure 4. Zeta potential for nano-MIL-100 (a) and DOX@MIL-100 (b) 
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based on nanoparticles (Figure 5). By comparing these results with the XRD pattern, it can be 

concluded that most of the particles are below 100 nm. Figure 6 represents the SEM Images of 

TC@MIL-100. The morphology of nano-MIL-100 remained intact, and some porosities that are 

obvious in Figure 5 are now filled with the molecules of the drug. By comparing the results of 

SEM and PDI, it is clear that the aggregation of particles in SEM images lead to a moderate 
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Figure 4. Zeta potential for nano-MIL-100 (a) and DOX@MIL-100 (b).

The size and morphology of the nano-MIL-100 compound was examined by scanning electron
microscopy (SEM) and a kind of gel material could be seen in some regions probably based on
nanoparticles (Figure 5). By comparing these results with the XRD pattern, it can be concluded
that most of the particles are below 100 nm. Figure 6 represents the SEM Images of TC@MIL-100.
The morphology of nano-MIL-100 remained intact, and some porosities that are obvious in Figure 5
are now filled with the molecules of the drug. By comparing the results of SEM and PDI, it is clear that
the aggregation of particles in SEM images lead to a moderate polydispersity. As a result, it could be
expected that some particles have different sizes.
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Figure 6. (a) SEM of TC@MIL-100; (b) Red spots indicate some of nanoparticles.

BET analysis for nano-MIL-100 indicates that the available surface area before loading the
drug is about 1400 m2 g−1. BJH analysis revealed that the average pore diameter is 1.29 nm,
which demonstrates the micro-porosity of compound. N2 sorption/desorption revealed that the
pore volume of nano-MIL-100 is 350.07 cm3 g−1 (Figure 7). The available surface after loading the
drug was decreased to 801 m2 g−1 (Figure 8). The twisting in the last cycle of both TC and DOX makes
them suitable for encapsulation in the pores of nano-MIL-100, and BTC rings provide the possibility of
forming non-covalent interaction ns between the framework and the drugs. Reduction of the pore
volume (to 184.05 cm3 g−1) and the available surface area is an indication of TC and DOX residing
inside the pores of nano-MIL-100(Fe). Considering the fact that both drugs have the same size and
behave just like each other during encapsulation in nano-MIL-100, the data of BET analysis for both are
the same. Two straight and curved lines could be seen in Figures 7b and 8b which the first one is the
linear regression of multi-point measurements. The correlation coefficient, r, of the linear regression is
approximately 0.997 and the r2 would be 0.995 which would confirm the data of BET analysis.



Nanomaterials 2017, 7, 215 7 of 14

1 

 

 

 

Figure 7. Cont.



Nanomaterials 2017, 7, 215 8 of 14

 

2 

 

 

 

Figure 7. (a) Adsorption/desorption isotherms; (b) BET and (c) BJH plot of nano-MIL-100.

 

2 

 

 

 

Figure 8. Cont.



Nanomaterials 2017, 7, 215 9 of 14

 

3 

 

 

 
Figure 8. (a) Adsorption/desorption isotherms; (b) BET and (c) BJH plot of TC@MIL-100.

TC and the DOX were separately loaded into nano-MIL-100 and analyzed by XRD and FT-IR.
Both analyses confirmed the loading of drug into the pores of the carrier. It is obvious in Figure 9 that
the pattern of FT-IR spectra for DOX@MIL-100 and TC@MIL-100 follow the nano-MIL-100, with some
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differences. The additional peaks are related to DOX and TC, and it can be concluded that the drugs are
well loaded into the carrier. As can be seen in the yellow region, there is a broad peak for TC@MIL-100
at 3346 cm−1. This broad peak demonstrates the presence of O–H and N–H. Alongside this peak, there
are two peaks in the pink region (1446 and 1373 cm−1) that indicate the presence of O–H bending in
the plane. The amine peaks are usually weak, and the amount of O–H in this structure shields the
peak of the amine group. The presence of amine groups could be further confirmed by the bending
vibrations that belong to NH2 scissoring in the blue region (1620 and 1563 cm−1). Two stretching peaks
in the green region (1042 and 1085 cm−1) could also be assigned to C–N bonds. These three regions are
also crystal clear in the DOX@MIL-100 spectrum, which indicates the presence of same groups with the
same effect. The main difference between TC@MIL-100 and DOX@MIL-100 relies on the yellow region,
where the peak of TC is broad, and the peak of DOX is separated into three sharp peaks. The possible
reason for this could be related to a different position for one hydroxyl group in TC in comparison to
DOX, which leads to a different space group. The space group of Doxycycline monohydrate is P21,
and for Tetracycline hydrochloride is P212121. So two different space groups result in slight differences
in FT-IR spectrum.
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Figure 9. The FT-IR spectra for nano-MIL-100; TC@MIL-100 and DOX@MIL-100.

The XRD pattern of the nano-MIL-100 powder has been compared with the simulated XRD pattern
from single crystal X-ray data of MIL-100 as illustrated in Figure 10. Acceptable matches are observed
for the patterns, indicating that the nano-sized MIL-100 obtained by the sonochemical/hydrothermal
method has an identical structure to that of the crystalline MIL-100 determined by single crystal
diffraction. Upon the examination of morphology of the host material before and after drug
encapsulation, DOX and TC has not contributed in the pattern of XRD, so it can be concluded that they
are loaded into the pores of nano carrier and the structural integrity of MIL-100 (Fe) was retained in
hosting DOX and TC.

The release profiles of TC and DOX were investigated in Simulated Gastric Fluid (SGF) and
Phosphate-Buffered Saline (PBS), respectively (see Figure 11). The release curves and calculations
showed enhancement in total release of tetracycline and doxycycline compared to the reported
methods. Comparing the TC with the DOX revealed that the DOX is released in higher amounts in
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the first minutes. The interesting point of this research is the mediating effect of MIL-100 on these
antibiotics. DOX, as an insoluble drug in water has loaded into the pores of MIL-100 via non-covalent
interactions. Considering the fact that DOX is not aggregated and it is well dispersed into the pores
of nano-MIL-100, by immersing DOX@MIL-100 in PBS solution, the solvent reaches to the pores
and has more time to solve the encapsulated drug, so the frontier molecules in first layers will
rapidly dissolve in the PBS solution, and the fast kinetics in the first few minutes can be assigned to
this phenomenon. The amazing result of DOX release in PBS reveals that using this platform could
increase the amount of released drug 25% more than conventional methods. In contrast, TC, as a very
soluble drug in water, shows slower release due to the formation of stronger bonds with the carrier.
As the SGF solution reaches the pores, it takes more time to dissolve the TC encapsulated into the
pores. It is noteworthy that almost all of the drug dissolves in the solvent, and after 48 h, 96% of the
TC releases into SGF. Our findings show a great match with the results of Singco et al. for aspirin
release from nano-MIL-100 [17]. The degree of degradation of nano-MIL-100 as the carrier in the acidic
medium is slower than an alkaline medium. It could be related to the building blocks of MIL-100.
The pKa of trimesic acid is <5.5 and the pH of PBS is 7.4. Therefore, at this pH, trimesic acid was
deprotonated, which resulted in its dissociation from the framework and DOX released faster than TC.
On the other hand, for MIL-100(Fe) disc immersed in pH 1.2 (HCl), the degradation is gradual due to
the acidic nature of the medium. So the TC would be shielded from unnecessary interactions in the
stomach as its place of action.
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3. Materials and Methods

All reagents for the synthesis and analysis were commercially available from Merck and
Aldrich Company (Darmstadt, Germany) and used as received. The ultrasonic synthesis was carried
out on a SONIC 3MX, (maximum 160 W at 37 kHz) (Manchester, UK). The hydrothermal oven
used in this research was MEMMERT UF 55 Plus (Schwabach, Germany). Melting points were
measured on an Electrothermal 9100 apparatus (Stone ST15 0SA, UK). UV analyses were conducted
by a Perkin Elmer–Lambda 35 UV-Visible spectrometer (Shelton, CT, USA). FT-IR spectra were
recorded on Bruker Equinox 55 spectrometer (Bruker Optics, Marne la Vallée, France) equipped
with a single reflection Diamond ATR system over the range of 600–4000 cm−1. Scanning Electron
Microscopy (SEM) was performed on an MIRA3 TESCAN (Brno, Česká republika). The simulated
XRD powder pattern based on single crystal data were prepared using Mercury software version
3.8 (Cambridge, UK). X-ray powder diffraction (XRPD) measurements were performed using
a Philips PW1730 diffractometer with monochromated Cu-Kα radiation (λ = 1.54056 Å) (Amsterdam,
The Netherlands), with the step size of 0.05 and 1s per step. Data analysis and FWHM calculation
of XRD peaks were performed by OriginPro 2017 software (OriginLab Corporation, Northampton,
MA, USA). The BET analyzer model was a BELSORP-mini II analyzer (Ankersmid Ltd., Nijverdal,
Australia). Particle size distribution (DLS), PDI index, and Zeta potential were measured by Zetasizer
ZEN3600 (Malvern Instruments Ltd., Worcestershire, UK).

The carrier was synthesized via Horcajada’s et al. method with some modifications [14]. One mmol
(0.058 g) of Fe(NO3)3·9H2O and 0.67 mmol (0.1408 g) of BTC (Benzene tricarboxylic acid) were
dissolved in 0.6 mmol (0.025 mL) HNO3, 2.28 mmol (0.04 mL) HF and 5 mL H2O. The solution was
placed in the ultrasonic bath for 5 min, transferred to a steel autoclave, sealed, heated for 12 h until
reached to 140 ºC, kept at that temperature for 36 h, and then cooled to room temperature in 24 h.
The reddish brown sediments were then collected and washed with hot ethanol and deionized water
for five or six times until all unreacted ligands washed away.

The process of encapsulating the drug was initiated after preparing the nanocarrier. Tetracycline
was dissolved in 2 mL of ethanol. For acquiring a 250 mg tablet of drug@carrier, 0.01 g of tetracycline
should be weighed against 0.03 g of the carrier. The nano-MIL-100 powder was then added to the
solution of TC and steered for 48 h until all of the drug molecules entrapped in the pores of the carrier.
After that, the brown solution transferred to a rotary evaporator until the solution evaporated and
sediments of drug@carrier remained. In the case of DOX, 0.0107 g of DOX was dissolved in 12 mL of
ethanol, and the same procedure was repeated for DOX.

For the quantification of TC and DOX, loaded in MIL-100(Fe), the ethanolic TC and DOX standards
for calibration were separately injected into UV capillaries. Calibration curves were prepared from
standard solutions of TC and DOX separately. Samples of 1, 3, 5, 10, 15, 25, 50, 75 and 100 ppm of both
drugs were prepared and analyzed by UV-Vis spectroscopy (Figures S1 and S2).

The release profile of TC was investigated in Simulated Gastric Fluid (SGF). The SGF was prepared
without pepsin by the Galia et al. method [27]. The temperature of the release medium was set on
37 °C, and the pH adjusted to 1.2. A 0.015 g sample of TC@MIL-100 was dissolved in SGF, and the
whole container was placed in an oil bath. After 5 min, the container was removed from stirrer and
abandoned for 2 min. Then, 0.5 mL of upper solution was collected and transferred to a test tube.
For recovery, 0.55 mL of SGF was added to the container. This process was repeated at predetermined
time intervals (15 min, 30 min, and 45 min, 1 h, 90 min, and 2 h, 3 h, 4 h, 5 h, 6 h, 24 h, and 48 h).
The released samples were immediately transferred to UV-Vis spectrometer and prepared for analyses
at a wavelength of 270 nm.

The release profile of DOX was monitored in Phosphate Buffer Saline (PBS). The PBS solution
was prepared by Dulbecco and Vogot method [28]. The pH was controlled and kept at 7.4. The rest of
the process and analyses were carried out similar to the case of TC.
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4. Conclusions

Two antibiotics with different solubility, tetracycline hydrochloride and doxycycline monohydrate,
were loaded separately on the synthesized nano-sized MIL-100(Fe), which was used as the carrier.
The crystallinity and purity of MIL-100(Fe) was confirmed using several characterization techniques
including XRD, FT-IR, BET and DLS, and remained intact after encapsulation of the drugs. It was
revealed that nano-sized MIL-100(Fe) has a mediating effect on these antibiotics. The result of DOX
release in PBS reveals that using this platform could increase the amount of released drug to 25%
more than that of conventional methods. In contrast, TC, as a highly soluble drug in water, shows
slower release due to the formation of stronger bonds with the carrier. The difference in the pH of
the media also affected the release of drugs and resulted in a faster release for DOX compared with
TC. Interestingly the slower kinetics of TC lead to 96% of the drug being released in acidic medium,
which is much higher than previous reports.

A sustained release and slow kinetics of releasing of antibiotics into the body would be desirable
for treatment of infections that need more time to cure. The results of this research could be followed
by pharmacists who are studying methods to increase the time intervals of taking antibiotic pills orally,
in order to lower the side effects of consuming too much antibiotics.

Supplementary Materials: The following are available online at www.mdpi.com/2079-4991/7/8/215/s1,
Equation ES1: Calculations on XRD pattern of nano-MIL-100, Figure S1: Calibration curve for tetracycline
in different concentrations, Figure S2: Calibration curve for Doxycycline in different concentrations, Table S1:
Tetracycline structural analysis, Table S2: Doxycycline structural analysis.
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