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Abstract: A series of α-Fe2O3 nanocrystals (NCs) with fascinating morphologies, such as hollow
nanoolives, nanotubes, nanospindles, and nanoplates, were prepared through a simple template-free
hydrothermal synthesis process. The results showed that the morphologies could be easily controlled
by SO4

2− and H2PO4
−. Physical property analysis showed that the α-Fe2O3 NCs exhibited shape- and

size-dependent ferromagnetic and optical behaviors. The absorption band peak of the α-Fe2O3

NCs could be tuned from 320 to 610 nm. Furthermore, when applied as electrode material for
supercapacitor, the hollow olive-structure exhibited the highest capacitance (285.9 F·g−1) and
an excellent long-term cycling stability (93% after 3000 cycles), indicating that it could serve as
a candidate electrode material for a supercapacitor.
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1. Introduction

At nanoscale, metal oxides have been identified to exhibit different optical, magnetic and
electrochemical performance from their bulk counterparts [1–3]. The synthesis of metal oxide
nanocrystals (NCs) and their composites have attracted significant research interest for both
fundamental investigation and practical applications [4,5]. As the most stable phase of iron oxides,
hematite (α-Fe2O3) shows an n-type semiconductor (Eg = 2.1 eV) property in ambient conditions [6,7].
Due to the size and shape effect, the α-Fe2O3 NCs offer various physical and chemical properties.
In virtue of their environmental friendliness, non-toxicity, excellent thermal stability, good corrosion
resistance and low cost, they have been extensively investigated in the fields of catalysts [8,9],
gas sensors [10], environment protection [11] and energy storage [12].

Recently, clean and renewable energy materials present promising applications in solving
the problems of the energy shortage and environmental pollution. The supercapacitor is one of
the most ideal and promising energy storage devices [13–16]. Hematite NC has large theoretical
specific capacitance (3625 F·g−1), which favors it as electrode materials for supercapacitors [17].
For instance, porous nanoflowers [18], nanorods [19] and 3D spinous iron oxide materials [20]
facilitate the faradic reaction toward electrolytes and deliver high specific capacitances and long
cycle life. In addition, α-Fe2O3 nanomaterials exhibit excellent optical and magnetic properties,
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which could be adopted to meet the specific requirements of the desired applications. For example,
the hollow NCs show a size-dependent blue shift, strong visible-light and broad infrared absorption
phenomenon [21]. The α-Fe2O3 nanomaterials show ferromagnetic behavior and high coercivity
in magnetic hysteresis measurements [22,23]. The rational design and synthesis of nanomaterials
with different morphology have become an effective strategy to improve their optical, magnetic and
electrochemical properties [24].

Though many methods have been developed to control the morphology, it is a great challenge
to fabricate hematite NCs with the controlled size and morphology [25–27]. Among the different
morphologies of nanomaterials, hollow structures have attracted much attention for their peculiar
characteristics such as low density, high porosity and large specific surface area [28–30]. The reported
hollow hematite spheres are fabricated by using the template method or the surfactant-assisted
solvothermal method [31,32]. Though the as-prepared hollow structures exhibit confined morphology
and narrow size distribution, the complex synthesis steps including the preparation and removal
of templates as well as refining surfactant have blocked the scale-up preparation and practical
applications. Recently, template-free and surfactant-free synthesis of nanomaterials has been adopted
frequently because of its intrinsic advantages such as low cost and relatively simple steps [33].

Here, we adopted an environmentally friendly template-free hydrothermal synthesis method
to prepare uniform hollow olive-shaped nanostructures as well as nanotubes, nanospindles and
nanoplates on a large scale. Our results demonstrated that the morphology transformations were easily
controlled by the SO4

2− and H2PO4
−. Furthermore, we found that the optical absorption and magnetic

properties of the α-Fe2O3 NCs were associated with their sizes and shapes. Besides, electrochemical
properties of as-prepared hematite were investigated.

2. Experimental Details

2.1. Materials

FeCl3·6H2O, Na2SO4, and NaH2PO4 were purchased from LANYI REAGENT Ltd. (Beijing, China).
All reagents were analytic grade and employed as received without further purification.

2.2. Methods

In a typical synthesis [34], ferric chloride (FeCl3·6H2O, 0.648 g) and Na2SO4 (0.009 g) were
dissolved in 60 mL distilled water and followed by the addition of NaH2PO4 (0.009 g) under magnetic
stirring to form clear precursor solution. The mixture was then transferred to a 75 mL Teflon-lined
autoclave and maintained at 230 ◦C for 12 h. After the autoclave was cooled to room temperature,
the products were obtained by centrifuging and washed with ethanol and water for several times.
The powders were dried at 60 ◦C for 6 h for further characterization.

The process parameters have a significant effect on the microstructures of NCs. To gain further
insight into morphology evolution of NCs, the samples of nanotubes, nanospindles, nanoplates were
prepared with the additional NaH2PO4 and Na2SO4 as well as the reaction time (see in Table S1).

2.3. Characterization and Measurement

The X-ray diffraction (XRD) patterns of the as-synthesized products were recorded on using
a Bruker D8 Advance instrument (Karlsruhe, Germany) equipped with a Cu Kα radiation source,
operating at 40 kV and 40 mA, and with a Ni filter. X-ray photoelectron spectroscopy (XPS) was
further performed by using an ESCALAB MK II (Al Kα photon source, C1s 284.8 eV, VG Scientific LTD,
London, UK). The specific surface areas of the products were determined by N2 adsorption–desorption
isotherm measurements (Micrometrics, ASAP 2020, Concord, NH, USA). The morphology and
structure were characterized by a Hitachi S-4800 scanning electron microscope (SEM, Tokyo, Japan)
with a cold field emission gun and by a JEOL JEM-2100F transmission electron microscope (TEM,
Tokyo, Japan) and high-resolution TEM (HRTEM) operated at 200 kV. The specimen for the SEM
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studies was prepared by dispersing the powder sample on the silicon substrate, while that for TEM
and HRTEM investigations was obtained by dispersion of the as-synthesized products in ethanol and
then a drop of the suspension was placed on a copper grid and dried in air.

UV-vis adsorption spectra were recorded using a Hitachi 3010 spectrophotometer (Tokyo, Japan).
Magnetic properties of the as-synthesized powder samples were measured using a superconducting
quantum interference device (SQUID) magnetometer (Quantum Design, San Diego, CA, USA).
The electrochemical properties of the as-obtained electrodes were investigated by using conventional
three-electrode system (CHI760e, Shanghai Chenhua, Shanghai, China). To prepare the working
electrodes, the as-synthesized active materials were mixed with carbon black and polyvinylidene
fluoride (PVDF) with a mass ratio of 7:2:1 in N-methyl-2-pyrrolidinone. The mixture was pasted on
the cleaned nickel foam (area ~1 cm2) and dried in an oven at 60 ◦C for 12 h. The dried electrode was
pressed using a hydraulic press at a pressure of 8 MPa. The loading mass of the active material on
nickel foam is about 3 mg. The Ag/AgCl electrode and the Pt wire electrode were used as the reference
electrode and the counter electrode, respectively. Cyclic voltammetry (CV) and chronopotentiometry
(CP) were performed in KOH electrolyte of 2 mol·L−1. In the cycling stability tests, the charge-discharge
current density is 1 A·g−1. The electrochemical impedance spectroscopy (EIS) was also recorded on
the same electrochemical workstation. The frequency range is from 100 kHz to 0.01 Hz with an AC
perturbation of 5 mV.

3. Results and Discussion

3.1. Morphological and Structural Analysis

The crystallographic structures of the as-synthesized four products were identified to be α-Fe2O3

by X-ray diffraction (Figure 1a). The detected nine peaks are well consistent with the corundum
structure α-Fe2O3 (JCPDS: 33-0664) [35], corresponding to the (012), (104), (110), (113), (024), (116),
(018), (214) and (300) lattice planes of α-Fe2O3, respectively. The narrow sharp peaks suggest the high
crystalline nature of the α-Fe2O3 products. No other peaks are observed, indicating the high purity of
the as-prepared four samples.
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Figure 1. (a) X-ray diffraction (XRD) patterns; and X-ray photoelectron spectroscopy (XPS) spectra
of (b) Fe 2p and (c) O 1s for the as-synthesized hematite (α-Fe2O3) hollow nanoolives, nanotubes,
nanospindles, and nanoplates.

XPS analyses were employed to analyze the electronic structure and surface compositions of
the as-prepared samples. As shown in Figure 1b,c, two peaks centered at around 710.9 and 724.4 eV
in the high-resolution spectrum of Fe 2p can be ascribed to the Fe 2p3/2 and Fe 2p1/2 spin-orbit
peaks of α-Fe2O3 respectively, suggesting the Fe3+ ions are dominant in the product [36]. Also, the
corresponding satellite peak at 718.4 eV can be solely attributed to the presence of Fe3+ ions of α-Fe2O3,
as the binding-energy values are too high to be other oxide species of iron. In addition, the O 1s core
levels show the dominant oxide peaks at around 529.0 eV, which are in good agreement with the
literature values of α-Fe2O3 [37]. The Fe 2p and O 1s core levels indicate that the valence states of
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elements Fe and O are +3 and −2, respectively. From this result with that of XRD, we can further make
sure that the products are pure α-Fe2O3.

Figure 2a shows an overview SEM image of the as-synthesized hematite products in the coexistence
of SO4

2−, and H2PO4
− hydrothermal synthesis. The products are olive-shaped nanostructures with

open tips in both sides (~450 nm in diameter, ~800 nm in length). The NCs with the long axis
perpendicular to the silicon wafer marked by the black arrow distinctly disclose the hollow structure
of the α-Fe2O3 nanoolives. TEM investigations give a deeper insight into the fine microstructures as
shown in Figure 2b. The strong contrast between the relatively darker edges and the brighter center of
the α-Fe2O3 NCs further confirms the hollow nature. The shell thickness can be measured to be ~50 nm.
Lattice resolved high-resolution transmission electron microscopy (HRTEM) in Figure 2c demonstrates
the good crystallization of the sample. Lattice fringe distances were measured to be 0.367 and 0.315 nm,
respectively, which can be indexed to (1012) and (0113) planes of corundum hematite along (2311)
zone axis. Figure 2d shows the selected area electron diffraction (SAED) pattern of the selected area in
Figure 2b, which matches well with the HRTEM results and demonstrates the single-crystal structure
of the α-Fe2O3 nanoolives.
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Figure 2. (a) SEM image and (b) TEM image of the hollow nanoolives; the black arrows show open
tips; (c) HRTEM image and (d) SAED patterns of the selected area in (b).

Upon careful observation, the open tips were found coarse with some voids, which might
imply a corrosion process happening during the formation of the hollow structures. Thus, controlled
experiments have been done to study the formation of the olive-shaped hollow α-Fe2O3. Influence of
the ions in the precursor had been investigated.

Tube-like structures (~150 nm in diameter and ~400 nm in length) were obtained when the
concentrations of iron ions in the precursor were halved (Figure S1). The open tips of the tubes were
much rougher and broken. When the ratios of H2PO4

− and SO4
2− to Fe3+ in the precursor were

increased, corrosion behaviors were more obvious.
Without addition of SO4

2− in the reaction system, spindle-like hematite structures with diameter
of ~150 nm and length of ~400 nm were obtained (Figure 3a). The spindles aggregated together
by sharing their long axis and no voids were observed (Figure 3b). HRTEM image (Figure 3c) and
SAED pattern (inset of Figure 3c) were taken from the spindle marked with black frame in Figure 3b.
The spacing distance of the lattice fringes is measured to be 0.677 nm, corresponding to the (0002)
planes of α-Fe2O3. The long axis of the spindles is along the [0001] direction of hematite, which could
be the growth direction. With solvothermal treatment time increased to 48 h, the spindles with flat tips
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were obtained as shown in Figure 3d. The atomic coordination number is small, and the atoms at the
tip would be corroded with the extension of time. Based on the discussion above and the literature [38],
H2PO4

− are essential for the formation of spindle-like structure.
The concentration of SO4

2− ions, which might promote the coordination-assisted dissolution
process, was also investigated without addition of H2PO4

−. Figure 4a shows the as-prepared products
of α-Fe2O3. NCs with a clear shape edge (150 nm in diameter). TEM investigation revealed that the
α-Fe2O3 NCs were plate-like (marked with black frame) and some of them with the edge perpendicular
to the carbon grid (marked with white arrows) also proved the plate-like morphology of the products
(Figure 4b). The nanoplates precursors with discs composed of tiny aggregated particles parallel to
each other were found when the reaction time was decreased to 3 h (Figure 4c,d). The time evolution
confirmed that the nanoparticles shown in Figure 4a were plate-like structures.
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To conclude, the phosphate ions have been reported to act as a shape controller to induce the
anisotropic growth of α-Fe2O3 [38]. However, sulfate ions favor the dissolution of α-Fe2O3 because
of their coordination effect with ferric ions [39]. Phosphate and sulfate ions can be adsorbed on the
surface of α-Fe2O3, which could effectively prevent the detachment of iron atoms on the surfaces.
The adsorption is very weak on the (0001) plane, so NCs grow along [0001] direction, which induces
the appearance of olive-shaped structure. Although the adsorption of the phosphate and sulfate ions
to α-Fe2O3 crystal planes is similar, the adsorption affinity of sulfate on α-Fe2O3 is much weaker than
that of phosphate. Phosphate ions play a much more crucial role than sulfate ions in the formation of
olive-shaped NCs. Under acidic conditions at a high reaction temperature, the tips of olive-shaped
NCs may begin to dissolve. The dissolution occurs along the [0001] direction, as the (0001) plane is
almost entirely exposed to solution. Therefore, in the presence of phosphate ions, the α-Fe2O3 NCs
would grow along the [0001] direction, sulfate ions could coordinate with iron ions and lead to the
“corrosion” of the Fe2O3. The hollow structures are formed. With the presence of phosphate ions,
and the absence of sulfate ions, only spindle solid nanoparticles are formed. In contrast, duo to sulfate
ions’ coordination effect with ferric ions and corrosion effect, the small nanoparticles gather to form
the nanoplates.

3.2. Optical Properties

Hematite nanomaterials have been used widely as ultraviolet ray absorbents and photocatalyst [40].
The optical properties of metal NCs are determined by the size, shape, composition, and dielectric
properties of NCs and their local environment. It is well-known that the iron oxides have three types
of electronic transitions occurring in the optical absorption spectra: the ligand to metal charge-transfer
transitions (LMCT), the ligand field transitions (d-d transitions) and the pair excitations [41]. As shown
in Figure 5, hollow nanoolives and nanotubes have three broad bands around 320, 432 and 546 nm.
The band at around 432 nm has a little blue-shifted as the length of hollow NCs reduces and
the morphology transforms from hollow nanoolives to nanotubes, which can be attributed to the
size of the hematite nanoparticles. For the band at 546 nm, no distinct tendency of peak shift is
observed but the intensity is largely decreased, which is consistent with the reported hematite hollow
NCs [42]. The nanospindles have broad band around 450 and 560 nm, while the nanoplates only
have a broadband around 610 nm due to the electron transitions from valence band to conduction
band which closely matches the value reported in the literature [43]. The absorption spectra of the
nanospindles and nanoplates were dependent on their morphology. The wider spectral absorption
may enhance its solar harvesting capability for visible light.
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3.3. Magnetic Properties

The magnetization was investigated using a SQUID magnetometer. It is well known that the
magnetic properties of materials were highly sensitive to the morphology, size, and crystal structure
of the as-synthesized samples, which are different from those of bulk materials. Figure 6 shows the
magnetic hysteresis loops of these samples at 300 K in the applied magnetic field in the range of −10 to
10 kOe. It is noted that the hysteresis loops do not reach saturation even up to the maximum applied
magnetic field. The hysteresis loops indicate that the as prepared α-Fe2O3 NCs show ferromagnetic
behaviors at room temperature which is similar to the reported cases in the literature [22]. The remnant
magnetization (Mr) of olive-shaped NCs with coercivity (Hc) of 180.8 Oe is 0.168 emu·g−1, which is
much higher than that of nanotube (0.082 emu·g−1). The higher Hc and Mr of the sample may
be attributed to the larger particle size. In addition, the nanoplates sample displayed a remnant
magnetization of 0.112 emu·g−1 and a coercivity of 202.3 Oe, both higher than that of nanotubes
and nanospindles, as shown in Figure 6d. It must be owing to the unique morphology of tiny
aggregated particles parallel to each other [44]. Therefore, the magnetization also has a shape-depended
behavior [45].
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Figure 6. Magnetic hysteresis loops of the α-Fe2O3: (a) hollow nanoolives; (b) nanotubes; (c) nanospindles;
(d) nanoplates.

3.4. Electrochemical Properties

The electrochemical properties of the as-obtained electrodes were investigated by using
conventional three-electrode system. Figure 7a exhibits CV curves of the as-grown α-Fe2O3 NCs
in the potential window of 0–0.50 V at a scan rate of 10 mV·s−1. The obvious anodic and cathodic
peaks indicate the pseudocapacitance properties of the four electrodes, which demonstrate that
the capacitance characteristics are mainly governed by Faradaic reactions. The reversible redox
reaction is related to the conversion between Fe3+ and Fe2+, reaction is presented as follow [17]:
Fe2O3 + 2e− + 3H2O ↔ 2Fe(OH)2 + 2OH−. In the process of charge-discharge cycles, the redox
current will be higher, and the ability of charge and discharge will be increased [46]. The specific
capacitance is in proportion to the area under the CV curves. Figure 7a shows that the area under
the CV curve for hollow olive-shaped α-Fe2O3 is apparently much larger than those of nanotubes,
nanospindles and nanoplates, which indicate that olive-shaped α-Fe2O3 have a higher specific
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capacitance than other samples. Besides, the charge-discharge properties of the prepared electrode
are also tested under current densities of 1 A·g−1, as shown in Figure 7b. The nonlinearity in the
discharge curves shows the pseudocapacitive behavior of the electrodes. This further confirms the
pseudocapacitance feature of the as-prepared α-Fe2O3 products. It is found that the as obtained
α-Fe2O3 products possess excellent capacitance performance. The specific capacitance of the electrode
can be calculated from the discharge curve according to C = (I∆t)/(m∆V), where C (F·g−1) is the
specific capacitance, I (mA) is the discharge current, ∆t (s) is the discharge time, m (g) is the mass of the
active material in the electrode and ∆V (V) is the potential change during the discharge. Remarkably,
the specific capacitance of the hollow olive-shaped NCs (275.7 F·g−1) are much higher than that
of the nanotubes (206.3 F·g−1), nanospindles (127.8 F·g−1) and nanoplates (93.7 F·g−1). To further
verify the electrochemical properties of hollow nanoolives, Figure S2a present the typical CV curves
of hollow olive-shaped NCs at different scan rates. With the increase of the scan rate, anodic and
cathodic peaks shift continuously to higher and lower potentials, respectively, because of the limited
ion diffusion rate in the electrolyte [47]. The charge-discharge curves at different current density are
shown in Figure S2b. The near symmetric charge and discharge curves reveal excellent electrochemical
reversibility properties. The corresponding specific capacitance was 275.7, 269.8, 257.9, 229.8 and
218.3 F·g−1 at 1, 1.5, 2, 4 and 6 A·g−1 current density, respectively.
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Figure 7c reveals the cycling performance of the as-prepared α-Fe2O3 products. In the cycling
stability tests, the hollow olive-structure delivers the highest specific capacitance (285.9 F·g−1) and
an excellent long-term cycling stability (93% after 3000 repetitive cycles), which is superior to many
previously reported systems, such as ribbon shaped [48], flowerlike [18], red blood cell shaped [49]
hematite, even to FeS2@Fe2O3 [50] and Fe2O3 NDs@NG [51]. This is related to its large specific
surface area (see in Table S1). The specific capacitance of the nanotubes, nanospindles and nanoplates
maintain about 85%, 90% and 74% under the same test conditions, respectively. Thus, although the
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nanospindles are low in capacitance, they have good cycle stability. In order to further study the
electrochemical performance of the structures, an electrochemical impedance spectroscopy (EIS) [52]
was also recorded on the same electrochemical workstation. Typical Nyquist plots of the samples are
presented in Figure 7d. The EIS spectrum of the electrodes was usually composed of a semicircle at the
high-frequency region and a straight line at the low-frequency region. In a low frequency, the slope of
the line corresponds to the Warburg impedance, which means the electrolyte diffusion occurs within the
α-Fe2O3 electrodes. The nearly straight vertical line along the imaginary axis indicates a low diffusion
resistance and shows good capacitor behavior, which indicates that the hollow α-Fe2O3 electrodes
possess much lower diffusion resistance. The intercept at the real axis is the solution resistance of the
electrochemical system, which includes the inherent resistance of the electroactive material and contact
resistance at the interface between the electrolyte and the electrode. The charge transfer resistance
that is also called the Faraday resistance can be evaluated from the diameter of the semicircle in the
high frequency range. The minimum value of the intercept and no semicircle was observed in the
electrode of the hollow olive-shaped NCs, which indicates that hollow olive-shaped NCs provides
high electronic conductivity compared with other electrodes. Therefore, the hollow olive-shaped NCs
exhibit good electrochemical properties for supercapacitor applications.

4. Conclusions

We adopted a facile template-free hydrothermal synthesis route to prepare hematite structures
with different morphologies, including nanoolives, nanotubes, nanospindles, and nanoplates. The particle
size and shape have a remarkable effect on the optical and magnetic properties. The as-prepared NCs
exhibited different absorption bands in the ultraviolet and visible regions. In addition, they also show
different ferromagnetic behaviors at room temperature. When used as a supercapacitor electrode,
the hollow olive-shaped exhibited high capacity (285.9 F·g−1), which can be attributed to the large
number of active sites provided by unique spatial structure. The cycling test revealed that this material
possesses excellent cycling stability during 3000 cycles. These results indicate that the hollow nanoolive
samples can be a promising candidate material in energy storage fields.

Supplementary Materials: The following are available online at www.mdpi.com/2079-4991/8/1/41/s1,
Figure S1: SEM images of the nanotubes, Figure S2: (a) CV curves of the hollow olive-shaped α-Fe2O3 electrodes
at different scan rates; (b) Galvanostatic charge-discharge curves of the hollow olive-shaped α-Fe2O3 electrodes
at various current densities, Table S1: The morphologies and BET surface areas of α-Fe2O3 under different
reaction conditions.
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