
nanomaterials

Article

Green Synthesis, Characterization and Application of
Proanthocyanidins-Functionalized
Gold Nanoparticles

Linhai Biao 1,2,†, Shengnan Tan 3,†, Qinghuan Meng 1,2, Jing Gao 1,2, Xuewei Zhang 1,2,
Zhiguo Liu 1,2,* and Yujie Fu 1,2,*

1 Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University,
Harbin 150040, China; klp15blh@nefu.edu.cn (L.B.); mengqinghuan@nefu.edu.cn (Q.M.);
gjing_123@hotmail.com (J.G.); xueerzh@hotmail.com (X.Z.)

2 State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, China
3 Analysis and Test Center, Northeast Forestry University, Harbin 150040, China; tsnan_99@hotmail.com
* Corresponding: zguoliu@nefu.edu.cn (Z.L.); yujie_fu@nefu.edu.cn (Y.F.);

Tel.: +86-451-8219-2224 (Z.L.); Fax: +86-451-8210-2082 (Y.F.)
† These authors contributed equally to this work.

Received: 21 December 2017; Accepted: 16 January 2018; Published: 21 January 2018

Abstract: Green synthesis of gold nanoparticles using plant extracts is one of the more promising
approaches for obtaining environmentally friendly nanomaterials for biological applications and
environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were
synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by
ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR),
transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. UV-Vis and
FTIR results indicated that the obtained products were mainly spherical in shape, and that the
phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD
determination revealed that the synthesized gold nanoparticles had a highly crystalline structure
and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles
for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was
investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles
had high removal rates for the heavy metal ions and dye, which implies that they have potential
applications as a new kind of adsorbent for the removal of contaminants in aqueous solution.
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1. Introduction

Gold nanoparticles are one of the most extensively studied noble metal nanomaterials due to its
potential applications in catalysis, optical and electronic devices, biodiagnostics and medicine [1–3].
Various wet chemical methods have been reported for the synthesis of gold nanoparticles, such as
citrate reduction and the Brust-Schiffrin method [1,4]. It has been discovered that the capping agents
or the shells of gold nanoparticles are very important for their physicochemical properties, toxicity
and applications [2,5,6]. In addition, the development of novel synthetic strategies for the preparation
of monodisperse gold nanoparticles and the assembly of nanoparticles into one- and two-dimensional
structures are critical for their applications [7,8]. Recently, there has been a renewed interest in green
synthesis of nanoparticles [9–14]. For example, gold nanomaterials were synthesized by using plant
extracts as both the reducing and capping agents [15]. Plant extracts that have great potential in heavy
metal accumulation and detoxification are the best candidates for nanoparticle green synthesis and
environmental remediation applications.
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Pomegranates are cultivated and consumed in large quantities in China. Pomegranate peels
(Punica granatum) are usually discarded as waste. However, it has been found that pomegranate
peel contains a significant portion of polyphenols and proanthocyanidins, and has the highest
antioxidant activity among the peel, pulp and seed fractions [16,17]. The extract yield of polyphenols
and proanthocyanidins from pomegranate peels by water extraction was 15–20% and 1.2–9.0%,
respectively [16,18]. Polyphenols and proanthocyanidins are well known for their antioxidant
activity [19–21]. Therefore, the water extract of pomegranate peels could be a potential reducing
compound used for the green synthesis of gold nanoparticles.

Green synthesis of metal nanoparticles using plant extracts can minimize their toxicity, whereas
most chemical methods for the synthesis by using hazardous compounds such as hydrazine, sodium
borohydride, and dimethyl formamide (DMF) as reducing agents results in a more complicated and
time-consuming process for removing the toxic compounds for biomedical applications. Furthermore,
synthesis of metal nanoparticles using plant extracts is very cost effective, and therefore can be used as
an economical and valuable alternative to the large-scale production of metal nanoparticles. In addition,
the full utilization of plant waste is a sustainable path for development.

In this study, we explored using the water extract of pomegranate peels as both a reducing and
a capping agent to prepare gold nanoparticles via a hydrothermal method. Since proanthocyanidins
are the main components of the water extract of pomegranate peels, which are the mixtures of the
several different compounds (nearly one hundred phenolic compounds) [17], we further focused on
the use of proanthocyanidins for the synthesis of gold nanoparticles.

Proanthocyanidins, naturally occurring antioxidants widely available in vegetables, fruits,
nuts, seeds, flowers, and bark, have been reported to possess a broad spectrum of biological,
pharmacological, and therapeutic activities against free radicals and oxidative stress [19,22–24].
To the best of our knowledge, the green synthesis of proanthocyanidin-functionalized gold
nanoparticles has not been thoroughly explored. Furthermore, we investigated the application of
proanthocyanidin-functionalized gold nanoparticles for the removal of dyes and heavy metal ions
Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution.

2. Materials and Methods

2.1. Materials

Proanthocyanidins were purchased from the Aladdin Reagent Co., Ltd. (Shanghai, China).
Tetrachloroauric (III) acid hydrate was obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). All other reagents were of analytical purity grade. Ultra-pure water was used throughout this
study, and its resistivity was >18 MΩ·cm.

2.2. Synthesis of Pomegranate Peel Extract Protected Gold Nanoparticles

The dried pomegranate peel was ground into a fine powder and collected through an 80-mesh
sieve. Pomegranate peel powder was degreased with petroleum ether (solid-liquid ratio 1:20) for
1 h, and then filtrated and dried. A microwave-assisted extraction method was used to extract the
pomegranate peel powder. In a conical flask, 2 g of dried peel powder was added to 50 mL of pure
water. After extraction by microwave at 350 w for 70 s, the mixed solution was further extracted at
100 ◦C for 60 min. The mixed solution was then centrifuged at 10,000 rpm for 10 min. The obtained
supernatant was used for the following synthesis. The supernatants were diluted by a factor of 40
with pure water. 0.64 mL of 2% HAuCl4·4H2O aqueous solution was then added to 50 mL of diluted
supernatant. The mixed solution was stirred for 30 min. 40 mL of the final solution was transferred
into a Teflon-lined 50 mL autoclave, and then sealed and maintained at 140 ◦C for 4 h.
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2.3. Synthesis of Proanthocyanidin-Functionalized Gold Nanoparticles

In a typical experiment, 50 mL of the 0.64 mM proanthocyanidin aqueous solution was prepared
by dissolving proanthocyanidins in pure water. 0.64 mL of the 2% HAuCl4·4H2O aqueous solution
was then added. The mixed solution was stirred for 30 min. 40 mL of the final solution was transferred
into a 50 mL Teflon-lined autoclave, and then sealed and maintained at 140 ◦C for 4 h. A dark red
solution was obtained, which indicated that proanthocyanidin-functionalized gold nanoparticles had
been produced. The pH of the final gold colloid was approximately 2.5.

2.4. Removal of Heavy Metal Ions and Methylene Blue (MB)

To explore the removal effect on heavy metal ions and methylene blue (MB), gold nanoparticles
were separated from the initial solution by centrifugation. They were obtained by centrifugation at
relative centrifugal force RCF 22,680 g for 15 min. The obtained gold nanoparticles were dried at 60 ◦C
overnight. In a typical experiment, proanthocyanidin-functionalized gold nanoparticles were added to
35 mL of a 20 mg/L heavy metal ion (Ni2+, Cu2+, Cd2+ and Pb2+) solution at pH 8.0 or MB solution,
0.0350 g (final concentration of 1 g/L). The mixed solution was shaken at 140 rpm for a predefined time
(generally 6 h). Gold nanoparticles were then centrifuged at RCF 22,680 g for 6 min, and an aliquot
of the supernatant was used to determine the remaining concentration of the heavy metal ions by
flame atomic absorption spectrometry. Based on the obtained concentrations of the heavy metal ions
in the supernatant, the removal rate for heavy metal ions by proanthocyanidin-functionalized gold
nanoparticles could be calculated. The removal efficiency for heavy metal ions by gold nanoparticles
under different pH conditions was also investigated. Gold nanoparticles were added into the 20 mg/L
heavy metal ion solution at pHs varying from 4 to 10 for 6 h, and then the same operations were
performed as mentioned before.

2.5. Characterization of Gold Nanoparticles and Determination of the Concentration of Heavy Metal Ions

2.5.1. UV-Vis Absorption Spectra

UV absorption spectra of the gold colloid were measured by UV-5500 spectrophotometer
(Metash, Shanghai, China). 4 mL of the dilute colloid solution was added into a quartz cuvette
for the measurement.

2.5.2. Fourier Transform Infrared Spectroscopy

FTIR spectra were measured by IR Affinity-1 (Shimadzu, Kyoto, Japan) using the KBr pellet
method. The sample was prepared by mixing the precipitate of the gold nanoparticles (derived from
the centrifugation of the gold colloid solution) with a small amount of solid KBr. FTIR spectra of the
pure proanthocyanidins was also measured for comparison.

2.5.3. Transmission Electron Microscopy

The produced gold nanomaterials were imaged using a JEM-2100 transmission electron
microscope (JEOL Ltd., Tokyo, Japan) at 200 kV. The samples for TEM characterization were prepared
by placing 5 µL of the as-synthesized gold colloid solution on a carbon coated copper grid and dried
at room temperature.

2.5.4. X-ray Diffraction

Powder X-ray diffraction patterns were record using D/MAX 2200VPC, Tokyo, Japan)
(40 kV/40 mA). The sample for XRD determination was derived from centrifugation of the gold
colloid solution.
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2.5.5. Atomic Absorption Spectrometry

The metal content was determined by flame atomic absorption spectroscopy equipped with
a hollow cathode lamp and an air-acetylene flame (AnalytikJena AG, novAA 350, Jena, Germany).
The wavelengths (nm) used for the determination of the analyses were: copper 324.8, nickel 232.0, lead
283.3 and Cadmium 228.8. Gas flow was 50 dm3·h−1 and the aspiration rate was 5 cm3·min−1.

3. Results and Discussion

3.1. UV-Vis and FTIR Absorption Spectra

Figure 1a shows the UV-Vis absorption spectra of the water extract of the pomegranate peels
and the synthesized gold colloid in a typical experiment. The water extract of the pomegranate
peels had no obvious UV absorption from 400 nm to 700 nm, as indicated in Figure 1a. There is
an absorption band peaking at 530 nm after the hydrothermal process, which can be ascribed to the
plasmon resonance band (PRB) of the gold nanoparticles [25]. The representative TEM image of the
obtained gold nanoparticles is shown in Figure 1b. The size distribution of the gold nanoparticles
is indicated in the inset. The average diameter of gold nanoparticles was 13.0 ± 5.4 nm. As shown
in Figure 1b, the size distribution of the gold nanoparticles is relatively broad, wherein there are
both some large and some small nanoparticles. In order to obtain monodispersed gold nanoparticles,
pure proanthocyanidins were investigated in the following synthesis, since proanthocyanidins are the
main components of the water extract of pomegranate peels.
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Figure 1. (a) UV-Vis absorption spectra of the water extract of pomegranate peels and the
synthesized gold colloid in a typical experiment; (b) The representative TEM image of the obtained
gold nanoparticles.

Figure 2a shows the UV-Vis absorption spectrum of the obtained proanthocyanidins-
functionalized gold colloid in a typical experiment. The absorption band peaking at 532 nm is
the plasmon resonance band (PRB) of the gold nanoparticles, which is in accordance with the previous
studies [25]. The single PRB also indicates that the obtained gold nanomaterials are mainly spherical
in shape, in accordance with the Mie theory, and did not form agglomerates [26,27]. In most of the
reported cases of green syntheses via plant extracts, the PRBs of the gold nanoparticles were usually
broad and weak [21,28]. Here, the strong PRBs were due to the high productivity of gold nanoparticles
in the synthesis. The stability of the gold colloid can be monitored by UV-Vis absorption spectra.
The obtained gold colloid was very stable during storage, and could be maintained at room temperature
for more than one month without obvious changes. In addition, the proanthocyanidin-functionalized
gold nanoparticles showed good stability in the different NaCl concentrations (0.1–0.5 M) and pH
solutions (3.0–9.0). The stability of the obtained gold nanoparticles was further verified in the following
centrifugation-redispersion experiments. The proanthocyanidin-functionalized gold nanoparticles
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were collected by centrifugation, as indicated in the inset in Figure 2a. They were able to be redispersed
and recovered in pure water or a metal salts solution into a stable gold colloid. Figure 2b shows the
UV-Vis absorption spectrum of proanthocyanidins-functionalized gold nanoparticles redispersed in
the CuCl2 solution. The UV-Vis absorption spectrum of the redispersed solution is nearly same as that
of the initial solution in the synthesis. Gold nanoparticles can be further collected by centrifugation to
test their adsorption ability for heavy metal ions as shown in inset in Figure 2b. It is known that the
commonly used gold nanoparticles reduced by citrate or NaBH4 method tend to aggregate in the repeat
centrifugation-redispersion experiments. The extra stability of proanthocyanidins-functionalized gold
nanoparticles in this study implied that the surfaces of the gold nanoparticles were well protected by
the associated proanthocyanidins.
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Figure 2. (a) UV-Vis absorption spectra of the proanthocyanidin-functionalized gold nanoparticles solution
before and after centrifugation; (b) UV-Vis absorption spectra of the proanthocyanidin-functionalized gold
nanoparticles redispersed in the 20 mg/L CuCl2 solution before and after centrifugation.

Figure 3 shows the FTIR spectrum of the pure proanthocyanidins and proanthocyanidins-
functionalized gold nanoparticles. In the spectrum of pure proanthocyanidins, the broad absorption
band peaking at 3365 cm−1 was ascribed to the formation of the hydrogen bond between phenolic
hydroxyl of proanthocyanidins. The absorption bands at 1610 and 1105 cm−1 were attributed to those
of the characteristic functional groups of poly flavonoids moiety in proanthocyanidins, whereas those
at 1520 and 777 cm−1 were attributed to the skeletal stretching modes of the aromatic ring and CH
out-of-plane deformation of the aromatic rings with two adjacent free hydrogen atoms, respectively,
indicating the prominent presence of procyanidin (PC) structure [29,30]. In the FTIR spectrum of
proanthocyanidins-functionalized gold nanoparticles, the characteristic absorption bands were quite
similar to those of standard proanthocyanidins, except that the absorption band corresponding to the
hydrogen bond moved to 3200 cm−1. These results confirmed that proanthocyanidins were associated
with gold nanoparticles. The shift effect at the hydrogen bond region implied that phenolic hydroxyl
of the proanthocyanidins had strong interactions with the surface of the gold nanoparticles.

The FTIR spectrum of the proanthocyanidin-functionalized gold nanoparticles after adsorption of
Cu2+ is also shown in Figure 3. The characteristic absorption bands were quite similar to those of the
standard proanthocyanidins and proanthocyanidin-functionalized gold nanoparticles without Cu2+,
except that the absorption band corresponding to the hydrogen bond moved to 3420 cm−1. This result
can be ascribed to the coordination effect of Cu2+ with phenolic hydroxyl of proanthocyanidin,
which influenced their hydrogen bond interactions.
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Figure 3. FTIR absorption spectra of pure proanthocyanidins and the proanthocyanidin-functionalized
gold nanoparticles.

3.2. TEM and XRD Characterization

Figure 4a shows the representative TEM image of the gold nanoparticles. Most of the gold
nanoparticles were of spherical shape with a narrow size distribution. It has been noticed that some
gold nanoparticles shared their proanthocyanidin shell, and formed a structure like a plum pudding
model, as indicated in Figure 4a. The size distribution of the gold nanoparticles is indicated in the
inset. The average diameter of the gold nanoparticles is 14.5 ± 2.0 nm (n = 100). Gold nanoparticles
with different size can be obtained by using a seed growth method. For example, the as-prepared
gold nanoparticles in the typical experiment at 140 ◦C were added as seeds to the synthesis solution,
then heated to 140 ◦C for 4 h. The average size of the obtained gold nanoparticle is 28 nm, which is
almost two times the mean size of the seeds. A high resolution transmission electron microscopy
HRTEM image of one typical spherical gold nanoparticle is shown in Figure 4b. The lattice fringe
spacing indicated in the image is 0.238 nm, which corresponds to the (111) facet of crystal plane of the
gold cubic phase.
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The crystalline nature of the gold nanoparticles was further verified by the XRD measurement,
as shown in Figure 5. The peaks were assigned to diffractions from the (111), (200), (220) and (311)
planes of face centered cubic (fcc) gold (JCPDS 04-0784), respectively [27]. This result indicates that the
nanoparticles are pure, well-crystallized gold crystals. The width of the (111) peak was employed to
calculate the average crystallite size using the Scherrer equation. The calculated average size is 10.1 nm,
which is a little smaller than the particle size obtained from TEM. A similar difference between TEM
and XRD determination of nanomaterials has also been reported in a recent study [31].

Nanomaterials 2018, 8, 53  7 of 12 

 

The crystalline nature of the gold nanoparticles was further verified by the XRD measurement, 

as shown in Figure 5. The peaks were assigned to diffractions from the (111), (200), (220) and (311) 

planes of face centered cubic (fcc) gold (JCPDS 04-0784), respectively [27]. This result indicates that 

the nanoparticles are pure, well-crystallized gold crystals. The width of the (111) peak was employed 

to calculate the average crystallite size using the Scherrer equation. The calculated average size is 

10.1 nm, which is a little smaller than the particle size obtained from TEM. A similar difference 

between TEM and XRD determination of nanomaterials has also been reported in a recent study [31]. 

 

Figure 5. XRD patterns of the proanthocyanidin-functionalized gold nanoparticles. 

3.3. Formation Mechanism of Proanthocyanidins-Functionalized Gold Nanoparticles 

In this study, oligomeric proanthocyanidin complexes (OPCs, dimeric, trimeric and tetrameric 

proanthocyanidin) were used in the synthesis. OPCs are primarily known for their antioxidant 

activity against free radicals and oxidative stress [32]. Thus, proanthocyanidin can be considered as a 

class of reducing agents. The reaction for the formation of gold nanoparticles is believed to be a 

typical redox process, wherein the gold ions are reduced to gold atoms by proanthocyanidins. 

Proanthocyanidins are comprised of the monomeric unit flavan-3-ol (+) catechin and (−) epicatechin. 

The multiple hydroxyl groups (–OH) from the basic monomer catechin and epicatechin are the 

potential reactive sites for reducing Au(III) in the synthesis [21]. The initial step of oxidation may 

occur on the B-ring of the catechin due to partial deprotonation, which leads to the transformation of 

o-phenols to o-quinones, a fundamental step in browning. O-quinones are highly reactive species 

that form dimers and subsequently polymers due to prolonged autoxidation with other 

polyphenolic molecules [33]. At the same time, the Gold (III) was reduced to atomic Au. Some 

additional hydroxyl groups from the catechin and epicatechin interacted with the gold surface, as 

revealed by FTIR determination, which was finally made up of the functionalized shell of the gold 

nanoparticles. 

3.4. Removal of Dye and Heavy Metal Ions in Aqueous Solution 

The discharge of various dyes into the hydrosphere is a significant source of water pollution, 

due to their recalcitrant nature. Methylene blue (MB), a heterocyclic aromatic chemical compound, is 

extensively used in the textile industry to colorize products, which can be considered to be one kind 

of typical dye discharged into the environment [34,35]. MB is the most commonly used substance for 

dying cotton, wood and silk. Various materials, such as natural materials, industrial solid wastes, 

agricultural by-products, and biosorbents, have been developed in the removal of MB from 

wastewater [36–38]. In this study, the removal of MB in water solution by 

proanthocyanidins-functionalized gold nanoparticles was investigated. Figure 6 shows a 

photograph of the 20 mg/L MB solution, and the removal effects of the addition of 

Figure 5. XRD patterns of the proanthocyanidin-functionalized gold nanoparticles.

3.3. Formation Mechanism of Proanthocyanidins-Functionalized Gold Nanoparticles

In this study, oligomeric proanthocyanidin complexes (OPCs, dimeric, trimeric and tetrameric
proanthocyanidin) were used in the synthesis. OPCs are primarily known for their antioxidant activity
against free radicals and oxidative stress [32]. Thus, proanthocyanidin can be considered as a class of
reducing agents. The reaction for the formation of gold nanoparticles is believed to be a typical redox
process, wherein the gold ions are reduced to gold atoms by proanthocyanidins. Proanthocyanidins are
comprised of the monomeric unit flavan-3-ol (+) catechin and (−) epicatechin. The multiple hydroxyl
groups (–OH) from the basic monomer catechin and epicatechin are the potential reactive sites for
reducing Au(III) in the synthesis [21]. The initial step of oxidation may occur on the B-ring of the
catechin due to partial deprotonation, which leads to the transformation of o-phenols to o-quinones,
a fundamental step in browning. O-quinones are highly reactive species that form dimers and
subsequently polymers due to prolonged autoxidation with other polyphenolic molecules [33]. At
the same time, the Gold (III) was reduced to atomic Au. Some additional hydroxyl groups from the
catechin and epicatechin interacted with the gold surface, as revealed by FTIR determination, which
was finally made up of the functionalized shell of the gold nanoparticles.

3.4. Removal of Dye and Heavy Metal Ions in Aqueous Solution

The discharge of various dyes into the hydrosphere is a significant source of water pollution,
due to their recalcitrant nature. Methylene blue (MB), a heterocyclic aromatic chemical compound,
is extensively used in the textile industry to colorize products, which can be considered to be
one kind of typical dye discharged into the environment [34,35]. MB is the most commonly
used substance for dying cotton, wood and silk. Various materials, such as natural materials,
industrial solid wastes, agricultural by-products, and biosorbents, have been developed in the
removal of MB from wastewater [36–38]. In this study, the removal of MB in water solution by
proanthocyanidins-functionalized gold nanoparticles was investigated. Figure 6 shows a photograph
of the 20 mg/L MB solution, and the removal effects of the addition of proanthocyanidin-functionalized
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gold nanoparticles (initial concentration, 1 g/L). Citrate-gold nanoparticles were also tested as the
control sample, as indicated in Figure 6. The solution color did not change with the addition of
citrate-gold nanoparticles. In addition, it has been reported that the mixing of the citrate-gold
nanoparticles with methylene blue (MB) enhanced the extinction coefficient and absorbance of
the dye [39,40]. However, the blue solution was decolored by proanthocyanidin-functionalized
gold nanoparticles within 30 min, as shown in Figure 6. The removal rate was more than 98% as
measured from UV absorption at 664 nm. The adsorption mechanism is believed to be related with the
interactions between proanthocyanidins on the gold nanoparticle surface and molecular moiety of MB.
Methylene blue molecules are likely attracted to the nanoparticle surface by dipole-dipole interactions
between the nitrogen in the methylene blue and the phenolic groups of proanthocyanidins and their
chemical association.
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In addition to the dyes, we further explored proanthocyanidin-functionalized gold nanoparticles
for the removal of heavy metal ions in aqueous solutions. Toxic heavy metal ions have been excessively
released into the aquatic environment due to various industrial activities, and have created a major
global concern [41]. The major toxic metal ions in water that are hazardous to humans, as well as
other forms of life, are cadmium, copper, nickel, lead, mercury and chromium. Conventional methods
for the removal of metal ions from aqueous solutions include chemical precipitation, ion exchangers,
chemical oxidation/reduction, reverse osmosis, electrodialysis, ultrafiltration, etc. [41,42]. However,
these conventional techniques have their own inherent limitations. It is, therefore, necessary to develop
new methods or nanomaterials for the low-cost, high-efficiency minimization of chemical or biological
sludge and the regeneration of biosorbents.

Gold nanoparticles have been used for a variety of applications, such as in catalysis, optical
and electronic devices, biodiagnostics and bioimaging [2,43]. However, there are few studies on
the application of gold nanoparticles for the removal of heavy metal ions. The gold nanoparticles
in this study were functionalized by oligomeric proanthocyanidin complexes, which are also very
potent metal-chelating agents derived from the multiple hydroxyl groups (–OH) of catechin and
epicatechin in proanthocyanidin [22,33]. Therefore, we further investigated the application of
proanthocyanidin-functionalized gold nanoparticles on the treatment of the typical heavy metal
ions Cu2+, Cd2+, Ni2+ and Pb2+.

The removal efficiency of proanthocyanidins-functionalized gold nanoparticles for heavy metal
ions under different conditions was evaluated. It was found that the pH and adsorption time are
the two critical factors influencing the removal efficiency for heavy metal ions. Figure 7a shows the
removal efficiency of gold nanoparticles for Cu2+, Cd2+, Ni2+ and Pb2+ at different pH conditions after
incubation in the corresponding metal salts solution for 6 h. The results indicated that the removal
efficiency increased as pH rose from 4.0 to 8.0, and was nearly constant at high levels of pH 8.0 from
10.0. With a pH of 8.0, the removal rates for Cu2+, Cd2+, Ni2+ and Pb2+ were 95.6%, 96.5%, 92.9% and
98.9%, respectively. Since a pH of 8.0 is a more moderate condition, it was chosen to be used in the next
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experiments. Figure 7b shows the removal efficiency of gold nanoparticles for Cu2+, Cd2+, Ni2+ and
Pb2+ under different adsorption times at pH 8.0. The results revealed that the adsorption process was
very quick at the initial stage, gradually slowing down after 30 min incubation, and was then constant
from 3 h to 6 h. For instance, the removal rate for Cu2+ was 81.4% after 1 min adsorption, and more
than 95% after 3 h incubation. The adsorption characteristics of gold nanoparticles for Cd2+, Ni2+ and
Pb2+ were also very similar to that for Cu2+. In summary, the optimized adsorption condition for Cu2+,
Cd2+, Ni2+ and Pb2+ by gold nanoparticles is a pH of 8.0, with an adsorption time of 3–6 h. Control
experiments using citrate gold nanoparticles for the removal of Cu2+ were also performed. The highest
removal rate by citrate gold nanoparticles for Cu2+ was only 16.5%, as indicated in Figure 7b.
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Figure 7. (a) The removal efficiency of proanthocyanidin-gold nanoparticles for 20 mg/L of
Cu2+, Cd2+, Ni2+ and Pb2+ at pH 4.0–10.0 after incubation for 6 h; (b) the removal efficiency of
proanthocyanidin-gold nanoparticles for 20 mg/L of Cu2+, Cd2+, Ni2+ and Pb2+ at adsorption time
from 20 min to 360 min under pH 8.0. The removal efficiency of citrate-gold nanoparticles for the
removal of Cu2+ was also tested for comparison.

One advantage of proanthocyanidin-functionalized gold nanoparticles in removing heavy metal
ions is that gold nanoparticles are easy to collect from the aqueous solution by centrifugation, as
indicated in Figure 2b, and then for recovery for further utilization. Nearly all of the gold nanoparticles
were able to be collected from the metal salts solution, as judged by the solution color and UV
absorption spectra. The superior stability of proanthocyanidin-functionalized gold nanoparticles in
repeat centrifugation-redispersion experiments implied that the surface of gold nanoparticles was well
protected by the associated proanthocyanidins. In addition, some gold nanoparticles are able to share
their proanthocyanidins shell, as indicated in Figure 4a, and form a plum pudding model structure,
which may contribute to their characteristic stability and easy manipulation.

The adsorption of heavy metal ions by proanthocyanidin-functionalized gold nanoparticles can
be ascribed to the proanthocyanidin shell, since the PRB band of gold nanoparticles did not show
obvious changes when they were redispersed in the heavy metal ion solution. The interaction between
metal ions and the remaining hydroxyl groups (–OH) of proanthocyanidin on the gold surface plays an
important role in sequestering the metal ions. The adsorption process can be schematically illustrated in
Figure 8. Oligomeric proanthocyanidin complexes were well covered on the gold nanoparticle surface,
the remaining hydroxyl groups (–OH) of catechin and epicatechin in proanthocyanidin interacted with
the metal ions and acted as a bidentate ligand to coordinate with the heavy metal ions. For example,
recent spectroscopic determinations have confirmed that the Cu(II)-catechin complex formation in
which Cu(II) ions can react with catechin in the presence of oxygen in a metal chelation and the
oxidation process [22].

Recently, Zero valent iron nanoparticles (nZVI) have been explored for the removal of heavy metal
ions in groundwater and wastewater [44]. The mechanisms that facilitate the removal are complex.
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It has been speculated that the core-shell structure in the iron nanoparticles involve the removal
processes wherein the metallic iron core acts as an electron donor source, promoting reduction of
the compounds. The shell layer, generally composed of Fe2+, Fe3+ and O, enables sorption, surface
complexation, and electron transport from and to the core. A variety of heavy metal ions can be
removed by nZVI with high rates and capacities [44,45]. However, there are some disadvantages to
using nZVI, such as the fact that some of the metal ions can be released from the nZVI over long periods
of time [44]. In comparison to the nZVI system, the removal efficiency of gold nanoparticles for heavy
metal ions is higher in this study [45]. Furthermore, there were no re-dissolving phenomena for at least
12 h in the proanthocyanidins-functionalized gold system. Thus, proanthocyanidins-functionalized
gold nanoparticles are expected to be developed as a new kind of adsorbent to remove the heavy metal
ions in groundwater and wastewater.
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4. Conclusions

A facile, one-step hydrothermal method has been developed to prepare proanthocyanidin-
functionalized gold nanoparticles. The gold nanoparticles have good mono-dispersity and a highly
crystalline structure. Furthermore, the proanthocyanidin-functionalized gold colloid was very stable,
and could be repeatedly collected and redispersed in the aqueous solution without obvious changes.
Most importantly, proanthocyanidin-functionalized gold nanoparticles can be utilized for the removal
of dyes and heavy metal ions in the aqueous solution. The primary results demonstrated that
proanthocyanidin-functionalized gold nanoparticles have high removal rates for dye and heavy
metal ions, which implies that they have potential applications as a new kind of adsorbent for the
removal of contaminants in an aqueous solution.
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