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Abstract: This is the first investigation to demonstrate the use of biochemical contents present
within Cyperus rotundus, Eleusin indica, Euphorbia hirta, Melastoma malabathricum, Clidemia hirta
and Pachyrhizus erosus extracts for the reduction of silver ion to silver nanoparticles (AgNPs)
form. In addition, the antibacterial capability of the synthesized AgNPs and plant extracts
alone against a rare bacterium, Chromobacterium haemolyticum (C. haemolyticum), was examined.
Moreover, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR),
field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX)
and inductively coupled plasma atomic emission spectroscopy (ICPOES) of the synthesized
AgNPs were characterized. The smallest AgNPs can be produced when Cyperus rotundus extracts
were utilized. In addition, this study has found that the synthesis efficiencies using all plant
extracts are in the range of 72% to 91% with the highest percentage achieved when Eleusin indica
extract was employed. All synthesized AgNPs have antibacterial capability against all examined
bacteria depending on their size and bacteria types. Interestingly, Melastoma malabathricum and
Clidemia hirta extracts have demonstrated an antibacterial ability against C. haemolyticum.

Keywords: silver nanoparticles; green synthesis; Chromobacterium haemolyticum; weed extracts

1. Introduction

The rapid expanding of works carrying the theme of nanomaterials in the past several years
is widely evidenced in the literature [1]. Since it is well-recognized that nanomaterials possess
extraordinary features in terms of physical, chemical and biological compared to their larger
form, they have been hugely explored for characterization and application. Up to the present time,
nanoparticle production remains as one of the central issues in the nanomaterial research. To name
a few, widely examined nanoparticle types include iron, copper, silicon, gold and silver [2–6].
Among these, silver nanoparticles (AgNPs) have been extensively investigated because of their
appealing properties [7]. Therefore, AgNPs have been utilized for various applications such as
electronics, sensors and recently widely explored for medical devices.

The exploration of AgNPs for medical fields particularly as an antibacterial agent has been
extensively carried out. To explore their application, the antibacterial capability of AgNPs against
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several bacteria has been ratified [8–13]. The role of the antibacterial capability of AgNPs in terms of
the surface science has been well reviewed by Le Ouay and Stellacci [14]. The specific effect of the
nanoparticulate objects on these nanoparticles such as adsorption at bacterial surfaces can significantly
improve their antibacterial capability. In addition, the role of Ag+ release has been found possible.
In general, the antibacterial capability of AgNPs is crucially affected by their surface physical and
chemical properties as well as bacteria types. Therefore, investigation for effects on new potential
bacteria is urgently needed.

Since the physical and chemical approaches were ratified to have numerous constraints in
terms of time consumption, cost and toxicity, recent synthesis developments have focused on
how these nanoparticles can be greenly synthesized using natural resources such as plant extracts.
Synthesis methods for AgNPs production by means of roots, seeds, fruits and leaves are well-studied.
Accessibility of roots and seeds is relatively more difficult compared to leaves and fruits. Fruits and
leaves are still recognized as the vitamin and vegetable sources for developing countries including
Indonesia and Malaysia. To overcome these matters, an alternative natural resource that is abundantly
available is urgently needed. In this respect, the application of grass weeds seems strategic for the
explorative purpose. In addition, a huge usage of weeds may also support the enhancement of the
environmental quality since they are well-known as plants with a negative impact on agriculture
particularly by monopolizing resources.

Cyperus rotundus, sometimes called the coco-grass, Java grass or nut grass, is a species of
Cyperaceae. It is also labeled as the worst weed that can damage ecosystem services and monopolize
resources [15]. Similarly, negatively impactful is Eleusin indica, which can be categorized as the
species of grass in the Poaceae family and is commonly used for animals’ food. Euphorbia hirta
can be categorized as a pantropical weed that is distributed in the tropical regions such as
India, Malaysia and Indonesia. It is also well-established as traditional medicine with analgesic
and anti-inflammatory properties [16]. Melastoma malabathricum origin locations are in Asia,
Polynesia and Australia. It is also known as a problematic weed that commonly forms the dense
thickets. Clidemia hirta can be categorized as an invasive plant species in the tropical regions.
Although it originated from the American Neotropics, Clidemia hirta is also widely distributed in
many tropical countries such as Indonesia and Malaysia. In addition, it is also found to cause
significant environmental damage, highly invasive and has the potential to alter forest regeneration [17].
Pachyrhizus erosus is believed to be originated from Mexico and Central America and is presently
widespread in the tropical Asia.

The intensive use of the plant extracts of weeds is due to their internal biomolecule such as
protein, terpenoids and flavonoids, which offer potential as a bioreductant to reduce metal ions
to form AgNPs [15,18–25]. For instance, the main terpenoids, such as eugenol, present within
Cinnamomum zeylanisum extracts has been ratified as the bioreduction agent of gold(III) chloride
trihydrate (HAuCl4) and silver nitrate (AgNO3) in forming nanoparticle [26]. The dissociation of
proton of the eugenol OH-group is believed to result in the formation of resonance structures that are
required for further oxidation to reduce the metal ion [26,27]. This process can be correlated to the
active reduction of metal ions to form the nanoparticle. In the flavonoids philosophy, reducing metal
ions to form nanoparticles was facilitated by the flavonoids transformation from the enol-form to the
keto-form that can release a reactive hydrogen atom [28]. Therefore, the present work aims to evaluate
the application of biochemical contents present within Cyperus rotundus, Eleusin indica, Euphorbia hirta,
Melastoma malabathricum, Clidemia hirta and Pachyrhizus erosus extracts to synthesize AgNPs from
AgNO3. In addition, an antibacterial capability of the synthesized AgNPs and plant extracts alone
against C. haemolyticum isolated from the sewage treatment plant (STP) and the river was also evaluated
in this study. Chromobacterium haemolyticum (C. haemolyticum) can be categorized as new Gram-negative
bacteria, firstly proposed in 2008 by Han et al. [29]. To our best knowledge, the antibacterial capability
of AgNPs against these bacteria has not been reported elsewhere. The outcomes are highly valuable
for future applications in water purification and medicine.
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2. Results and Discussion

2.1. Ultraviolet-Visible Spectroscopy (UV-Vis)

UV-vis spectroscopy monitors the absorption in the ultraviolet-visible spectral region and is
commonly used to characterize plasmonic properties of synthesized nanoparticles. Studies have
demonstrated that AgNPs absorb the spectrum in the visible region of around 400 nm due to the
excitation of the localized surface Plasmon resonance [30–33]. Since this property is highly affected
by nanoparticle size and the surrounding media, it is also possible that AgNPs have the plasmon
band of around 500 nm or slightly higher [34]. Several researchers have evaluated the correlation
between the UV-vis spectrum and nanoparticle properties. For instance, uniform spherical AgNPs can
be associated with a single peak in the UV-vis spectrum while AgNPs in the irregular shapes have
two or more peaks depending on their symmetry [35]. In addition, increase in nanoparticles size can
be identified by their maximum absorbance located at the higher wavelength range [36]. Moreover,
increasing the absorbance spectra indicates a higher production of AgNPs [37].

Figure 1 shows the UV-vis spectra of AgNPs synthesized using currently plant extracts.
It has been found that AgNPs synthesized using Cyperus rotundus, Eleusin indica and Pachyrhizus erosus
have single maximum peaks at 446, 524 and 452, respectively, suggesting that they are spherical in
shapes. On the other hand, there is an absence of a clear maximum peak for AgNPs synthesized
using Clidemia hirta and Euphorbia hirta, indicating they are of irregular shape or larger nanoparticle
sizes [35]. In addition, AgNPs synthesized using Melastoma malabathricum have more than one peak
in the wavelength range of 550 to 780 nm, implying irregularity in their nanoparticle shapes [35].
In the case of the spherical nanoparticle, it is found that AgNPs synthesized using Cyperus rotundus
had the maximum absorbance located at the lower wavelength range as shown in Figure 1.
This finding suggests that smaller sizes can be produced when Cyperus rotundus was employed [36].
For the irregular nanoparticle shape, it is rather difficult to make a direct comparison since there are
more than one maximum peak spectra. Moreover, AgNPs synthesized using Eleusin indica exhibited
the highest UV-vis spectra absorbance compared to others, indicating more AgNPs were produced [37].

The reduction of metal ion to the nanoparticle form using biochemical contents present within
the presently employed plant extracts is indicated by the change in solution color from yellow to
brown or reddish yellow to deep red. In the synthesis, AgNO3 was dissociated into Ag+ and NO3

−.
Phenolic compounds present within all the presently investigated plant extracts bind and therefore
reduce the metal salt into a nanoparticle form. It was experimentally observed that the reduction of
metal ions to form nanoparticles is facilitated by the flavonoids transformation from the enol-form to
the keto-form, resulting in the release of a reactive hydrogen atom [28]. The biomolecules attached
to the nanoparticles prevent their agglomeration. The advantage of using biomolecules contained
within the plants extract is that they not only act as a reducing agent but also as a stabilizing agent,
which is difficult to handle when the chemical procedure is employed. For a comprehensive take on
the synthesis, a schematic presentation of the reduction of silver ion to the formation of the nanoparticle
using biochemicals present within all presently used plant extracts is shown in Figure 2.
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Figure 1. Ultraviolet-visible spectroscopy (UV-vis spectra) of AgNPs synthesized using different 
plant extracts. (a–f) are zoomed in portion of each spectrum. 

 

Figure 2. A schematic presentation of AgNPs synthesized using biomolecules extracted from plants. 

2.2. Fourier Transform Infrared Spectroscopy (FTIR)  

FTIR spectra of AgNPs synthesized using all plant extracts are presented in Figure 3. In general, 
the synthesized AgNPs have 5 to 6 prominent peaks in the FTIR spectra. There are little changes in 
terms of intensity and wavenumber at the maximum peak of the FTIR spectra between the plant 
extracts and synthesized AgNPs. Specifically, AgNPs synthesized using Cyperus rotundus have peaks 
at 2976, 1715, 1248, 1099 and 726 cm−1 characterized as –CH, C=O, C–O–C, P–O and N–H stretching 
vibrations, respectively [38]. The peak at 3363 correlated to –OH stretching vibration contained in 
Cyperus rotundus extracts disappeared in the FTIR spectra of AgNPs synthesized by their extracts. In 
addition, C–O–C stretching vibration for AgNPs slightly changed from 1248 (Cyperus rotundus 
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2.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra of AgNPs synthesized using all plant extracts are presented in Figure 3. In general,
the synthesized AgNPs have 5 to 6 prominent peaks in the FTIR spectra. There are little changes
in terms of intensity and wavenumber at the maximum peak of the FTIR spectra between the
plant extracts and synthesized AgNPs. Specifically, AgNPs synthesized using Cyperus rotundus
have peaks at 2976, 1715, 1248, 1099 and 726 cm−1 characterized as –CH, C=O, C–O–C, P–O
and N–H stretching vibrations, respectively [38]. The peak at 3363 correlated to –OH stretching
vibration contained in Cyperus rotundus extracts disappeared in the FTIR spectra of AgNPs synthesized
by their extracts. In addition, C–O–C stretching vibration for AgNPs slightly changed from
1248 (Cyperus rotundus extracts) to 1262 cm−1. For AgNPs synthesized using Eleusin indica, peaks
at 3339 and 2919 cm−1, categorized as OH and –CH did not arise. Also, N–H stretching changed
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from 726 (Eleusin indica extracts) to 721 cm−1 (AgNPs). Alternatively, N–H stretching appeared from
Euphorbia hirta also disappeared in AgNPs synthesized by their extracts. When Melastoma malabathricum
was employed as reducing and stabilizing agents, –OH stretching contained in their extracts cannot
be observed in the synthesized AgNPs. Moreover, several prominent peaks of Clidemia hirta and
Pachyrhizus erosus were exhibited at the FTIR spectra for AgNPs synthesized using their extracts as
shown in Figure 3. For a complete overview, the biochemical contents present within the presently
employed plants are summarized in Table 1. Also, possible compounds of AgNPs synthesized using
different plant extracts are given in Table 2. In general, it is interesting to see from this work that the
biomolecules contained within the plant extracts exist in the synthesized AgNPs.
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Table 1. Biochemical contents of all employed plants.

Leaf Extract Biochemical Content References

Cyperus rotundus
Essential oils, alkaloids, flavonoids,

terpenoids, chromones, phenylpropanoids,
phenolic acids and iridoides

[15]

Eleusin indica

Flavonoids, terpenoids, phenols,
phenolic glycosides, saponins,

cyanogenic glycosides, unsaturated lactones,
glucosinolates and C-glycosylflavones

[19]

Euphorbia hirta Alkaloids, saponins, terpenoids, flavonoids,
tannins phenolic acids and amino acids [21]

Melastoma malabathricum
Naringenin, terpenoids,
kaempferol, flavonoids,

kaempferol-3-O-D-glucoside and ethyl acetate
[22,25]

Clidemia hirta Flavonoids, terpenoids,
phenolics and saponins [23]

Pachyrhizus erosus Rotenone, cysteine protease, albumins,
globulins, prolamins and glutelins. [18,20,24]

Table 2. Possible compounds of AgNPs synthesized using different plant extracts.

Plants Name Plant Extracts (cm−1) AgNPs (cm−1) Possible Compound

Cyperus rotundus

3363 - –OH
2976 2976 –CH
1715 1715 C=O
1248 1262 C–O–C
1099 1099 P–O
726 726 N–H

Eleusin indica

3339 - –OH
2919 - –CH
1709 1709 C=O
1250 1250 C–O–C
1021 1021 P–O
726 721 N–H

Euphorbia hirta

3312 3340 –OH
2921 2921 –CH
1715 1715 C=O
1100 1100 P–O
726 - N–H

Melastoma malabathricum

3321 - –OH
2925 2941 –CH
1714 1714 C=O
1246 1250 C–O–C
1018 1020 P–O
724 724 N–H

Clidemia hirta

2973 2973 –CH
1716 1716 C=O
1266 1266 C–O–C
1018 1018 P–O
726 726 N–H

Pachyrhizus erosus

2969 2969 –CH
1714 1714 C=O
1266 1266 C–O–C
1019 1019 P–O
725 725 N–H
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2.3. Field Emission Scanning Electron Microscopy (FESEM)

FESEM of AgNPs synthesized using all plant extracts is shown in Figure 4. In addition, Table 3
provides the summary of shape and size of AgNPs synthesized using all plant extracts. It is evidenced
that AgNPs synthesized using Cyperus rotundus, Eleusin indica and Pachyrhizus erosus are spherical in
shape with the sizes of 20.5 ± 9.6, 55.0 ± 24.1 and 40.6 ± 10.8 nm, respectively. These findings
support the UV-vis characteristics exhibiting that AgNPs synthesized using their extracts have
a single peak. When Euphorbia hirta and Clidemia hirta were used to synthesize AgNPs, AgNPs
with irregular shapes with the sizes of 56.25 ± 21.8 and 57.4 ± 24.2 nm, respectively, were produced.
Alternatively, irregular shapes AgNPs around 108.35 ± 36.3 nm were also obtained by applying
Melastoma malabathricum extracts as a bioreduction agent. The result also matches with the UV-vis
spectra showing more than single peak or no obvious peak when AgNPs were synthesized using
Euphorbia hirta, Clidemia hirta and Melastoma malabathricum. This study has also confirmed that the
smallest nanoparticles can be produced when Cyperus rotundus is employed as the reducing and
stabilizing agents (See Figure 4 and Table 3).
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Table 3. Shape and size of AgNPs synthesized using all plants.

Plant Extracts Shape Size (nm)

Cyperus rotundus Spherical 20.5 ± 9.6
Eleusin indica Spherical 55.0 ± 24.1

Euphorbia hirta Irregular 56.25 ± 21.8
Melastoma malabathricum Irregular 108.35 ± 36.3

Clidemia hirta Irregular 57.4 ± 24.2
Pachyrhizus erosus Spherical 40.6 ± 10.8

2.4. Energy-Dispersive X-ray Spectroscopy EDX

EDX spectra of AgNPs synthesized by all plant extracts are displayed in Figure 5. It is clear that
all synthesized AgNPs exhibit the EDX peak at approximately 3 keV because of their surface Plasmon
resonance [39]. The highest peaks in Figure 5 confirm that the metal AgNPs are the dominant element
in the samples. This observation is validated by the percentages of silver, which are in the range of
69–94% compared to other elements. In addition, other elements such as carbon and oxygen possibly
exist due to the presence of bio-organic molecules produced in the synthesis process, which is also
reported elsewhere [7,38].
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Nanomaterials 2018, 8, 9 9 of 17

2.5. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPOES)

One major challenge in the nanoparticle study is the method that can be employed to synthesize
nanoparticles efficiently. To address this issue, several approaches have been proposed and continually
revised. A combination of physical and chemical approaches was reported to successfully fabricate
AgNPs efficiently up to 100 mmol·L−1 [40]. Another study has shown that the proposed procedure
successfully produced about 20 mg AgNPs from 30 mg AgNO3 dissolved in ethylene glycol
and poly(N-vinyl pyrrolidone) [41]. In this work, the synthesis efficiency was calculated by the
following formula:

η =
C0

Ci
× 100% (1)

where C0 is the AgNPs concentration and Ci is the concentration of AgNO3 dissolved in the solution.
Figure 6 shows the concentration of the synthesized AgNPs obtained from the ICPOES analysis.
The present procedure has successfully produced AgNPs with high concentration ranging from
1800 to 2270 mg·L−1 from 2500 mg AgNO3 dissolved in the ultrapure water and plant extracts.
In general, 72% to 91% of AgNO3 was successfully employed to produce AgNPs with the highest
efficiency achieved when AgNPs were synthesized using Eleusin indica as shown also in Figure 6.
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Clidemia hirta, and Pachyrhizus erosus, respectively.

2.6. Antibacterial Appraisal

The antibacterial capability of AgNPs was evaluated using bacteria isolated from STP and
rivers. Based on the phylogenetic position, the bacteria isolated from rivers and STP are close to
C. haemolyticum and Chromobacterium violaceum. Chromobacterium violaceum can be categorized as
the bacteria having violacein pigment or purple-colored dye [42]. However, the authors did not
observe the pigment from the present bacteria. Therefore, this study categorized the present bacteria
as C. haemolyticum. Moreover, C. haemolyticum UDIN1, C. haemolyticum UDIN2 and C. haemolyticum
UDIN3 are the name of bacteria isolated from STP, river 1 and river 2, respectively. In addition, it was
also tested against Gram-negative and -positive bacteria, namely, E. coli and B. cereus, respectively.

Table 4 summarizes the zones of inhibition of the synthesized AgNPs, AgNO3, water and plant
extracts against the presently considered bacteria. Figures 7 and 8 show some examples of the zone of
inhibition of the presently produced nanoparticles against all investigated bacteria. It was found that
AgNPs synthesized using Cyperus rotundus produced the zones of inhibition ranging from 8.00 ± 0.26
to 15.00 ± 0.36 mm against all the studied bacteria. When AgNPs were synthesized using Eleusin indica,
the zones of inhibition were in the range of 8.70 ± 0.06 to 12.30 ± 0.06 mm. In addition, it was found
that AgNPs synthesized using Melastoma malabathricum inhibit the growth of all bacteria ranging
from 1.17 ± 0.50 to 1.60 ± 0.10 mm. When AgNPs were synthesized using Clidemia hirta, the zones
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of inhibition were in the range of 1.03 ± 0.06 to 1.60 ± 0.10 mm. Moreover, AgNPs produced by
applying Pachyrhizus erosus have zones of inhibition fluctuating from 9.00 ± 0.10 to 15.00 ± 0.10 mm.
AgNO3 has been found to inhibit the growth of all studied bacteria ranging from 0.93 ± 0.12 to
1.19 ± 0.25 mm and determined to be the best antibacterial agent when used against C. haemolyticum
UDIN3. By comparison, water provides zero inhibition against all bacteria.
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Table 4. Zone of inhibition of AgNPs, AgNO3, water and plant extracts.

Plant Bacteria AgNPs (mm) AgNO3 (mm) Water (mm) Plant Extracts (mm)

Cyperus rotundus

E. coli 15.00 ± 0.36 1.07 ± 0.06 - -
B. cereus 10.00 ± 0.26 0.93 ± 0.12 - -
C. haemolyticum UDIN2 8.00 ± 0.26 1.00 ± 0.00 - -
C. haemolyticum UDIN3 10.30 ± 0.23 1.19 ± 0.25 - -
C. haemolyticum UDIN1 9.00 ± 0.25 1.00 ± 0.17 - -

Eleusin indica

E. coli 12.30 ± 0.06 - -
B. cereus 9.70 ± 0.30 - -
C. haemolyticum UDIN2 8.70 ± 0.06 - -
C. haemolyticum UDIN3 9.30 ± 0.15 - -
C. haemolyticum UDIN1 12.00 ± 0.17 - -

Euphorbia hirta

E. coli 12.30 ± 0.50 - -
B. cereus 9.00 ± 0.17 - -
C. haemolyticum UDIN2 9.00 ± 0.11 - -
C. haemolyticum UDIN3 13.30 ± 0.30 - -
C. haemolyticum UDIN1 12.00 ± 0.17 - -

Melastoma malabathricum

E. coli 1.60 ± 0.10 - -
B. cereus 1.40 ± 0.17 - -
C. haemolyticum UDIN2 1.23 ± 0.31 - 0.27 ± 0.46
C. haemolyticum UDIN3 1.20 ± 0.17 - 0.40 ± 0.32
C. haemolyticum UDIN1 1.17 ± 0.50 - 0.53 ± 0.47

Clidemia hirta

E. coli 1.60 ± 0.10 - -
B. cereus 1.03 ± 0.06 - -
C. haemolyticum UDIN2 1.06 ± 0.06 - 0.87 ± 0.1
C. haemolyticum UDIN3 1.27 ± 0.29 - 0.9 ± 0.17
C. haemolyticum UDIN1 1.33 ± 0.38 - 0.8 ± 0.00

Pachyrhizus erosus

E. coli 11.00 ± 0.05 - -
B. cereus 11.00 ± 0.10 - -
C. haemolyticum UDIN2 15.00 ± 0.10 - -
C. haemolyticum UDIN3 9.00 ± 0.10 - -
C. haemolyticum UDIN1 15.00 ± 0.10 - -

It was ratified from this work that AgNPs synthesized using Cyperus rotundus had the highest
zone of inhibition compared to others when they were applied against E. coli. AgNPs synthesized
using Pachyrhizus erosus had the highest zone of inhibition compared to others when they were applied
against B. cereus. In addition, AgNPs synthesized using Pachyrhizus erosus performed as the best
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antibacterial agent against all C. haemolyticum. Findings from this study revealed that antibacterial
capability of AgNPs is different depending on their size and synthesis procedure. For instance,
when Cyperus rotundus was employed to synthesize AgNPs, the best performance of the antibacterial
capability of the produced nanoparticles is possibly due to the effect of nanoparticles size. It was
previously discussed that the smallest nanoparticle size can be obtained when AgNPs were synthesized
using this plant. It was reported from the previous work that the reduction of nanoparticle size
from 100 to 5 nm was found to enhance the antibacterial capability of AgNPs [43]. This can be
correlated to the enhancement in surface area to volume ratio with a decrease in particle size [43].
Although the size of AgNPs synthesized using Pachyrhizus erosus were slightly higher than that of
Cyperus rotundus, their nanoparticle size was still smaller than those of Eleusin indica, Euphorbia hirta,
Melastoma Malabathricum and Clidemia hirta. It is also possible that antibacterial capability of AgNPs
was only affected by their nanoparticle size since various conditions such as surrounding media,
bacteria types and other physio-chemical are crucial factors.

The capability of AgNPs to inhibit bacteria is due to the interaction between AgNPs and the
bacteria membrane once they are in contact with the organism [44]. Their interaction causes the
bacteria membrane damage, which then leads to bacteria cellular death [44]. It is also possible via
the oxidation of the silver nanoparticles to silver ions producing reactive oxygen species (ROS) [45].
In this particular mechanism, the toxicity properties are due to the involvement of disruption of the
mitochondrial respiratory chain by AgNPs leading to the production of ROS, which in turn causes
bacteria DNA damage [45]. Alternatively, it is possibly due to their nanoparticles surface charge.
For instance, AgNPs having a negative charge on their surface are less toxic compared with those with
a positive charge [46].

For a comprehensive overview, Table 5 lists the effects of AgNPs against various bacteria obtained
from the previous works. From the table, it can be seen that AgNPs are able to inhibit various bacteria
with different performance depending on their size and bacteria types. Nonetheless, it is noticeable
that there is no publication reporting on the antibacterial activity of AgNPs against C. haemolyticum.
Therefore, findings from the present work offer new contribution not only on the development of
the reducing and stabilizing agents to synthesize nanoparticles but also the antibacterial capability
against this bacteria type. The exploration of the present nanoparticles offers wide possibility as a new
antibacterial solution for future medical treatment.

Table 5. Antibacterial capability of AgNPs against several bacteria.

Species Bacteria Name Shape Size (nm) Inhibition Zone (mm) References

Gram-negative

Proteus vulgaris
Cubic 19

8 ± 0.0
[9]Serratia marcescens 8 ± 0.8

Salmonella typhi 8 ± 0.3

Vibrio parahaemolyticus Spherical 97
25 ± 1.0

[10]Salmonella enterica 12 ± 0.6

Vibrio anguillarum
Spherical

and irregular 7–31 and 7–19

11.2 ± 0.5

[12]
Vibrio alginolyticus 10.8 ± 1.4
Aeromonas punctata 10.5 ± 0.7

Vibrio parahaemolyticus 11.0 ± 1.3

Escherichia coli Spherical 9 ± 2
9 ± 1.0

[13]Pseudomonas aeruginosa 9 ± 0.5

Gram-positive

Enterococcus faecalis Spherical 10–60 2.5–6.2 [8]

Staphylococcus epidermidis

Cubic 19

7.5 ± 0.0

[9]
Methicillin-resistant 6

Bacillus subtilis 6
Streptococcus faecalis 6

Bacillus anthracis Spherical 97 15 ± 0.8 [10]
Staphylococcus aureus Spherical 20–30 7–21 [11]
Staphylococcus aureus Spherical 9 ± 2 11 ± 0.6 [13]
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3. Materials and Methods

3.1. Materials

Cyperus rotundus, Eleusin indica, Euphorbia hirta, Melastoma malabathricum, Clidemia hirta and
Pachyrhizus erosus were obtained from the surrounding area of Universiti Teknologi Malaysia,
Johor Bahru, Malaysia. AgNO3 was purchased from QReC, Auckland, New Zealand. Moreover,
Wizard® Genomic DNA Purification Kit (PMG-A1120) used in this study was obtained from Promega,
Madison, WI, USA.

3.2. Procedure of Plant Extraction

Firstly, 18 g fresh plant of weed type was weighed. For the extraction procedure, the plants were
washed using the tap water followed by the ultrapure water three times each to completely remove
any impurity. Each plant was then mixed with 200 mL ultrapure water in a 500 mL Erlenmeyer flask
and boiled for 30 min. A pure plant extract was obtained from the mixture by means of filtering
using a nylon membrane filter of 0.45 µm. The pure plant extracts were then stored in a fridge at
a temperature of 7 ◦C pending for the next characterization.

3.3. Synthesis of AgNPs

100 mL AgNO3 solution from the mixture of AgNO3 and ultrapure water with a concentration of
0.15 M in a 500 mL Erlenmeyer flask was prepared. Then, 100 mL plant extract was added slowly to
the solution. The mixture was mechanically stirred at the rate of 100 rpm for 24 h in the dark condition.
The mixture was then centrifuged at 8000× g for 45 min. The supernatant was then removed while the
pellet was collected. The purification of AgNPs was done by cleansing the collected pellet using the
ultrapure water at 8000× g for 45 min for three times. The purified pellet was subsequently air dried
for 24 h to remove the water content. The synthesis procedure was performed in three replicates to
ensure consistency in the result. The purified AgNPs produced using the present procedure were then
stored at a temperature of 7 ◦C pending for the next investigation.

3.4. Water Sampling Location

Water samples were collected from Melana River (1.535869 N, 103.623216 E) and Sekudai River
(1.542408 N, 103.662191 E), Johor Bahru, Malaysia. For brevity, Melana River and Sekudai River are
abbreviated as river 1 and 2, respectively. In addition, a sample was also collected from the local STP
(1.538247 N, 103.620674 E) at Desa Skudai, Johor Bahru, Malaysia.

3.5. Bacteria Identification

A 500 µL water sample that contained unknown bacteria was pipetted into a 1.5 mL
microcentrifuge tube and was centrifuged at 13,000× g for 2 min, where supernatant was then
removed. Next, the lytic enzyme was added to the resuspended cell pellet in a total volume of 120 µL
and followed by incubation at a temperature of 37 ◦C for 45 min. It was then centrifuged at 13,000× g
for 2 min and the supernatant was removed. Subsequently, a 600 µL nuclei lysis solution was added
to the mixture and incubated at a temperature of 80 ◦C for 5 min to lyse the cells. Addition of 3 µL
of RNase solution to the cell lysate was conducted before incubating the mixture at 37 ◦C for 45 min.
200 µL of protein precipitation solution was next added to the RNase-treated cell lysate, with the whole
mix incubated in ice for 5 min and centrifuged at 13,000× g for 3 min. The supernatant containing
the DNA was transferred into a 1.5 mL microcentrifuge tube containing 600 µL of isopropanol and
centrifuged at 13,000× g for 2 min. The supernatant was carefully poured and the tube drained on
a clean absorbent paper. 600 µL of 70% ethanol was added and the tube was then gently inverted to
wash the DNA pellet where all mixture centrifuged at 13,000× g for 2 min. A clean absorbent paper
was again utilized to perform the draining of solution from the tube before allowing the pellet to
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air-dry for 10 min. 100 µL DNA rehydration solution was then added to the tube where the DNA
was rehydrated by incubation at 65 ◦C for 1 h. The DNA was next stored at a temperature of 4 ◦C for
further analysis. Subsequently, 49 µL of the polymerase chain reaction (PCR) mix was pipetted into
the 0.2 mL microcentrifuge tube. 1 µL of the cell solution was then added to the PCR mix. In the PCR
procedure, initial denaturation, second denaturation, annealing, initial elongation and final elongation
were conducted at a temperature of 94 ◦C for 1 min (1 cycle), 94 ◦C for 1 min (30 cycles), 55 ◦C for
1 min (30 cycles), 72 ◦C for 5 min (30 cycles) and 72 ◦C for 10 min (1 cycle), respectively. PCR was
employed to amplify a specific region of the 16S rRNA gene of unknown bacteria. The reaction set-up
was used to generate the DNA sequence of the amplified DNA. The actual DNA sequencing gel was
run and read at the 1st BASE Laboratories, Taman Serdang Perdana, Malaysia. Then, the basic local
alignment search tool (BLAST) analysis of 16S rRNA gene sequence was employed to search the top
match sequences in the database.

3.6. Antibacterial Appraisal

Agar nutrient was first prepared by mixing 14 g agar powder nutrient with 500 mL of ultrapure
water. In the present work, the antibacterial capability of the synthesized AgNPs was examined
using the paper disk assay method [47]. About 5 × 1015 colonies of bacterial cultures were taken and
about 0.1 mL of inoculum was spread on each agar plate. In the preparation, AgNPs solution was
prepared by mixing the AgNO3 solution with a concentration of 0.15 M and plant extracts (1:1) in
a 50 mL plastic tube. In this test, the concentration of AgNPs was around 200 mg·L−1 prepared by
the dilution procedure. For comparison purpose, AgNO3 solution, ultrapure water and plant extracts
were prepared. Filter paper (2 mm in diameter) was steeped in AgNPs solution for 1 min and then
placed on the agar plate. In addition, other filter papers were steeped in AgNO3 solution, ultrapure
water and plant extracts and gently placed on the plates. For monitoring the zones of inhibition of
AgNPs, AgNO3, ultrapure water and plant extracts, all plates were subsequently incubated at 37 ◦C
for 24 h. This test was performed in three replicates to ensure its result repeatability.

3.7. Characterization

The concentration of AgNPs was examined using the ICPOES (710 ICPOES No. my13270004,
purchased from Agilent, Santa Clara, CA, USA) operated at a power of 1200 W with Argon flow
rate of 15 L·min−1. UV-vis spectra were monitored using the UV-Vis spectrometer (101N4110104,
purchased from PerkinElmer, Waltham, MA, USA) operated at a resolution of 1 nm, a scan speed of
960 nm·min−1 and an electromagnetic wavelength in the range of 300 to 700 nm. FTIR spectra were
investigated using the FTIR spectrometer (Frontier-GPOB model 96046, purchased from PerkinElmer,
Waltham, MA, USA) at a spectrum wavelength in the range of 400 to 4000 cm−1 at a resolution of
4 cm−1 and accumulations of 10 scans at room temperature. In the preparation, a pellet form was
prepared by mixing AgNPs with potassium bromide (1:100). FESEM and EDX were examined by
means of the field emission scanning electron microscopy (FESEM Supra 35VP, purchased from ZEISS,
Oberkochen, Baden-Württemberg, Germany) and SEM-EDX (S-3400N, purchased from HITACHI,
Chiyoda, Tokyo, Japan), respectively. The nanoparticles size was obtained by randomly measuring the
selected samples from the FESEM data following the procedure established elsewhere [7,48].

4. Conclusions

This work characterized and evaluated the use of extracts of Cyperus rotundus, Eleusin indica,
Euphorbia hirta, Melastoma malabathricum, Clidemia hirta and Pachyrhizus erosus to synthesize AgNPs
against bacteria available in the river and sewage treatment plant. Spherical AgNPs can be
synthesized when Cyperus rotundus, Eleusin indica, Pachyrhizus erosus and Clidemia hirta were employed.
On the contrary, AgNPs synthesized using Euphorbia hirta and Melastoma malabathricum extracts were
non-uniform in shape. In addition, about 72% to 91% efficiencies of AgNO3 were successfully extracted
to form AgNPs with the highest synthesis efficiency obtained when Eleusin indica extract was used.
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In general, this study has also confirmed that all synthesized AgNPs have antibacterial capability
against all investigated bacteria. Moreover, it is interesting to report that Melastoma malabathricum and
Clidemia hirta extracts have antibacterial capability against all bacteria isolated from STP and rivers.
Further studies need to be carried out in order to validate the effects of physio-chemical parameters to
synthesize AgNPs using the presently studied plant extracts. In addition, the cytotoxicity investigations
are also crucial for further antibacterial characterization in the future work.
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