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Abstract: In sharp contrast to conventional photosensitization methods in which the organic pigments
were often adsorbed, herein we present a study on natural vegetable pigment inserted TiO2 aerogel
nanocomposites and we directly use red cabbage anthocyanin (RCP) as a structure-directing agent.
It was found that pure TiO2 aerogel nanocomposite did not exhibit any meaningful activity for
photocatalytic reduction of Cr(VI). However, the photocatalytic reduction activity was greatly
improved by the RCP inserted TiO2 aerogel nanocomposites under visible-light irradiation, which
was approximately 2- and 12.3-fold higher than that of TiO2 aerogel conventionally photosensitized
by RCP and pure TiO2 aerogel nanocomposites, respectively. It also exhibited good stability and
could be reused at least three times without losing a significant amount of its activity.

Keywords: Red cabbage pigment; anthocyanin; TiO2 aerogel; photocatalytic activity

1. Introduction

Photosensitization of TiO2 nanocomposite by organic pigments is a convenient way to develop
visible-light efficient photocatalysts since the adsorbed organic pigment molecules are responsible
for absorbing the visible light [1–3]. Compared with artificial pigments, the natural pigment is
more easily available, less costly, less toxic and more environmentally friendly. Currently, natural
vegetable pigments have garnered a lot of attention by the scientific community for their nontoxicity,
large availability and low cost. For example, natural pigment extracted from blue pea was used to
synthesize dye-sensitized TiO2 solar cells [4]. The dyes extracted from basella alba rubra [5] and
natural apocarotenoids extracted from the achiote’s seeds [6] have been found to be suitable for use
as a sensitizer in solar cells. Among the large variety of natural vegetable pigments, red cabbage
(Brassica oleracea L. var. capitata L.) pigment has been explored due to the fact that it contains amounts of
anthocyanins and exhibits a wide spectrum of light over a very broad pH range [7–9], which is widely
used to color various types of food, candies, chewing gum, and yoghurts [10]. Actually, red cabbage
anthocyanin (RCP) has been used as a sensitizer in TiO2 dye-sensitized solar cells [11]. However, these
pigments attached to the TiO2 are not thermally or photochemically stable since they are still the same
as the original ones. Recently, we have successfully used commercial synthetic dyes to synthesize
mesoporous TiO2 nanocomposites with good visible-light photocatalytic activity [12–14]. In this
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framework, it is worthwhile to explore stable natural vegetable pigment inspired TiO2 nanocomposites
with great visible-light photocatalytic activity.

Aerogels have recently attracted great attention in various applications for their high surface
area/low-density materials consisting of open and highly porous structure [15–17]. Typically, aerogels
are prepared by sol–gel method involving hydrolysis and condensation of metal alkoxides, followed
by gelation and supercritical conditions with organic solvent [18]. The applications of aerogels such
as TiO2 and transition metal oxide/silica aerogels in photocatalysis including photodegradation and
hydrogen production have been explored [19]. Fast and easy transfer of electron in aerogel due to its
high porosity and 3D network encouraged us to synthesize natural vegetable pigment inspired TiO2

aerogel [20,21].
Cr(VI) is highly toxic and carcinogenic, and is a common contaminant in wastewater which

is used in many industrial production process such as electroplating, leather tanning, metallurgy,
paint making [22–24]. Photocatalytic reduction processes is an advantageous and useful technique for
removal of Cr(VI) [24]. A number of photocatalysts such as Ag/TiO2, [25] Cu/TiO2, [26] CdS-TiO2 [27],
Rhodamine B-sensitized TiO2 [26], and AgBr/B-doped reduced graphene oxide (RGO) aerogels [28]
have been developed for photocatalytic reduction of Cr(VI). Moreover, Wang et al. [29] reported
that low molecular weight carboxylic acids can enhance the photoreduction of Cr(VI) with neat
anatase TiO2. Nevertheless, little attention has been paid to the application of anatase TiO2 aerogel
nanocomposites, let alone the natural vegetable pigment inserted TiO2 aerogel nanocomposites in
photocatalytic reduction of Cr(VI). In this work, we provide a new strategy to prepare TiO2 aerogel
nanocomposites by using red cabbage anthocyanin as a structure-directing agent, rather than external
adsorbing after the formation of the TiO2 aerogel nanocomposites. The photocatalytic activity of
these TiO2 aerogel nanocomposites was evaluated by the photocatalytic reduction of Cr(VI) under
visible-light irradiation.

2. Materials and Methods

2.1. Synthesis

The red cabbage anthocyanin was obtained from Yunnan Tonghai Yang Natural Products Co., LTD
(Yuxi, China). Titanium isopropoxide was obtained from Aladdin Industrial Inc. (Shanghai, China).

Red cabbage anthocyanin inserted TiO2 aerogel nanocomposites: Red cabbage anthocyanin
inserted TiO2 aerogel nanocomposites were synthesized with a process modified from References [13,16].
A varying amount of red cabbage anthocyanin was dissolved in methanol (50 mL), titanium
isopropoxide (15 mL), nitric acid (0.1 mL), and deionized water (4 mL), and was mixed and stirred
for 30 min. The obtained gel was kept for aging at room temperature (24 h). The final mixture was
then transferred into a standard autoclave (Parr 4843) under nitrogen atmosphere and kept at 245 ◦C
for 1.5 h. Then the pressure was quickly released by venting of solvent vapour. The sample was
flushed again with nitrogen for 15 min and allowed to cool down in nitrogen to room temperature.
The weight ratios of RCP in samples were 6%, 9%, 12%, 15%, and 18%, respectively, which were
labelled as RCP-AG(X) where X = 6%, 9%, 12%, 15%, and 18%. For comparison, without adding RCP,
the obtained pure TiO2 aerogel was denoted as AG.

Conventionally sensitized TiO2 aerogel nanocomposites: 1.3 g AG was soaked in the RCP solution
at room temperature for one day. Finally, the solid was filtered out, washed with deionized water
and then dried in air at 90 ◦C. The obtained nanocomposites were denoted as S-AG (conventionally
sensitized TiO2 aerogel nanocomposite).

2.2. Characterizations

X-ray powder diffraction (XRD) experiments were conducted on a Rigaku TTRAX III spectrometer
with Cu Kα radiation (Rigaku Co., Tokyo, Japan). The data were recorded in the 2θ range 10–90◦

at a scan rate of 10◦/min. The Brunauer–Emmett–Teller (BET) surface areas were measured by the
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nitrogen adsorption/desorption measurements using a Micromeritics Tristar II Surface Area and
Porosity Analyzer (Micromeritics, Norcross, GA, USA). Before the test, the samples were degassed in
vacuum at 90 ◦C for 4 h. Scanning electron microscopy (SEM) was taken on a FEI Quanta 200 ESEM
scanning electron microscope (FEI, Hillsboro, OR, USA) operated at an accelerating voltage of 10 kV.
High-resolution transmission electron microscopy (HRTEM) imagines were carried out on a JEM-2100
(Japan Electron Optics Laboratory CO., Ltd., Tokyo, Japan) operated at 200 kV. UV–VIS diffuse
reflectance spectra were measured on a Shimadzu UV-2401PC photometer (Shimadzu Corp., Kyoto,
Japan) over the range from 200 to 800 nm at room temperature. X-ray photoelectron spectroscopy
(XPS) measurements were carried out on a PHI5500ESCA (Thermo Fisher Scientific Inc., Waltham, MA,
USA) analyzer with 200 W Mg Kα radiation. The base pressure was about ~10−7 Pa and the binding
energies were referenced to the C1s line at 284.8 eV from adventitious carbon. Fourier transform
infrared (FTIR) spectra were obtained on a Thermo Nicolet 8700 instrument (Thermo Fisher Scientific,
Waltham, MA, USA).

2.3. Photocatalytic Activity

The photocatalytic reduction was carried out in a quartz photoreactor containing 50 mL 15 ppm
Cr(VI) aqueous solution and 50 mg of photocatalyst with 40 µmol/L formic acid. The suspensions
were homogenized in the dark for 3 h to attain adsorption–desorption equilibrium. The suspensions
were irradiated by 350 W Xe lamp with a coloured glass filter (>420 nm), utilized for the purpose of
allowing only visible-light radiation. The solutions were stirred during the reaction process with a
magnetic stirrer. During illumination, about 5 mL of suspension was filtered to separate the catalyst.
The Cr(VI) content was determined at 540 nm by a spectrophotometer (UV722). The experiments were
conducted in three parallel experiments and the error bars were added in the figures.

3. Results

3.1. Characterizations

The XRD pattern in Figure 1 reveals that these samples were highly crystallized, suggesting
a pure anatase phase. In compared with AG, no other diffraction appeared and the peaks did not
shift in S-AG and TiO2 aerogel templated by red cabbage anthocyanin, meaning that the addition of
RCP would not change the anatase phase of TiO2 aerogel [30]. The crystalline size was calculated by
using the Scherrer equation. According to (101) diffraction, the crystalline size of AG, RCP-AG(6),
RCP-AG(9), RCP-AG(12), RCP-AG(15), and RCP-AG(18) S-AG were 14.4, 10.4, 7.9, 7.8, 8.4, 7.7, and
10.7 nm, respectively. Obviously, the crystalline size became smaller which is due to the increase in
RCP concentration from 6 to 18%.Nanomaterials 2018, 8, x FOR PEER REVIEW  4 of 15 
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The N2 adsorption/desorption isotherms of the TiO2 aerogel materials are similar, as shown in
Figure 2. These samples exhibited typical isotherm of type IV having inflection around P/P0 = 0.6–0.9,
which was the characteristic of mesoporous structure. The specific BET surface areas, pore volumes,
pore sizes of samples are described in Table 1. The samples of AG, S-AG, RCP-AG(6), RCP-AG(9),
RCP-AG(12), RCP-AG(15), and RCP-AG(18) exhibited surface areas of 101 m2/g, 100 m2/g, 122 m2/g,
149 m2/g, 202 m2/g, 141 m2/g, and 164 m2/g, respectively. It is interesting to mention that the
SBET increased by using RCP as template. However, when the weight ratios of RCP increased from
12 to 15%, the surface area was decreased from 202 to 141 m2/g. At a relative large weight ratio
of RCP, the aggregation of TiO2 and compact structure were more significant and thus resulted in
the surface area being decreased, which was in good agreement with mesoporous TiO2 templated
by other traditional templates [31,32]. Furthermore, the pore sizes of the synthesized TiO2 aerogels
displayed the mesoporous region between 7 and 16 nm, which were much bigger than normal
mesoporous TiO2 [12,13]. However, the pore size significantly decreased when the weight ratios of
RCP increased from 9 to 18%. The pores in those samples were filled with some of the compounds
which were decomposed from template during the heating under nitrogen atmosphere and thus the
pore sizes decreased.
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Table 1. Summary of textural properties and band gaps of the samples.

Samples SBET (m2 g−1) Pore Volume (cm3 g−1) Pore Size (nm) Eg (eV)

AG 101 0.6 16 3.24
S-AG 100 0.5 16 -

RCP-AG(6) 122 0.5 15 2.68
RCP-AG(9) 149 0.3 7 2.61
RCP-AG(12) 202 0.5 8 2.49
RCP-AG(15) 141 0.3 8 2.36
RCP-AG(18) 164 0.4 7 2.49

Figure 3a reveals the SEM image of typical TiO2 aerogels. It is seen that the TiO2 aerogel was
highly porous and had spherical-shaped particles. RCP-AG(15) and RCP-AG(18) exhibited the fluffy
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and irregular shape aggregates (Figure 3b,c). The crystallinity of RCP-AG(15) was observed from the
TEM images (Figure 4). TEM measurement illuminates that the size of a single RCP-AG(15) particle
was about 9 nm in diameter, which was also in agreement with XRD measurement. High-resolution
TEM reveals a lattice spacing of 0.33 nm corresponding to the adjacent (101) crystallographic planes of
titania anatase phase [33].
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Figure 5 presents FTIR spectra of samples between 500 and 4000 cm−1. The two broad peaks
at 1620 and 3410 cm−1 can be ascribed to the surface adsorbed water and hydroxyl groups [34,35].
One band at 3700–3780 cm−1 is characterized by the stretching vibrations of the Ti4+-OH surface
hydroxyl groups [36]. The peaks at 1390 cm−1 and 1400 cm−1 assign to -COO− bending vibrations [2],
which were usually considered to be photoactive sites [37,38]. However, it is worth noting that the
peaks at 2930 and 1070 cm−1, which is the characteristic vibration of RCP, are due to -CH2- [39] and
C-O stretching [40], respectively, and was not found in RCP-AG (15). This confirms that RCP was
decomposed during the heating under nitrogen atmosphere.Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 15 
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Table 2 displays the elements of AG and RCP-AG(15) calculated from the survey XPS analysis.
There were large amounts of O and C elements on AG, which was probably due to incomplete
decomposition of the starting material under nitrogen atmosphere [41,42]. The percentage of C in
RCP-AG(15) was 27.5%, which was higher than AG. As shown in Figure 6, the survey spectra confirm
that C, O, and Ti elements existed in RCP-AG(15). The O 1 s spectra of RCP-AG(15) revealed the major
peaks at 530.3 eV and 531.9 eV, respectively. The peak at 531.9 eV can be related to surface hydroxyl
species (Ti-OH) [43]. The peak locating at 530.3 eV is ascribed to Ti-O-Ti bonds. The O1 s binding
energies of RCP-AG(15) exhibited slightly shifted (0.84 eV) to the lower value because of the decrease
of oxygen vacancies in the TiO2 lattice [43,44]. The Ti 2p spectra was consistent with the typical anatase
TiO2 [40,45,46]. The C1 s spectra can be fitted to three peaks at 284.8, 286.4, and 288.7 eV. The binding
energy of 284.8 eV is attributed to C-C and C-H bonds. The peak at 286.4 eV is a typical peak position
for C=O band [47]. The peak at 288.7 eV is attributed to the Ti-O-C [44,45,48,49]. However, the peak
of Ti-C bonds (281–282 eV) was not found, which also could be deduced that the C atoms did not
substitute O atoms in the TiO2 lattice structure [50]. Furthermore, compared with AG (459.74 eV),
the Ti 2p spectra of RCP-AG(15) was slightly shifted (0.74 eV) to the lower value, which was ascribed
to the strong interaction with C [40].

Table 2. The surface element composition obtained from XPS analysis.

Samples Ti 2p (%) O1s (%) C1s (%)

AG 20.5 52.2 21.3
RCP-AG (15) 20.9 49.0 27.5
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The UV-VIS diffraction reflectance spectrum of RCP, AG, and RCP-AG(15) are shown in Figure 7.
In comparison with AG, the RCP revealed significant absorption in the visible range. The light
absorption of RCP-AG(15) was significantly increased in visible range. The band gaps of the prepared
samples were calculated from Tauc plot. The calculated band gap of RCP-AG(15) is 2.36 eV. It indicates
that the doped carbon species from RCP can effectively narrow the band gap energy of TiO2 aerogel
from 3.2 eV (AG) to ~2.36 eV (RCP-AG(15)). Furthermore, RCP-AG(15) exhibited typical red-shift at
the edge of the UV and visible-light range and significant absorption occurred in the visible range at
ca. 660 nm. By contrast, AG did not reveal significant shift absorption spectra. This may be caused by
the doped carbon species, which could narrow the band gap of TiO2 to contribute to the red shift and
significantly improve the light harvesting ability. These observations indicate why RCP-AG(15) can be
potential candidates for performing photocatalytic activity under visible light.
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3.2. Photocatalytic Tests

To evaluate the potentiality of the prepared samples on photocatalytic reduction of Cr(VI),
a set of photocatalytic experiments were performed. In all the experiments, the solution was firstly
homogenized during 3 h in darkness in order to achieve the balance of adsorbing–desorbing in the
system. Initial tests (with 40 µmol/L formic acid) prove that the Cr(VI) was stable in the absence
of catalysts under visible-light irradiation. The adsorption of Cr(VI) by the samples was shown in
Table 3. It is evident that the maximum adsorption yields of samples were reached within 60 min.
It was found that RCP-AG showed better adsorption activity than pure AG. These results suggest that
the adsorption activity of the TiO2 templated by RCP may depend on the structure [13,14,41,51,52].
The template of RCP led to a significant increase in surface areas of TiO2 aerogel, which would provide
more active sites in the reaction [12]. Therefore, TiO2 aerogel templated by RCP would provide more
active sites in the reaction.

Table 3. Summary of adsorption yield in darkness.

Catalyst Adsorption Yield after 1 h (%) Adsorption Yield after 3 h (%)

AG 10.5 11.0
S-AG 27.8 28.5

RCP-AG(6) 30.2 30.1
RCP-AG(9) 20.9 21.2

RCP-AG(12) 32.8 33.4
RCP-AG(15) 19.1 20.1
RCP-AG(18) 32.5 32.4

Figure 8 reveals the photocatalytic activities for the photocatalytic reduction of Cr(VI) under
visible irradiation. Obviously, AG did not exhibit any meaningful activity for photocatalytic reduction
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of Cr(VI) under visible-light irradiation in 30 min and the photocatalytic reduction activity was greatly
improved by the RCP as template. Furthermore, all RCP-AG exhibited significant photocatalytic
reduction activity of Cr(VI) and RCP-AG(15) exhibited the maximum photocatalytic yield, which
reached 98% in 30 min. This implies that the main photocatalytic activity of RCP-AG(15) was due to
the RCP. In particular, the photocatalytic yield for reduction of RCP-AG(15) was approximately 2-fold
higher than that of S-AG. The difference between RCP-AG(15) and S-AG was caused by the different
bonding strength between RCP and TiO2 aerogel. When the RCP are directly used to synthesize TiO2

aerogels, the doped carbon species from the decomposed RCP is excited under visible-light irradiation
and enhances the charge separation ability [11,53], thus restraining the electron-hole recombination
and promoting the photocatalytic activity for Cr(VI).
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Figure 8 also exhibited the photocatalytic reduction activity firstly increased and then decreased
with the increase of RCP weight ratios from 6 to 18%. In fact, due to the far more intense absorption in
the visible region of TiO2 aerogel templated by RCP than that of pure TiO2 aerogel, it was reasonable
that TiO2 aerogel templated by RCP showed much better photocatalytic activity than pure TiO2 aerogel.
The absorption in the visible region trend shown in Figure 7 was different as the weight ratios of RCP
and the absorption in the visible region from RCP-AG(15) to RCP-AG(18) had a slightly decline. Thus,
the photocatalytic performance of RCP-AG(18) exhibited a decrease.

3.3. Effect of pH on the Photocatalytic Reduction of Cr(VI)

Figure 9 clarifies the influence of pH on the photocatalytic reduction of the RCP-AG(15).
The results confirmed that the solution pH had an important influence and the optimal pH value was
about 4, whereas the photocatalytic reduction of Cr(VI) was not totally achieved at pH 2. Furthermore,
the photocatalytic reduction yield was decreased at the high pH values. In fact, the Cr(VI) ions exist
mainly in the form of HCrO4

−, CrO4
2−, or Cr2O7

2− and the RCP-AG(15) is highly protonated at the
low pH value, which had a strong affinity toward those anions. Thus, it will enhance the photocatalytic
reduction of the Cr(VI) ions. With increasing pH value, the surface of RCP-AG(15) would be less
positively charged and the Cr2O7

2− species would be electrostatically repelled by the TiO2 surface [50].
That might hinder the photocatalytic reaction of Cr(VI).
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3.4. Effect of Initial Chromium Concentration on the Photocatalytic Reduction of Cr(VI) by RCP-AG(15)

The effect of initial Cr(VI) concentration was evaluated by corresponding concentration from
8 to 60 ppm with 40 µmol/L formic acid, using RCP-AG(15). Figure 10 exhibits the photocatalytic
reduction activity of Cr(VI) gradually decreasing with the increase of initial concentration. For the
low initial concentrations (8 and 10 ppm), the photocatalytic reduction yield of Cr(VI) was 98% after
25 min. However, with 30 ppm Cr(VI), the photocatalytic reduction yield of Cr(VI) was 60% during
30 min. Increasing the concentration to 60 ppm, the photocatalytic reduction yield of Cr(VI) was only
25%, under the same photocatalytic reduction conditions. Similar phenomena had been reported when
using CNT/TiO2-NH2 [54], TiO2-graphene [55], and BiOI [56] as photocatalysts. The increased initial
Cr(VI) concentration can enhance the absorption of aqueous solution and prevent the absorption of
light in catalyst surface, thus decreasing the photocatalytic reduction activity of Cr(VI).
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3.5. Recyclability and Stability of Photocatalysts

The recyclability and stability are essential for the practical application of photocatalyst. In this
work, the recycling runs of the RCP-AG(15) in photocatalytic reduction of Cr(VI) were evaluated under
visible-light irradiation. Figure 11 exhibits the photocatalytic efficiency by the RCP-AG(15) almost
unchanged. After three photocatalytic cycles, the photocatalytic reduction yield of Cr(VI) could reach
91%. This indicates that the RCP-AG(15) exhibits a high recyclability for the photocatalytic reduction
of Cr(VI). The SEM (Figure 12) and XPS (Figure 13a) of the used RCP-AG(15) had been provided to
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demonstrate the stability of the photocatalyst. The results prove no significant change in RCP-AG(15)
after the photocatalytic reaction process.
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3.6. Possible Photocatalytic Mechanism

The Cr 2p spectra of fresh RCP-AG(15) and after used RCP-AG(15) were displayed in Figure 13b.
The Cr spectrum can be fitted to two peaks of 2p 3/2 and 2p 1/2 orbitals (579.9 eV and 589.1eV,
respectively). It is corresponded to the spectra characteristics of Cr(VI). In the fresh RCP-AG(15)
spectra, two peaks are not observed in the same position. In the used RCP-AG(15) spectra, a pair of
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peaks at 577.4 eV and 586.8 eV represented Cr3+ 2p 3/2 and Cr3+ 2p 1/2, respectively [57]. The presence
of a strong signal of Cr(III) is attributable to the photocatalytic reduction of Cr(VI) by RCP-AG(15),
which indicates that the catalyst has the photoreduction capability of Cr(VI) and the adsorption ability
of Cr(III).

On the basis of the above discussion, it would be interesting to evoke some reasons why the
RCP-AG(15) exhibited significant activities for the photocatalytic reduction of Cr(VI) under visible
irradiation. The significant photocatalytic activity of RCP-AG(15) was due to the following reasons.
The first explanation is that the TiO2 aerogel templated by RCP has a high surface area, is highly porous
mesoporous and has a network structure. As a result, the structure of RCP-AG may provide more
adsorption sites. Secondly, the narrow band gap and the absorption edge of TiO2 aerogel templated
by RCP was shifted to the visible-light range. The far more intense absorption in the visible region of
RCP-TiO2 aerogel than that of pure TiO2 aerogel would result in the significant photocatalytic activity.
Regarding TiO2 aerogel, pH can also affect the surface charge of TiO2 aerogel and the formation of
different Cr(VI) species. In this work, the surface of RCP-AG(15) can be more positively charged and
HCrO4

− was the dominant species at pH 4 [58], which improves the adsorption ability of HCrO4
− onto

the TiO2 aerogel surface. Furthermore, the carbon transferred from RCP in TiO2 aerogel was beneficial
for the photocatalytic reduction of Cr(VI) under visible irradiation. Many investigations [13,49,59]
indicate that carbon on the TiO2 can promote direct electron transfer and separation. Thus, a possible
photocatalytic mechanism for the photocatalytic reduction of Cr(VI) under visible light was proposed.
Without light irradiation, Cr(VI) species was adsorbed by RCP-AG. Under visible-light irradiation,
electron–hole pairs generated at the surface of RCP-AG. The electrons reduced Cr(VI) to Cr(III), and
the holes would oxidize the formic acid [60,61]. The carbon transferred from RCP could suppress the
electron and hole recombination by acting as a photosensitizer and enhanced charge separation effect.

4. Conclusions

In sharp contrast to conventional photosensitization methods in which red cabbage anthocyanin
acted as photosensitizer after adsorbed and were still the same as the original ones, herein we have
demonstrated for the first time that red cabbage anthocyanin was directly used as a structure-directing
agent without adding any other co-agents during the synthesis of TiO2 aerogels and supercritical
drying at 245 ◦C, rather than conventional photosensitization of the TiO2 aerogels. These TiO2 aerogels
with high surface area (202 m2·g−1) were used for the photocatalytic reduction of Cr(VI) under visible
light and exhibited highly efficient photocatalytic yield even when these TiO2 aerogels were not
modified with any transition metals. Furthermore, this approach is simpler and potentially more
stable than TiO2 aerogel conventionally photosensitized by RCP. Therefore, we believe that this
work provides new insight for the preparation of anatase TiO2 aerogel nanocomposites and efficient
visible-light photocatalysts in environmental applications, specifically for the treatment of polluted
water applications.
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