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Abstract: In this study, we fabricated a porous calcium alginate/graphene oxide composite aerogel
by using polystyrene colloidal particles as sacrificial template and graphene oxide as a reinforcing
filler. Owing to the excellent metal chelation ability of calcium alginate and controlled nanosized
pore structure, the as-prepared calcium alginate/graphene oxide composite aerogel (mp-CA/GO)
can reach the adsorption equilibrium in 40 min, and the maximum adsorption capacity for Pb2+, Cu2+

and Cd2+ is 368.2, 98.1 and 183.6 mg/g, respectively. This is higher than most of the reported heavy
metal ion sorbents. Moreover, the mp-CA/GO can be regenerated through simple acid-washing and
be used repeatedly with little loss in performance. The adsorption mechanism analysis indicates
that the mp-CA/GO adsorb the heavy metal ions mainly through the ion exchange and chemical
coordination effects.

Keywords: Adsorbent; heavy metal ions; calcium alginate; graphene oxide; polystyrene colloidal
particles template

1. Introduction

Heavy metal pollution is currently a serious environmental problem. Heavy metal ions are not
biodegradable and tend to accumulate in living organisms, thereby causing many serious health and
environment problems [1,2]. Therefore, it is of great significance to remove heavy metal ions in water.
In recent years, many methods such as ion-exchange, chemical oxidation and reduction, membrane
filtration, chemical precipitation, and adsorption have been employed for removing heavy metal
ions from water media [3–7]. Among these treatment methods, adsorption attracts more attention
due to its simple operation, low price, recyclability of the adsorbent, and high efficiency in treating
low-concentration wastewater [8].

The exploration of efficient adsorbent materials starts by providing additional binding sites for
adsorbed ions, improving the diffusion coefficient during the adsorption process, and enhancing the
overall mechanical properties of adsorbent materials. Adsorbents with a large specific surface area,
additional active groups, such as carboxyl and hydroxyl groups, and rational diffusion path for metal
ion during adsorption are required. Deze et al. demonstrated the effect of porosity in heavy metal ions
sorption [9].

In our previous work, we synthesized pure calcium alginate and chitosan-calcium alginate hybrid
aerogels for removing heavy metal ions in water [10,11]. The results showed that calcium alginate could
efficient removal of Pb2+ and Cu2+ from wastewater due to its rich carboxyl (−COOH) and hydroxyl
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(−OH) groups. However, dry alginate bead that has been used for heavy metal ion sorption is a rigid
material without controlled porous structure, and given the low diffusion coefficient of the material,
the sorption kinetics is relatively slow. Furthermore, pure alginate also exhibits several unsatisfactory
structural properties, such as weak mechanical strength, structural instability, and fragile collapse [12],
thus limiting their applications in the actual setting.

Graphene oxide (GO) is a new carbon material with excellent properties, high specific surface
area, and rich surface functional groups. GO also exhibits a considerable potential in reinforcing fillers
given its outstanding mechanical properties, excellent binding capacity, and superior flexibility [13].
The unsatisfactory properties of alginate structure and collapse of a porous material structure can be
easily solved by adding GO sheets as ideal reinforcing fillers for composites. Jiao et al. presented that
GO, as a reinforcing filler, exhibits excellent mechanical strength and elasticity in adsorbing heavy
metal ions [13]. Recently, Yang et al. successfully prepared double network hydrogel beads by directly
mixing GO and sodium alginate solutions. The as-prepared hydrogel beads showed good affinity to
cationic metals and the theoretical maximum adsorption capacity for Mn2+ reached 56.49 mg/g [14].
However, preparing adsorbent materials with controlled pore structure and excellent mechanical
properties has not been reported.

In this study, a novel macro-porous (mp) calcium alginate/graphene oxide composite aerogel
(mp-CA/GO) with controlled pore structure was prepared by introducing macropores within the
composite aerogel using polystyrene (PS) colloidal particles as sacrificial template and GO as
reinforcing fillers. The as-prepared mp-CA/GO was characterized and used for heavy metal ions (Pb2+,
Cu2+ and Cd2+) sorption. In addition, adsorption capacity, kinetics and thermodynamics properties,
adsorption mechanism, and reutilization were also explored.

2. Materials and Methods

2.1. Materials

Sodium alginate, ethanol, styrene, potassium persulfate (K2S2O8), nitric acid (HNO3), GO
suspension (in water), sodium chloride (NaCl), and other metal salts were bought from Shanghai
Aladdin Biochemical Technology Co. Ltd. (Shanghai, China). Certain reagents such as styrene,
potassium persulfate, and sodium chloride, were used with further purification. High concentration
GO suspension was diluted with deionized (DI) water, and DI water was used throughout this study.

2.2. Instruments

Scanning electron microscopy (SEM) images were obtained on a Sirion200 microscope (FEI
Company, Eindhoven, the Netherlands) at an accelerating voltage of 10.0 kV. The infrared spectra were
obtained from a Nicolet 6700 Fourier transform infrared (FT-IR) spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA). X-ray diffraction (XRD) pattern was collected on a Bruker axs D8 advanced
diffractometer (Bruker Corporation, Frankfurt, Germany) using Cu Kα radiation. X-ray photoelectron
spectroscopy (XPS) spectra were collected on a Shimadzu Axis-Ultra multifunctional X-ray
photoelectron spectrometer (Shimadzu Corporation, Tokyo, Japan) using an Al K X-ray source.
Metal concentrations were confirmed using a Perkin-Elmer Optima 2100 (Perkin-Elmer Company,
Waltham, MA, USA) inductively coupled plasma-optical emission spectrometry (ICP-OES).

2.3. Preparation of PS Colloidal Particles

Monodisperse PS colloidal particles were synthesized by soapless emulsion polymerization [15].
Styrene is purified by vacuum distillation before using 150 mL of DI water, 0.175 g sodium chloride and
25 g styrene were added into a 250 mL three-port bottle, and stirred in the water bath at 70 ◦C. Then,
0.2 g of K2S2O8 was added to the bottle after ventilating nitrogen for nearly 20 min. With nitrogen
protection, the polymerization reaction was conducted at 70 ◦C for 20 h. After the reaction, the particles
were subjected to repeated centrifugal sedimentation at 9000 rpm and ultrasonic dispersion in water
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and ethanol to remove the styrene monomer and sodium chloride. Finally, the PS particles were mixed
into a solution with 10% mass fraction.

2.4. Preparation of mp-CA/GO

For the fabrication of the mp-CA/GO, the GO (0.5 mg mL−1, 2 mL) and sodium alginate (1%
w/v, 20 mL) solutions were mixed homogeneously. Then, PS colloidal particles solution (0.5 mL,
10 wt.%) was added to the sodium alginate and GO mixed solutions under magnetic stirring to form
a homogeneous mixture. After that, this mixed solution was added dropwise to 100 mL of 0.2 M
Ca2+ solution. A hydrogel sphere formed immediately when the mixed solution contacted with the
Ca2+ solution. The hydrogel spheres were collected and washed with DI water, and placed into a
low-temperature freezer. Then, the frozen hydrogel spheres were freeze-dried for 24 h under vacuum.
The final mp-CA/GO composite aerogel were obtained by removing the PS colloidal particles with
toluene and tetrahydrofuran exposure through ultrasonication [16].

2.5. Adsorption and Desorption Tests

In an adsorption test, ~ 50 mg of mp-CA/GO was added to 50 mL of 1.5 mM Pb2+, Cu2+, and
Cd2+ solutions, respectively. The mixture was filtered after stirring for 40 min. The unextracted Pb2+,
Cu2+, and Cd2+ in the filtrate were determined by ICP-OES.

In the desorption test, the Pb2+-, Cu2+-, or Cd2+-loaded mp-CA/GO was first immersed in 50 mL
of 0.07 M HNO3 solution for 20 min. Then, the mp-CA/GO was separated and washed with DI water.
The desorbed Pb2+, Cu2+, and Cd2+ in the eluent were also determined by ICP-OES. Each adsorption or
desorption test was performed three times in parallel. The metal ion concentration was also determined
three times in parallel and then averaged.

The adsorption capacity (Q, mg/g) and Adsorption (%) were calculated as follows:

Q =

(
Ci − C f

)
·V·M

m
(1)

Adsorption =

(
Ci − C f

)
Ci

× 100% (2)

where V is the volume of the solution (L); m is the weight of the mp-CA/GO (g); M is the molar mass
of metals (g mol−1); and Ci and Cf represent the initial and final concentration of metal ions in solution,
respectively (mM).

3. Results and Discussion

3.1. Material Characterizations

Figure 1A illustrates the GO and PS suspensions that were used to prepare the mp-CA/GO.
PS colloidal particle suspension appears milky white, whereas GO suspension appear brownish
black due to high concentration. GO and PS can be dispersed in DI water and form homogeneous
suspensions after a mild ultrasonic treatment. The XRD pattern of GO is presented in Figure 1D.
The strong diffraction peak of GO appears at 11.5◦, which can be indexed to the (002) reflections of
stacked GO sheets with the interlayer distance of 0.771 nm, which allows alginate to exist between
layers of GO [17–19]. The mp-CA/GO with excellent mechanical strength and structural stability was
acquired by the help of GO. The morphology of PS and GO was characterized by SEM, as depicted
in Figure 1B,C. The surface of the GO film has noticeable folds, which are attributed to the flexible,
ultra-thin 2D lamination of GO (Figure 1C). As the most commonly used template material, PS colloidal
particles have an excellent uniformity with a diameter of ca. 720 nm (Figure 1B), this uniformity is
important for preparing materials with controlled porous structures.
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COOH, respectively. The weak peak around 2930 cm−1 in the spectra of CA and mp-CA/GO belongs 
to the asymmetric stretching vibration of C–H, in which the “egg-box” structures formed by sodium 
alginate macromolecule and calcium ion limit the C–H stretching [20,21]. The peaks at 3179, 1715 
and 1620 cm−1 in the spectrum of GO are attributed to the stretching vibrations of −OH, −COOH and 
C=C in the sp2 carbon skeletal network, respectively [22]. Compared with the pure GO, the peaks of 
mp-CA/GO downshift from 3380 to 3346 cm−1 and 1612 to 1599 cm−1, respectively. It can be attributed 
to the intermolecular hydrogen bonds formed between GO sheets and alginate [23]. 

 
Figure 2. FT-IR spectra of (a) mp-CA/GO, (b) CA and (c) GO. 

Figure 1. (A) Digital photo of GO and PS solutions, SEM images of (B) PS colloidal particles and (C)
GO film, and (D) XRD pattern of GO.

The FT-IR spectra of GO, calcium alginate (CA) and mp-CA/GO are presented in Figure 2. In the
three spectra, the absorption peaks around 3360 and 1412 cm−1 are ascribed to the O–H and –COOH,
respectively. The weak peak around 2930 cm−1 in the spectra of CA and mp-CA/GO belongs to
the asymmetric stretching vibration of C–H, in which the “egg-box” structures formed by sodium
alginate macromolecule and calcium ion limit the C–H stretching [20,21]. The peaks at 3179, 1715 and
1620 cm−1 in the spectrum of GO are attributed to the stretching vibrations of −OH, −COOH and
C=C in the sp2 carbon skeletal network, respectively [22]. Compared with the pure GO, the peaks
of mp-CA/GO downshift from 3380 to 3346 cm−1 and 1612 to 1599 cm−1, respectively. It can be
attributed to the intermolecular hydrogen bonds formed between GO sheets and alginate [23].
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The SEM photos of the mp-CA/GO and CA are displayed in Figure 3. The PS beads with a
diameter of ca. 720 nm are homogeneously dispersed in a composite aerogel sphere (Figure 3A),
the spaces that were originally occupied by the PS beads remain as macropores after removing the
particle template, and mp-CA/GO has a uniform diameter of approximately 720 nm macropore
(Figure 3B). The surface appears more uneven in the mp-CA/GO with controlled pore structure than
CA (Figure 3C), this phenomenon is beneficial to adsorb metal ions. In addition, the diameter of
the pore structure can be regulated by changing the diameter of PS colloidal particle template, thus
allowing us to design the required pore size of materials.
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Figure 3. SEM photos of (A,B) mp-CA/GO/CA and (C) CA.

3.2. Effect of pH

In order to evaluate the effect of pH on adsorption performance, we conducted experiments at pH
values that range from one to seven. As can be seen in Figure 4, adsorption capacity of the as-prepared
mp-CA/GO increased significantly when the pH increased from one to three, and then remained
stable with a further increase in pH. This result can be due to the change in the ionic state of the amino
and carboxyl groups. When the mp-CA/GO was in strong acidic circumstance (pH < 3), functional
groups (amino and carboxyl) were protonated. However, amino and carboxyl groups are deprotonated
with an increase in the solution pH (3 ≤ pH ≤ 7) [10,24]. Therefore, mp-CA/GO has wide pH range to
meet the needs of real application.
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Figure 4. Effect of pH on metal ions adsorption. (~ 50 mg of mp-CA/GO was equilibrated with 50 mL
of 1.5 mM Pb2+, Cu2+, or Cd2+ at 25 ◦C for 40 min).

3.3. Effect of the Contact Time and Environmental Temperature

The effect of contact time on the adsorption behavior of mp-CA/GO was also evaluated
(Figure 5). The adsorption rate of Pb2+, Cu2+, and Cd2+ onto the mp-CA/GO was quite fast, thereby
completing the adsorption process within 40 min. The adsorption rate was clearly high at the
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initial adsorption period, possibly due to the controlled porous structures and abundant vacant sites
of aerogel. The diffusion rate of metal ions was accelerated through the nanoporous structure of
mp-CA/GO, thereby indicating the primary objective of preparing porous structure using PS colloidal
particles as template. Furthermore, pseudo-first-order and pseudo-second-order kinetic models have
been employed to investigate the adsorption kinetics during the adsorption process. The results
summarized in Table 1 show that the pseudo-second-order kinetic model fits well with the kinetic data
according to the values of R2, thus suggesting that chemical sorption is a rate determining step in the
adsorption process.
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Table 1. Kinetic parameters for Pb2+, Cd2+, and Cu2+ ions adsorption on the mp-CA/GO.

Kinetic Model Formula Parameters Pb2+ Cu2+ Cd2+

pseudo-first-order qt = qe(1 − exp(−k1t)) qe (mg g−1) 257.849 65.779 105.737
k1 (L min−1) 0.158 0.124 0.113

R2 0.962 0.975 0.968

pseudo-second-order qt = qe(1 − 1/(1 + qek2t)) qe (mg g−1) 268.284 69.985 109.589
k2 (L min−1) 0.004 0.002 0.002

R2 0.996 0.992 0.991

Furthermore, the effect of environmental temperature on the adsorption behavior for heavy
metal ions was also investigated. As seen in Figure 6, the adsorption capacity of the mp-CA/GO
increased slowly with the increase in temperature. However, its improvement in terms of adsorption
performance was vague, possibly because the large specific surface area and controlled porous structure
of mp-CA/GO allowed the metal ions to acquire additional binding sites and rapid ion diffusion rate on
the material. The adsorbent’s weak sensitivity to temperature is crucial to practical applications, thereby
enabling the mp-CA/GO to be potentially applied to the practical treatment of heavy metal ions.

Nanomaterials 2018, 8, x FOR PEER REVIEW  7 of 14 

 

Figure 5. Adsorption kinetics studies of the (A) Pb2+, (B) Cd2+, and (C) Cu2+. (~50 mg of mp-CA/GO 
was equilibrated with 50 mL of 1.5 mM Pb2+, Cu2+, or Cd2+ solution at 25 °C). 

Table 1. Kinetic parameters for Pb2+, Cd2+, and Cu2+ ions adsorption on the mp-CA/GO. 

Kinetic Model Formula Parameters Pb2+ Cu2+ Cd2+ 
pseudo-first-order qt = qe(1 − exp(−k1t)) qe (mg g−1) 257.849 65.779 105.737 

  k1 (L min−1) 0.158 0.124 0.113 
  R2 0.962 0.975 0.968 

pseudo-second-order qt = qe(1 − 1/(1 + qek2t)) qe (mg g−1) 268.284 69.985 109.589 
  k2 (L min−1) 0.004 0.002 0.002 
  R2 0.996 0.992 0.991 

 
Figure 6. Effect of the environmental temperature on metal ions adsorption. (~50 mg of mp-CA/GO 
was equilibrated with 50 mL of 1.5 mM Pb2+, Cu2+, or Cd2+ solution at different temperatures for 40 
min). 

3.4. Maximum Adsorption Capacity of the mp-CA/GO 

The maximum adsorption capacity is one of the most important features for the adsorbent. As 
seen in Figure 7, the adsorption capacity increases dramatically with the initial concentration from 
0.1 mM to four mM for the mp-CA/GO. After exceeding four mM, the increment in mp-CA/GO has 
leveled off, possibly because of the lack of adequate functional groups to accommodate additional 
metal ions. The maximum adsorption capacities of mp-CA/GO for Pb2+, Cu2+, and Cd2+ are 368.2, 98.1 
and 183.6 mg/g, respectively. These values are higher than most of the reported heavy metal ion 
adsorbents [25–43] (Table 2). 

 
Figure 7. Effect of the initial metal ion concentration on adsorption. (~50 mg of mp-CA/GO was 
equilibrated with 50 mL of Pb2+, Cu2+, or Cd2+ solution at 25 °C for 40 min). 

Figure 6. Effect of the environmental temperature on metal ions adsorption. (~ 50 mg of mp-CA/GO
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40 min).

3.4. Maximum Adsorption Capacity of the mp-CA/GO

The maximum adsorption capacity is one of the most important features for the adsorbent.
As seen in Figure 7, the adsorption capacity increases dramatically with the initial concentration from
0.1 mM to four mM for the mp-CA/GO. After exceeding four mM, the increment in mp-CA/GO has
leveled off, possibly because of the lack of adequate functional groups to accommodate additional
metal ions. The maximum adsorption capacities of mp-CA/GO for Pb2+, Cu2+, and Cd2+ are 368.2,
98.1 and 183.6 mg/g, respectively. These values are higher than most of the reported heavy metal ion
adsorbents [25–43] (Table 2).
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Table 2. Comparison of adsorption capacity of various adsorbent for Pb2+, Cu2+, and Cd2+.

Adsorbent Heavy Metals (Adsorbate) Maximum Adsorption
Capacity (mg/g)

Year of
Publication Reference

Amino functionalized mesoporous silica Pb2+, Ni2+, Cd2+ 57.7 (Pb2+), 12.4 (Ni2+), 18.3
(Cd2+)

2009 [25]

Nano-alumina Pb2+, Cr3+, Cd2+ 100.0 (Pb2+), 100.0 (Cr3+),
83.3 (Cd2+)

2010 [26]

Amino functionalized magnetic
graphenes composite Pb2+, Hg2+, Cr6+, Cd2+ 28.0 (Pb2+), 23.0 (Hg2+), 17.3

(Cr6+), 27.8 (Cd2+)
2014 [27]

Polydopamine microspheres Pb2+ 165.8 2017 [28]

Polyving alcohol/polyacrylic acid double
network gel Pb2+, Cd2+ 195.0 (Pb2+), 115.9 (Cd2+) 2015 [29]

Biochar-alginate capsule Pb2+ 263.2 2013 [30]

Polyaniline/calcium alginate composite Pb2+, Cu2+ 357.0 (Pb2+), 79.0 (Cu2+) 2012 [31]

Silica modified calcium alginate-xanthan
gum hybrid bead composite Pb2+ 18.9 2013 [32]

Activated carbon-calcium alginate
composite Pb2+ 15.7 2016 [33]

Alginate-SBA-15 composite Pb2+ 222.2 2013 [34]

Soy protein hollow microspheres Pb2+, Zn2+, Cr3+, Cd2+,
Cu2+, Ni2+

235.6 (Pb2+), 255.0 (Zn2+),
52.9 (Cr3+), 120.8 (Cd2+),
115.0 (Cu2+), 177.1 (Ni2+)

2013 [35]

Magnetic alginate beads Pb2+ 50 2012 [36]

γ-Fe2O3 nanoparticles Pb2+, Cu2+ 69.0 (Pb2+), 34.0 (Cu2+) 2017 [37]

Magnetic chitosan/graphene oxide
imprinted Pb2+ Pb2+ 79.0 2016 [37]

Chitosan coated calcium alginate Pb2+ 106.9 2016 [39]

Hydroxyapatite/chitosan porous
material Pb2+ 264.4 2015 [40]

Calcite-poly(ethyleneimine)
nanostructured rod Pb2+ 240 2013 [41]

Nanostructured
vaterite-poly(ethyleneimine) hybrid Pb2+ 2762 2014 [42]

Alginate-melamine hybrid Pb2+ 287.7 2018 [43]

mp-CA/GO Pb2+, Cu2+, Cd2+ 368.2 (Pb2+), 98.1 (Cu2+),
183.6 (Cd2+)

This work This work

To study the adsorption behavior and predict which adsorption system is favorable. Langmuir
adsorption isotherm and Freundlich adsorption isotherm models were applied in this study (Figure 8).
The isotherm constants were calculated from the experimental data and are presented in Table 3.
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The results show that the Langmuir isotherm appears to be a favorable model to supervise the
adsorption process, which indicates the adsorption process was a monolayer adsorption.
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Figure 8. (A) Langmuir and (B) Freundlich adsorption isotherms studies of the Pb2+, Cd2+, and Cu2+.
(~ 50 mg of mp-CA/GO was equilibrated with 50 mL of Pb2+, Cu2+, or Cd2+ solution at 25 ◦C for
40 min).

Table 3. Isotherm parameters for Pb2+, Cd2+, and Cu2+ ions adsorption on the mp-CA/GO.

Isotherm Model Formula Parameters Pb2+ Cu2+ Cd2+

Langmuir C/q = C/qe + 1/(qeb) qe (mg/g) 366.835 180.274 96.693
b (L/mg) 0.493 0.473 0.415

R2 0.994 0.998 0.995

Freundlich lgq = lgK + 1/nlgC K (L/mg) 5.263 3.863 3.573
n 2.163 1.663 1.862

R2 0.878 0.873 0.864

3.5. Adsorption Mechanism

In order to clarify the adsorption mechanism of the mp-CA/GO, we monitored the amount of each
metal ion in the adsorption process. It can be seen from Figure 9 that the mole amount of Pb2+, Cu2+

and Cd2+ in the solution decreased while Ca2+ increased as the reaction proceeded. This illustrates
that, in the first adsorption process, the adsorption of heavy metal ions is mainly completed by ion
exchange. However, the mole amount of the adsorbed Pb2+, Cu2+, or Cd2+ is higher than that of the
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desorbed Ca2+ during the different adsorption periods, indicating that the ion exchange is only one of
the mechanisms. In order to fully understand the essence of adsorption, we further analyzed the O
one s spectra before and after Pb2+, Cu2+, and Cd2+ adsorption (Figure 10). The two peaks at 530.88
and 529.767 eV in the O one s spectrum are attributed to the oxygen-containing functional groups.
New peaks appeared at 530.461, 530.728, and 530.866 eV, respectively, after the adsorption of Pb2+,
Cu2+, and Cd2+, indicating that the oxygen groups of on mp-CA/GO were involved in chemisorption
of Pb2+, Cu2+, and Cd2+. Therefore, the excellent adsorption performance of mp-CA/GO is attributed
to the combined action of chemical coordination and ion exchange.
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3.6. Regeneration Research

In the regeneration process, the mp-CA/GOs that were individually loaded with Pb2+, Cu2+, and
Cd2+ were immersed into 50 mL of 0.07 M HNO3 solution. Then, the mp-CA/GO was separated and
washed sequentially with DI water, calcium hydroxide solution, and then DI water till the final eluent
to neutral.

The recyclability of mp-CA/GO is depicted in Figure 11. The mp-CA/GO could remove Pb2+,
Cu2+ and Cd2+ after 20 adsorption-desorption cycles with a performance loss within five %, possibly
attributed to the GO, as reinforcing fillers, to maintain the mechanical strength and elasticity of
mp-CA/GO during the continuous adsorption-desorption process.Nanomaterials 2018, 8, x FOR PEER REVIEW  12 of 14 
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4. Conclusions

In this study, the mp-CA/GO with controlled pore structure was used as an efficient solid
adsorbent to remove heavy metal ion in wastewater. The fabrication of a controlled porous structure
has two advantages. First, the porous structure increases the surface area of the material itself,
thereby enabling the adsorbent material to provide additional binding sites for heavy metal ions.
The removal rates for Pb2+, Cu2+, and Cd2+ were 95.4%, 81.2%, and 73.2%, respectively. Second,
existing porous structure significantly accelerates the diffusion rate of ions in the adsorption process,
thus enabling the adsorption process to complete within 40 min. Furthermore, the mp-CA/GO
could be regenerated through a simple acid washing process and used repeatedly with little loss in
performance. Additionally, the wide pH application range and the weak sensitivity to temperature
also allowed the mp-CA/GO to be potentially applied to actual heavy metal sewage treatment.
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