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Abstract: In this study, we sought to enhance the output power and conversion efficiency of
textured silicon solar cells by layering two-dimensional indium nanoparticles (In NPs) within
a double-layer (SiNx/SiO2) antireflective coating (ARC) to induce plasmonic forward scattering.
The plasmonic effects were characterized using Raman scattering, absorbance spectra, optical
reflectance, and external quantum efficiency. We compared the optical and electrical performance of
cells with and without single layers and double layers of In NPs. The conversion efficiency of the
cell with a double layer of In NPs (16.97%) was higher than that of the cell with a single layer of In
NPs (16.61%) and greatly exceeded that of the cell without In NPs (16.16%). We also conducted a
comprehensive study on the light-trapping performance of the textured silicon solar cells with and
without layers of In NPs within the double layer of ARC at angles from 0◦ to 75◦. The total electrical
output power of cells under air mass (AM) 1.5 G illumination was calculated. The application of
a double layer of In NPs enabled an impressive 53.42% improvement in electrical output power
(compared to the cell without NPs) thanks to the effects of plasmonic forward scattering.

Keywords: indium nanoparticles (In NPs); textured silicon solar cells; antireflective coating (ARC);
plasmonic forward scattering

1. Introduction

Most commercial solar cells are fabricated using a silicon-based wafer ranging in thickness from
150 to 200 micrometers. Light trapping in crystalline silicon solar cells is generally achieved using
a pyramidal structure with an antireflective coating on the surface. This combination allows for the
multiple reflection and scattering of incident light within the solar cell [1–8]. Metallic nanoparticles
(NPs) [9–12] of silver (Ag NPs) [13–16], gold (Au NPs) [17–20], and aluminum (Al NPs) [21–24] have
been applied to the front and/or rear-side surfaces of silicon solar cells to increase light trapping
and enhance photovoltaic performance. Metallic NPs can be resonantly coupled with incident light,
thereby allowing a portion of the light to be scattered into the absorber layer. Far-field forward light
scattering from metallic NPs and a near-field enhanced localized field in the vicinity of the metallic
NPs have been shown to boost the conversion efficiency of photovoltaic devices [9,25]. Researchers
have investigated the use of various metallic materials in these devices. They have also controlled
the dimensions, shapes, spacing, and surrounding dielectric environments of the NPs to enhance
resonant plasmonic scattering [9,11]. In addition, a dielectric-based (TiO2) photonic structure using
colloidal-lithographed processing was also proposed for light trapping in thin film photovoltaics [26].
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Indium nanoparticles (In NPs) exhibit plasmonic resonance in the ultraviolet range (below 280 nm)
and broadband plasmonic light scattering from visible and near-infrared wavelengths [27–29], which
makes them capable of boosting the conversion efficiency of photovoltaic devices. However, there has
been relatively little research on the embedding of In NP sheets within a double-layer antireflective
coating (DL-ARC) to enhance the photovoltaic performance of textured silicon solar cells [30–33].

In this study, we examined the plasmonic light scattering of In NPs of various dimensions, which
were embedded in a coating of SiO2 with a DL-ARC structure (SiNx/SiO2) for use in textured silicon
solar cells. The plasmonic effects of samples with single and double layers of In NPs were characterized
according to Raman scattering, absorbance, optical reflectance, and external quantum efficiency (EQE).
We also measured the EQE and photovoltaic current-voltage (I-V) as a function of incident angle using
cells with and without In NPs. We then calculated the total output electrical power of cells under
AM 1.5 G illumination. The application of a double layer of In NPs enabled an impressive 53.42%
improvement in output electrical power (compared to the cell without NPs) thanks to the effects of
plasmonic forward scattering. The novelty of this study includes (a) the enhancement in output power
and conversion efficiency of textured silicon solar cells by layering two-dimensional In NPs within a
DL-ARC, and (b) a comprehensive study on the light-trapping performance of the textured silicon
solar cells with and without layers of In NPs within the DL-ARC at angles from 0◦ to 75◦, both of
which are issues beyond the scope of previous studies [30–33].

2. Experiments

2.1. Characterization of Plasmonic Effects from Indium Nanoparticle Layers Embedded in SiO2 Coating

Quartz substrates were used as a test template to characterize the plasmonic effects of indium
nanoparticles in the UV-VIS band, due to their high transparency (low absorption) at UV-band
wavelengths. Figure 1 presents a schematic diagram of (a) an SiO2 coating (90 nm) deposited on a
quartz substrate, (b) a single layer of In NPs embedded in a SiO2 coating (90 nm), and (c) a double
layer of In NPs embedded in a SiO2 coating (90 nm). The SiO2 layer and In NPs were deposited
using electron-beam (e-beam) evaporation. The In NPs were formed by depositing indium films at
thicknesses of 3.8, 5, and 7 nm directly on the quartz substrate or the SiO2 coating and then applying
rapid thermal annealing (RTA) at 200 ◦C under H2. The average surface coverage and average diameter
of the In NPs were as follows: 3.8 nm (36.75% and 20.13 nm), 5 nm (41.83% and 25.03 nm), and 7 nm
(46.46% and 32.14 nm). These results were calculated using image-J software from corresponding SEM
images. Sample (b) was fabricated by applying a layer of In NPs on the quartz substrate and then
capping it with a 90-nm coating of SiO2. Sample (c) was fabricated by applying an initial layer of
In NPs on the quartz substrate and covering it with a 20-nm spacer layer of SiO2 before applying a
second layer of In NPs over the spacer layer and capping it with an additional 70-nm coating of SiO2.
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Figure 1. Schematic diagrams of proposed samples: (a) SiO2 coating (90 nm) deposited on quartz
substrate; (b) single layer of In NPs embedded in SiO2 coating (90 nm) on quartz substrate; and (c)
double layer of In NPs embedded in SiO2 coating (90 nm).

The plasmonic effects of the In NPs (single and double layers) were examined using Raman
scattering and absorbance measurements. Raman scattering spectra were collected using a Raman
spectrometer (UniRAM, UniNanoTech Co., Yongin-si, Giheung-gu, Korea) with a 532-nm laser



Nanomaterials 2018, 8, 1003 3 of 12

(approximately 3 mW), with the signal accumulated over a period of 30 s. The observed shifts
in the Raman peaks and variations in Raman signal intensity revealed that the plasmonic effects
depend on the number of NP layers and the dimensions of the In NPs they comprise. Absorbance
spectra were collected using a miniature spectrometer (USB4000-VIS-NIR, Ocean Optics, Inc., Largo,
FL, USA) with a deuterium tungsten light source (200–2000 nm) and reflective integrating sphere
(diameter of 5 cm). The obtained absorbance spectrum revealed the intensity of surface plasmon
resonance (SPR) and the SPR absorption band induced by In NPs. Both measurements were also
obtained from the sample without In NPs (as a control) to confirm the plasmonic effects of In NPs
layered within the SiO2 coating.

2.2. Fabrication and Characterization of Plasmonic Textured Silicon Solar Cells

Boron-doped (P-type) crystalline silicon wafers with a (100) orientation and resistivity of 10 Ω-cm
were cut to a thickness of 150 µm to use them as a base material for textured silicon solar cells.
Following standard Radio Corporation of America (RCA) cleaning, the saw-damaged surface of the
silicon wafers was removed by dipping them in a solution of H2O/KOH (Potassium). The surface of
the wafer was then etched by dipping it in a solution of H2O/KOH/IPA (Isopropanol) at 80 ◦C for
20 min to create a surface texture in the form of randomly-arranged pyramidal structures. The textured
wafers then underwent RCA cleaning prior to the application of an n+-Si emitter layer with a sheet
resistance of approximately 80 Ω/sq using a POCl3 diffusion process in a tube diffusion chamber
at 850 ◦C over a period of 3 min. The wafer was then cut into samples of 10 mm2. The oxide layer
that formed on the surface of the samples was removed using hydrogen fluoride (HF) solution prior
to the deposition of an Al film with a depth of 2 µm on the rear surface using e-beam evaporation.
The as-deposited wafer was then annealed at 450 ◦C for 5 min to form a back electrode with a good
ohmic contact to the p-silicon. Plasma-enhanced chemical vapor deposition (PECVD) was used to
deposit a 70-nm silicon nitride film on the front surface as an antireflective coating. Finally, top contact
grid-electrodes were formed from a Ti film (20 nm) and Al film (10,000 nm) using photolithographic
etching, e-beam evaporation, and lift-off processes. The resulting textured silicon solar cells (as shown
in Figure 2a) underwent characterization in terms of optical and electrical performance for use as a
reference by which to evaluate the performance of the plasmonic solar cells.

Figure 2 presents schematic diagrams showing the silicon solar cells tested in this study: 2(a)
presents the bare reference silicon solar cell; 2(b) shows the solar cell with an SiO2 coating (90 nm)
without In NPs (DL-ARC; SiNx/SiO2); 2(c) shows the solar cell with an SiO2 coating (90 nm) embedded
with a single layer of In NPs; 2(d) shows the solar cell with an SiO2 coating (90 nm) embedded with a
double layer of In NPs (same dimensions in each layer) separated by a 20-nm SiO2 spacer layer. Note
that the total thickness of the SiO2 coatings and embedded layers was maintained at 90 nm.

As described in Section 2.1, the layers of In NPs were fabricated by depositing indium film using
e-beam evaporation with thicknesses of 3.8 nm, 5 nm, and 7 nm, followed by annealing in an RTA
chamber at 200 ◦C under H2 for 30 min. A scanning electron microscope (SEM; Hitachi S-4700, Hitachi
High-Tech Fielding Corporation, Tokyo, Japan) was used to characterize the sample surfaces and
cross-sections. Optical reflectance (Lambda 35, PerkinElmer, Inc., Waltham, MA, USA) and external
quantum efficiency (EQE; Enli Technology Co., Ltd., Kaohsiung, Taiwan) measurements were used to
assess the plasmonic effects of the In NPs layers embedded within the SiO2 coating. The photovoltaic
performance of the textured silicon solar cells (with and without In NPs layers) was assessed in terms
of photovoltaic current-voltage (I-V) under AM 1.5 G illumination. The solar simulator (XES-151S,
San-Ei Electric Co., Ltd., Osaka, Japan) was calibrated using a National Renewable Energy Laboratory
(NREL)-certified crystalline silicon reference (PVM-894, PV Measurements Inc., Boulder, CO, USA)
prior to measurement.
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Figure 2. Schematic illustrations showing cells evaluated in this study: (a) reference textured silicon
solar cell; (b) reference cell with SiO2 coating (90 nm); (c) reference cell with SiO2 coating (90 nm)
embedded with single layer of In NPs; and (d) reference cell with SiO2 coating (90 nm) embedded with
double layer of In NPs.

2.3. EQE and Photovoltaic Performance of Plasmonic Textured Silicon Solar Cells under Incident Light of
Various Angles

We evaluated the textured silicon solar cells with and without In NP layers in terms of EQE
response and photovoltaic I-V curves under illumination by an incident light source of various angles
(θ), ranging from 0◦ to 75◦, as shown in Figure 3. The light source was fixed above a stage that
could be rotated from 0◦ to 90◦. The light source was calibrated using an NREL-certified crystalline
silicon reference cell at 0◦ prior to measurement. The output power of the cells was calculated at each
incident angle to compare the total output power under daylight illumination (from AM 0700 to PM
1700). The incident angles were meant to simulate illumination at various times, as follows: 0◦ (noon),
45◦ (AM 0900/PM 1500), and 75◦ (AM 0700/PM 1700).
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3. Results and Discussion

Figure 4a presents the Raman spectra of samples with the following configurations: (1) quartz
substrate/SiO2 layer; (2) quartz substrate/SiO2 coating embedded with single layers of In NPs of
various sizes (3.8 nm, 5 nm, and 7 nm); and (3) quartz substrate/SiO2 coating embedded with double
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layers of In NPs of various sizes (3.8 nm, 5 nm, and 7 nm). Compared to the sample with a quartz
substrate/SiO2 coating, the samples with In NPs presented shifts in the Raman peaks at 1181, 1362,
and 1485 cm−1. Generally, peaks in the Raman signal from metallic nanoparticles are an indication
of SPR under a light source of specific wavelengths. We also observed an increase in the intensity of
the Raman signals with an increase in the particle size and the number of NP layers. Thus, the most
pronounced plasmonic effects were observed in the samples with a double layer of In NPs of 7 nm.
Figure 4b presents the absorption spectra of samples with the following configurations: (1) quartz
substrate/SiO2 coating; (2) quartz substrate/SiO2 coating embedded with single layers of In NPs of
various sizes (3.8 nm, 5 nm, and 7 nm); and (3) quartz substrate/SiO2 coating embedded with double
layers of In NPs of various sizes (3.8 nm, 5 nm, and 7 nm). The fact that the peak absorption occurred
at approximately 200 nm indicates that the principal absorption of incident light occurred in the quartz
substrate due to the bandgap of the quartz substrate (approximately 6 eV). Compared to the quartz
substrate/SiO2 coating sample, the sample with a single layer of In NPs presented a higher absorption
band between 220 and 300 nm, with peak absorption at approximately 260 nm. The samples with a
double layer of In NPs presented far higher absorption values due to the higher density of the indium
nanoparticles and the effects of light coupling between the two nanoparticle layers.
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Figure 4. (a) Raman spectra; (b) absorption spectra of all tested samples.

Figure 5a,b present top-view SEM images of textured silicon solar cells without and with In NPs,
respectively. These images show that the minimum and maximum spacing between pyramids on
the textured surface was 4 µm and 8 µm, respectively. The minimum and maximum heights were
4 and 7 µm, respectively. Figure 5c presents a particle profile of In NPs (7 nm) within the textured
surface. This profile was generated from the inset of Figure 5b. The size distribution and coverage
were calculated using Image-J software (National Institutes of Health, Bethesda, MD, USA). Figure 5d
presents a side-view SEM image of a sample with a double layer of In NPs (7 nm) embedded within
the SiO2 coating on a GaAs substrate. The GaAs substrate was used to examine the layer(s) of indium
nanoparticles embedded in the SiO2 coating due to the ease with which it can be cleaved to a strip-bar
for side-view SEM examination. In this 2D profile, it is easy to differentiate the first and second layers
of indium nanoparticles within the SiO2 coating.
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Figure 6a presents the optical reflectance of the reference textured silicon solar cell (Ref. Cell), the
cell with an SiO2 coating without In NPs (ARC Cell), and cells with an SiO2 coating embedded with a
single layer of indium nanoparticles of 3.8, 5 and 7 nm (SL-NPs Cell). The average weighted reference
(RW) was calculated from the wavelength range of 380–1000 nm, as listed in Table 1. For the sake of
clarity, we calculated the RW of the cells as follows:

RW =

∫ 1000 nm
380 nm R(λ)ϕph(λ)dλ∫ 1000 nm

380 nm ϕph(λ)dλ
× 100% (1)

where R(λ) is the optical reflectance at a given wavelength (λ) and ϕph (λ) is the photon flux of AM 1.5
G at that wavelength (λ). The RW of the cells with In NPs was lower than that of the reference cell
due to SPR absorption in the wavelength range of 200–350 nm (Figure 4b) and plasmonic forward
scattering beyond 600 nm, both of which were induced by the In NPs. The low RW indicates that the
NPs enabled more of the incident light to be trapped in the silicon. Samples with larger nanoparticles
(7 nm) presented lower RW values (3.34%) than the samples with 3.8-nm nanoparticles (3.78%). Again,
we can see that larger In NPs were able to trap more of the incident light. We therefore fabricated
samples with two layers of larger In NPs (7 nm) for further study and comparison. Figure 6b presents
the optical reflectance of the reference cell, the cell with an SiO2 coating (no NPs), and cells with single
and double layers of In NPs of 7 nm (DL-NPs Cell). We calculated the RW of all tested cells over a
wavelength range of 380–1000 nm, the results of which are listed in Table 1. The lowest RW value
(2.32%) was obtained from the cell with the double layer of In NPs embedded within the SiO2 coating.
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Figure 6. Optical reflectance: (a) reference cell, cell with SiO2 coating (no In NPs), cell with single layer
of In NPs (3.8 nm, 5 nm, and 7 nm) embedded in SiO2 coating; (b) cell with double layer of In NPs
(7 nm) embedded in SiO2 coating.

Table 1. Average Weighted Reference (RW) and Average Weighted External Quantum Efficiency
(EQEW) of Proposed Cells.

Silicon Solar Cell RW (%)
@ 380–1000 nm

EQEW (%)
@ 380–1000 nm

Ref. Cell 4.58 88.82
DL-ARC 4.15 89.87

SL-In NPs (3.8 nm) Cell 3.78 90.13
SL-In NPs (5 nm) Cell 3.54 90.45
SL-In NPs (7 nm) Cell 3.34 91.35
DL-In NPs (7 nm) Cell 2.32 92.74

Figure 7a presents the EQE response of the reference solar cell, the cell with an SiO2 coating (no
In NPs), and cells with a single layer of In NPs of various sizes (3.8, 5, and 7 nm) embedded in an SiO2

coating. The EQE values of cells with In NPs were higher than those without In NPs across the entire
wavelength range, due to the effects of plasmonic forward scattering induced by the NPs. The EQE
values of cells with larger NPs were slightly higher than those with smaller NPs. The EQE response
values are in good agreement with the optical reflectance results. Figure 7b presents the EQE response
of the reference cell, the cell with a SiO2 coating (no In NPs), and cells with either a single layer of
In NPs (7 nm) or a double layer of In NPs (7 nm). For the sake of clarity, we calculated the average
weighted EQE (EQEW) of the cells as follows:

EQEW =

∫ 1000 nm
380 nm EQE(λ)ϕph(λ)dλ∫ 1000 nm

380 nm ϕph(λ)dλ
× 100% (2)

where EQE(λ) is the EQE at a given wavelength (λ) and ϕph(λ) is the photon flux of AM 1.5 G at
that wavelength (λ). The EQEW values were as follows: double layer of 7-nm In NPs (92.74%), single
layer of 7-nm In NPs (91.35%), SiO2 coating without NPs (88.97%), and reference cell (88.82%). Table 1
summarizes the EQEW of the cells calculated over a wavelength range of 380–1000 nm. The EQE
values of cells with double layers of In NPs exceeded those of cells with a single layer due to the higher
density of NPs and more pronounced plasmonic forward scattering.
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Figure 7. EQE response values: (a) reference cell, cell with SiO2 coating (no NPs), and cell with single
layer of In NPs (3.8 nm, 5 nm, and 7 nm); (b) reference cell, cell with SiO2 coating (no NPs), cell with
single layer of In NPs (7 nm), and cell with double layer of In NPs (7 nm).

Figure 8a presents the photovoltaic J-V curves obtained from the reference cell, the cell with an
SiO2 coating (no In NPs), and cells with a single layer of In NPs of various sizes (3.8, 5, and 7 nm)
under normal incident illumination (θ = 0◦). The short-circuit current densities (Jsc) and conversion
efficiency (η) values were as follows: single layer of 7-nm NPs (40.26 mA/cm2 and 16.61%), single layer
of 5-nm NPs (39.95 mA/cm2 and 16.51%), single layer of 3.8-nm NPs (39.77 mA/cm2 and 16.44%),
SiO2 coating without NPs (39.61 mA/cm2 and 16.34%), and reference cell (39.19 mA/cm2 and 16.16%).
The Jsc values of cells with NPs were higher due to plasmonic forward scattering than those without
NPs. The Jsc values of cells with larger NPs were slightly higher than those of cells with smaller NPs,
due to stronger plasmonic forward scattering.
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Figure 8. Photovoltaic I-V curves: (a) reference cell, cell with SiO2 coating (no NPs), and cell with 
single layer of In NPs (3.8 nm, 5 nm, and 7 nm); (b) reference cell, cell with SiO2 coating (no NPs), and 
cell with double layer of In NPs (7 nm). The inset in Figs. 8a and 8b is an enlarge graph of Jsc of all 
evaluated cells at voltage 0−0.15 V. 

Table 2. Photovoltaic Performance of Proposed Cells Under AM 1.5 G Illumination at Normal 
Incidence. 

Silicon Solar Cell Jsc (mA/cm2) Voc (mV) Fill Factor (%) η (%) △Jsc (%) △η (%) 
Ref. Cell 39.19 609.40 67.68 16.16 --- --- 
ARC Cell 39.61 609.50 67.70 16.34 1.07 1.11 

SL-In NPs (3.8 nm) Cell 39.77 609.51 67.85 16.44 1.47 1.73 
SL-In NPs (5 nm) Cell 39.95 609.52 67.84 16.51 1.93 2.16 
SL-In NPs (7 nm) Cell 40.26 609.53 67.72 16.61 2.73 2.78 
DL-In NPs (7 nm) Cell 40.92 609.50 68.05 16.97 4.41 5.01 

Figure 8. Photovoltaic I-V curves: (a) reference cell, cell with SiO2 coating (no NPs), and cell with
single layer of In NPs (3.8 nm, 5 nm, and 7 nm); (b) reference cell, cell with SiO2 coating (no NPs),
and cell with double layer of In NPs (7 nm). The inset in Figure 8a,b is an enlarge graph of Jsc of all
evaluated cells at voltage 0−0.15 V.

Figure 8b presents the photovoltaic J-V curves of cells with a single layer of 7-nm In NPs and a
double layer of 7-nm In NPs. The photovoltaic performance of the proposed cells is summarized in
Table 2. Adding the second layer of In NPs increased the Jsc value from 40.26 to 40.92 mA/cm2, and
the η value from 16.61% to 16.97%, compared to a single layer of In NPs (7 nm). Adding two layers of
In NPs (7 nm) increased the Jsc value from 39.61 to 40.92 mA/cm2, and the η value from 16.34% to
16.97%, compared to DL-ARC without In NPs. These results demonstrate that using larger In NPs and
including multiple layers of In NPs facilitates the trapping of incident light and enhances Jsc and η,
due to stronger plasmonic forward scattering.
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Table 2. Photovoltaic Performance of Proposed Cells Under AM 1.5 G Illumination at Normal Incidence.

Silicon Solar Cell Jsc (mA/cm2) Voc (mV) Fill Factor (%) η (%) ∆Jsc (%) ∆η (%)

Ref. Cell 39.19 609.40 67.68 16.16 — —
ARC Cell 39.61 609.50 67.70 16.34 1.07 1.11

SL-In NPs (3.8 nm) Cell 39.77 609.51 67.85 16.44 1.47 1.73
SL-In NPs (5 nm) Cell 39.95 609.52 67.84 16.51 1.93 2.16
SL-In NPs (7 nm) Cell 40.26 609.53 67.72 16.61 2.73 2.78
DL-In NPs (7 nm) Cell 40.92 609.50 68.05 16.97 4.41 5.01

Figure 9 presents the EQEW and Jsc of the reference cell, the cell with an SiO2 coating (no NPs),
and cells with single and double layers of In NPs under incident angles of 0◦–75◦. Increasing the
incident angle resulted in a gradual decrease in EQEW and Jsc values in all tested cells. Compared to
cells without NPs, we obtained higher EQEW and Jsc values from cells with single and double layers
of In NPs at all incident angles. At a high incident angle of 75◦, the double layer cells presented a Jsc

decrement of 25.2% (from 40.92 to 30.06 mA/cm2), compared to the decrement of 76.3% (from 39.61 to
9.38 mA/cm2) from cells without NPs. Overall, Jsc was proportional to EQE and η was proportional to
Jsc in all of the photovoltaic devices. This means that a higher Jsc would no doubt result in a higher
electrical output, as well as a higher conversion efficiency.
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the Eday values of the cell with an SiO2 coating and the reference cell were 94.92 and 92.15 mW·h, 
respectively. Using these as reference values, the inclusion of a single layer of In NPs (7 nm) increased 
Eday by 20.24% and 23.85%, respectively. The inclusion of a double layer of In NPs (7 nm) increased 
Eday by 48.95% and 53.42%, respectively. 

Figure 9. (a) EQE and (b) Jsc as a function of incident angle of reference cell, cell with SiO2 coating (no
NPs), cell with single layer of In NPs (7 nm), and cell with double layer of In NPs (7 nm).

Figure 10a presents the calculated electrical output power of all evaluated solar cells under
illumination from −75◦ to 0◦ (sun rising; i.e., AM 0700 to noon) and then from 0◦ to 75◦ (sun descending;
i.e., noon to PM 1700). At all illumination times/angles, the output power of cells with a double layer
of In NPs exceeded that of cells with a single layer and cells without NPs. Figure 10b presents the daily
output energy of all evaluated solar cells. For the sake of clarity, we calculated the electrical output
power (PE) and the daily output energy (Eday) of the cells as follows:

PE = Voc × Jsc × FF (3)

where Voc is the open-circuit voltage, Jsc is the short-circuit current density, and FF is the fill factor.
The total PE values of cells with an area of 10 mm2 were as follows: double layer of 7-nm NPs
(141.38 mW), single layer of 7-nm NPs (114.13 mW), SiO2 coating (94.92 mW), and reference cell
(92.15 mW).

Eday =
i=PM1700

∑
i=AM0700

(PE)i × 1 hour (4)
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the Eday values of the cell with an SiO2 coating and the reference cell were 94.92 and 92.15 mW·h,
respectively. Using these as reference values, the inclusion of a single layer of In NPs (7 nm) increased
Eday by 20.24% and 23.85%, respectively. The inclusion of a double layer of In NPs (7 nm) increased
Eday by 48.95% and 53.42%, respectively.Nanomaterials 2018, 8, x FOR PEER REVIEW  10 of 12 
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Figure 10. (a) Output electrical power; (b) output electrical energy of all tested solar cells under 
illumination at incidence angles from −75° to 0° (sun rising) and from 0° to 75° (sun descending). 

4. Conclusions 

In this study, we examined the light trapping effects of In NPs according to optical reflectance 
and EQE measurements, with a particular focus on the dimensions of the NPs and the number of 
layers of NPs. A double layer of In NPs within the antireflective coating resulted in pronounced 
plasmonic forward scattering, which greatly enhanced the output power and conversion efficiency 
of the textured silicon solar cells. The inclusion of a double layer of In NPs increased the conversion 
efficiency from 16.16% to 16.97%, compared to the reference cell without In NPs. We also examined 
the light-trapping performance of cells with and without In NPs at incidence angles from 0° to 75°. 
At all angles, the output power delivered from cells with a double layer of In NPs exceeded that of 
cells with a single layer and those without NPs. The cumulative output power (one day) delivered 
by the cell with an area of 10 mm2 with a double layer of In NPs was 141.38 mW, which greatly 
exceeds the 94.92 mW of the cell without In NPs. 
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Figure 10. (a) Output electrical power; (b) output electrical energy of all tested solar cells under
illumination at incidence angles from −75◦ to 0◦ (sun rising) and from 0◦ to 75◦ (sun descending).

4. Conclusions

In this study, we examined the light trapping effects of In NPs according to optical reflectance
and EQE measurements, with a particular focus on the dimensions of the NPs and the number of
layers of NPs. A double layer of In NPs within the antireflective coating resulted in pronounced
plasmonic forward scattering, which greatly enhanced the output power and conversion efficiency
of the textured silicon solar cells. The inclusion of a double layer of In NPs increased the conversion
efficiency from 16.16% to 16.97%, compared to the reference cell without In NPs. We also examined
the light-trapping performance of cells with and without In NPs at incidence angles from 0◦ to 75◦.
At all angles, the output power delivered from cells with a double layer of In NPs exceeded that of
cells with a single layer and those without NPs. The cumulative output power (one day) delivered by
the cell with an area of 10 mm2 with a double layer of In NPs was 141.38 mW, which greatly exceeds
the 94.92 mW of the cell without In NPs.
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