

Supporting Information

Porous carrageenan-derived carbons for efficient ciprofloxacin removal from water

João Nogueira ¹, Maria António ¹, Sergey M. Mikhalev ², Sara Fateixa ¹, Tito Trindade ¹ and
 Ana L. Daniel-da-Silva ^{1,*}

CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro,
 Portugal; jh.nogueira@ua.pt (J.N.); maantonio@ua.pt (M.A.); sarafateixa@ua.pt (S.F.); tito@ua.pt (T.T.)

- Portigal, Jimoguerrae dalpe (in ti), Induction of dalpe (in ti), Saturde dalpe (in ti), Indocating (ITT)
 Centre for Mechanical Technology and Automation Nanotechnology Research Group (TEMA-NRD), Mechanical Engineering Department, Aveiro Institute of Nanotechnology (AIN), University of Aveiro,
- 10 3810-193 Aveiro, Portugal; mikhalev@ua.pt
- 11 * Correspondence: ana.luisa@ua.pt; Tel.: +351-234-370-368
- 12

1

Figure S1. Powder XRD pattern of carrageenan (ι- and λ-type; left and right, respectively) derived
 carbons before (HC) and after activation (AC).

16

Table S1. Selected infrared bands (cm⁻¹) for the materials and respective assignments^a.

	Hydrothermal carbons			Activated carbons		
Assignment	НС-к	HC-1	ΗC-λ	АС-к	AC-1	ΑС-λ
ν(O-H)	3273 (vs)	3221 (vs)	3315 (vs)			
v(C-H) aliphatic	2926 (s) 2879 (s)	2922 (s) 2879 (s)	2926 (s) 2879 (s)			
ν(C=O)	1693 (s)	1695 (s)	1695 (s)			
ν(C=C)	1606	1606	1606	1560-1520	1560-1520	1560-1520
aromatic	(vs)	(vs)	(vs)	(vs)	(vs)	(m)
δ(C-O)	1290 (vs)	1292 (vs)	1298 (vs)			
C-H aromatic	798 (s)	798 (s)	798 (s)			

17 ^a vs – very strong; s – strong; m– medium; v – stretching vibration; δ – deformation vibration

18 B. CIP Adsorption Modelling

20

Figure S2. Speciation of CIP [1,2]

Table S2. Isotherm models and parameters [3-6]. Model Equation (non-linear form) **Parameters** q∟ is the monolayer adsorption capacity (mg.g⁻¹) $q_e = \frac{q_L K_L C_e}{1 + K_L C_e}$ KL is the Langmuir isotherm constant (L.mg⁻¹), Langmuir related to the affinity of binding sites. K_F is the Freundlich constant (mg^(1-1/n).L^(1/n).g⁻¹) $q_e = K_F C_{\rho}^{\frac{1}{n}}$ Freundlich 1/n is the heterogeneity factor; n is usually between 1 and 10 (dimensionless) NT is the total number of binding sites (mg.g⁻¹) a is related to the median binding affinity k $q_e = \frac{N_T a C_e^m}{1 + a C_e^m}$ Sips (a=k^m) m is the heterogeneous index (dimensionless, 0 < m < 1)

22

23

Table S3. Kinetic models and parameters. q_t and q_e (mg. g⁻¹) are the adsorption capacity at time t and equilibrium time, respectively [7,8].

Model	Equation (non-linear form)	Parameters	
Decudo 1st order	$a = a (1 - a^{-k_1 t})$	k1 - equilibrium rate constant of	
	$q_t = q_e(1 - e^{-\alpha_1 t})$	pseudo 1 st order adsorption (min ⁻¹).	
	$k = 2^{2}t$	k2 - equilibrium rate constant of	
Pseudo 2 nd order	$q_t = \frac{\kappa_2 q_e t}{1 + k_e t}$	pseudo 2 nd order adsorption (g.mg-	
	$1 + \kappa_2 q_e t$	¹ .min ⁻¹).	

²⁴

The goodness of the fittings was determined based on the calculation of the correlation coefficient (R^2) (S1) and Chi-square test value (χ^2) (S2), expressed by the following equations respectively:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(S1)
$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{i})^{2}}{\hat{y}_{i}}$$
(S2)

where y_i and \hat{y}_i are the experimental and model predicted values respectively, \bar{y} is the mean of the experimental data and *n* is the sample size.

²¹

30Figure S3. Time profile of CIP adsorption capacity over 24h and corresponding kinetic model fitting31using pseudo 1st and pseudo 2nd order equations: AC-κ (a), AC-ι (b), AC-λ (c).

32 References

- Carmosini, N.; Lee, L.S. Chemosphere Ciprofloxacin sorption by dissolved organic carbon from
 reference and bio-waste materials. *Chemosphere* 2009, 77, 813–820,
 doi:10.1016/j.chemosphere.2009.08.003.
- Drakopoulos, A.I.; Ioannou, P.C. Spectrofluorimetric study of the acid-base equilibria and complexation
 behavior of the fluoroquinolone antibiotics ofloxacin , norfloxacin , ciprofloxacin and pefloxacin in
 aqueous solution. *Anal. Chim. Acta* 1997, 354, 197–204.
- 39 3. Langmuir, I. The adsorption of gases on plance surfaces of glass, mica and platnium. *J. Am. Chem. Soc.*40 1918, 40, 1361–1403, doi:10.1021/ja02242a004.
- 4. Freundlich, H. Concerning Adsorption in Solutions. Zeitschrift fur physikalische chemie-stochiometrie
 42 und verwandtschaftslehre. *Phys. Chem.* **1906**, *57*, 385–470.
- 43
 5.
 Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495, doi:10.1007/978-1-4614

 44
 5836-4_45.
- 45 6. Umpleby, R.J.; Baxter, S.C.; Chen, Y.; Shah, R.N.; Shimizu, K.D. Characterization of Molecularly
 46 Imprinted Polymers with the Langmuir-Freundlich Isotherm. *Anal. Chem.* 2001, *73*, 4584–4591.
- 47 7. Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska
 48 Vetenskapsakademiens. *Handlingar* 1989, 24, 1–39.
- 49 8. Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. *Process Biochem.* 1999, 34, 451–
 50 465, doi:10.1016/S0032-9592(98)00112-5.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).