Supplementary Material

## Preparation and Characterization of Polyvinylpyrrolidone/Cellulose Nanocrystals Composites

Marina Voronova <sup>1</sup>, Natalia Rubleva <sup>1</sup>, Nataliya Kochkina <sup>1</sup>, Andrei Afineevskii <sup>2</sup>, Anatoly Zakharov <sup>1</sup> and Oleg Surov <sup>1,\*</sup>



Figure S1. TEM image of CNC. The scale bar is 100 nm.

| Table S1. CNC character | ristics. |
|-------------------------|----------|
|-------------------------|----------|

| Parameter                                             | <b>CNC</b> characteristics |
|-------------------------------------------------------|----------------------------|
| <sup>1</sup> Dimensions, nm<br>length<br>diameter     | 100–150<br>15–20           |
| <sup>2</sup> Hydrodynamic diameter, nm                | 100                        |
| <sup>3</sup> Total sulfur content, %                  | 0.6                        |
| <sup>4</sup> Degree of polymerization                 | 80                         |
| <sup>5</sup> Crystallinity index, %                   | 84.0                       |
| <sup>5</sup> Crystalline dimension by (200) plane, nm | 4.0                        |

<sup>1</sup> TEM. <sup>2</sup> DLS. <sup>3</sup> Elemental analysis. <sup>4</sup> In terms of viscosity of CNC solution in cadoxene. <sup>5</sup> X-ray diffractional analysis.



Figure S2. TG (a) and DTG (b) curves of the PVP/CNC composite films.



**Figure S3.** DSC traces for heating (**a**) and cooling (**b**) of the PVP/CNC composite films: 1 - neat PVP; 2 - PVP/CNC-4.6; 3 - PVP/CNC-10.9; 4 - PVP/CNC-19.6; 5 - PVP/CNC-28.9; 6 - PVP/CNC-37.9.



Figure S4. Typical stress-strain curves of the PVP/CNC composite films.





**Figure S5.** SEM images of the neat PVP aerogel (**a-d**) and the PVP/CNC composite aerogels with CNC content (wt.%) of: 4.6 (**e-h**); 10.9 (**i-l**); 19.6 (**m-p**); 28.9 (**q-t**), 54.5 (**u-x**); 70.6 (**y-zz**), respectively. Scales: 100  $\mu$ m (**a, e, i, m, q, u, y**); 20  $\mu$ m (**b, f, j, n, r, v, z**); 5  $\mu$ m (**c, g, k, o, s, w, yy**); 2  $\mu$ m (**d, l, p, t, x, zz**); 1  $\mu$ m (**h**).



**Figure S6.** SEM images of the PVP/CNC-4.6 aero for CNC particle size estimation across the widths (a) and along the lengths (b). The scale bar is 1  $\mu$ m. The CNC particle size distribution across the widths (c) and along the lengths (d).



(a)

(b)



**Figure S7.** SEM images of the PVP/CNC-10.9 aero for CNC particle size estimation across the widths (**a**) and along the lengths (**b**). The scale bar is 1  $\mu$ m. The CNC particle size distribution across the widths (**c**) and along the lengths (**d**).





**Figure S8.** SEM images of the PVP/CNC-19.6 aero for CNC particle size estimation across the widths (**a**) and along the lengths (**b**). The scale bar is 1  $\mu$ m. The CNC particle size distribution across the widths (**c**) and along the lengths (**d**).



**Figure S9.** SEM images of the PVP/CNC-28.9 aero for CNC particle size estimation across the widths (**a**) and along the lengths (**b**). The scale bar is 1  $\mu$ m. The CNC particle size distribution across the widths (**c**) and along the lengths (**d**).

Water



Immediately after redispersion





After a month

Propanol



Immediately after redispersion



## After 3 days



After 10 days

## Chloroform

## Dioxane



**Figure S10.** Photos of the redispersed suspensions during storage. From the left to the right: PVP/CNC-4.6 aero; PVP/CNC-10.9 aero; PVP/CNC-16.3 aero; PVP/CNC-19.6 aero; PVP/CNC-28.9 aero; PVP/CNC-37.9 aero; PVP/CNC-54.5 aero. The CNC concentration in the suspensions is 0.2 wt.%.



**Figure S11.** PVP particles size distribution in propanol (1) and chloroform (2) (the solution concentration is 0.2 wt.%).