Ultrafast Synthesis of Ni-MOF in One Minute by **Ball Milling**

	Yield(%)
Ni-BTC-1	65.57
Ni-BTC-5	68.31
Ni-BTC-30	67.89
Ni-BTC-60	70.28
Ni-BTC-180	72.68

Table S1 Yields of Ni-BTC samples obtained at various reaction times. .

Table S2 FWHM of Ni-BTC samples obtained at various reaction times. .

	FWHM (°)	
Ni-BTC-1	0.173	
Ni-BTC-5	0.171	
Ni-BTC-30	0.145	
Ni-BTC-60	0.163	
Ni-BTC-180	0.126	

Table S3 Surface area and pore structures of Ni-BTC samples obtained at various reaction times.

	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average pore size (nm)
Ni-BTC-1	4.85	0.0059	4.6
Ni-BTC-5	8.85	0.0108	4.6
Ni-BTC-30	5.28	0.0059	4.5
Ni-BTC-60	6.08	0.007	4.6
Ni-BTC-180	10.08	0.0102	4.1

Figure S1. the BJH analysis of the Ni-BTC samples obtained at various reaction times.

Figure S2. SEM images of the Ni-BTC samples obtained at various reaction times. (a) Ni-BTC-5m, (b) Ni-BTC-30m, (c) Ni-BTC-60m, and (d) Ni-BTC-180m.

	Yield(%)
Ni-BTC-10Hz	38.99
Ni-BTC-20Hz	59.00
Ni-BTC-30Hz	69.75
Ni-BTC-40Hz	71.45
Ni-BTC-50Hz	65.57

Table S4 Yields of Ni-BTC samples obtained at various grinding frequencies with addition of 1mL water. .

Table S5 Yields of Ni-BTC samples obtained with addition of different solvents.

	Yield(%)
Ni-BTC-DMF	67.25
Ni-BTC-EtOH	67.57
Ni-BTC-MeOH	59.69
Ni-BTC-H2O	65.57

Table S6 Yields of Ni-BTC samples obtained with addition of varied amount of water.

	Yield(%)
Ni-BTC-0mL	56.00
Ni-BTC-0.5mL	66.61
Ni-BTC-1mL	65.57
Ni-BTC-2mL	67.57

 Table S7 Yields of Ni-BTC samples obtained at enlarged scales.

	Yield(%)
Ni-BTC-1X	65.57
Ni-BTC-3X	73.43
Ni-BTC-5X	79.76

Figure S3. XRD patterns of the Ni-BTC samples obtained at various grinding frequencies without water addition.

Table S8 Yields of Ni-BTC samples obtained at various grinding frequencies without addition of water.

	Yield(%)
Ni-BTC-No-10Hz	28.87
Ni-BTC-No-20Hz	29.89
Ni-BTC-No-30Hz	40.71
Ni-BTC-No-40Hz	36.14
Ni-BTC-No-50Hz	55.99

Table S9. Comparison of the synthesis of MOF in previously published reports.

No.	MOF type	Raw Material	Method	Ref	
1	Ni3(BTC)2·1	Ni(CH3COO)2·4H2O,	Ball milling, r.t., 1	This work	
	$2H_2O$	H ₃ BTC	min		
2	Ni3(BTC)2·1	Ni(CH3COO)2·4H2O,	Hydrothermal,	Electrochimica Acta 2010,	
4	$2H_2O$	H ₃ BTC, DMF	200°C, 24h	<i>55,</i> 6830-6835.	
•	Ni3(BTC)2·1	N'CL (LLO N. DTC	Solution-phase	Chinese Chemical Letters	
3	2H ₂ O	$11C12.0\Pi 2O$, $11C13D IC$,	method, r.t., 5 min	2013 , 24, 663-667.	
4	Ni3(BTC)2·1	NiCl2·6H2O, H3BTC,	Hydrothermal,	Chinese Chemical Letters	
4	$2H_2O$	DMF	105°C, 2day	2014 , <i>25</i> , 957-961.	
5	ZIF-8	Zn(NO3)2 , 2-methylimidazole,	Solution-phase method, r.t., a few minutes	Science China Materials	
		methanol,		2017 , <i>60</i> , 1205-1214.	
		diethanolamine			
6	F4-UiO-66	Zicronium(IV)-oxo-hy	Water-assisted grinding, r.t., 100 s	Chamical	
		droxy methacrylate,		Chemical	
		tetrafluorobenzene-1,4		Communications 2017, $E2 = E919 = E921$	
		-dicarboxylic acid		<i>33, 3</i> 018-3821.	

-

Figure S4. Diagram of the specific capacitance of materials at different current densities.