

Enhanced Peroxidase-Like Activity of MoS₂ Quantum Dots Functionalized g-C₃N₄ Nanosheets towards Colorimetric Detection of H₂O₂

1. BET and zeta potential analysis

Figure S1. Adsorption/desorption isotherms of $MoS_2@CNNS(30)$ (a) and zeta potentials of the $MoS_2@CNNS$ nanocomposites dispersed in ultrapure water (pH = 4.0) (b).

2. Optimization of experimental conditions

The effect of MoS₂@CNNS(30) concentration (0~200 µg/mL), H₂O₂ concentration (0~5.0 mM), temperature (10~50 °C), and pH (2.0~9.0) on the peroxidase-like activity of MoS₂@CNNS(30) were assayed with the same procedures to the peroxidase mimetic experiments to obtain the optimal reaction conditions. Typically, the tests were performed by in sequence adding 500 µL of 50.0 mM phosphate buffer solution (PBS, pH = 2.0~9.0), 100 µL of 8.0 mM TMB, 200 µL H₂O₂ with the final concentration of 0~5.0 mM, and 200 µL MoS₂@CNNS(30) dispersion with the final concentration of 0~200 µg/mL under the temperature range of 10~50 °C. Make three variable fixed and change another one to obtain the optimal experimental conditions. Then the reaction systems were monitored in a time-scan mode at 652 nm by an UV-visible spectrophotometer (Shimadzu UV-2500, Japan) right after all of the components were added and mixed.

Figure S2. Time-dependent absorbance at 652 nm and color changes of 0.8 mM TMB reaction solutions in the absence or presence of different concentrations of $MoS_2@CNNS(30)$ (a) and H_2O_2 (b) in 25.0 mM PBS (pH = 4.0) at room temperature. Inset: related color variations.

Figure S2 shows the catalytic activity tests under different catalyst concentrations and H₂O₂ concentrations. It can be seen that the catalytic reaction rate obviously increased as increasing the concentration of MoS₂@CNNS(30) catalysts with an apparent color variation (**Figure S2(a**)). Hence, in view of the operation convenience, the concentration of 120 μ g/mL for MoS₂@CNNS(30) was selected as the optimal concentration. The effects of H₂O₂ concentration on the catalytic activity of MoS₂@CNNS(30) were also tested (**Figure S2(b**)). It can be seen that the catalytic reaction rate increased with the increase of H₂O₂ concentration, and there was no inhibition in the catalytic reaction at high H₂O₂ concentration, indicating a more stable enzyme catalytic activity of MoS₂@CNNS(30) than that of horseradish peroxidase (HRP) at high H₂O₂ concentration [S1]. Therefore, the H₂O₂ concentration of 2.0 mM was chosen with a medium and visual absorbance. In addition, **Figure S2(b**) shows the color changes with different H₂O₂ concentration in the reaction system, illustrating that with the increase of H₂O₂ concentration the color changed from light to dark blue, which further demonstrated the feasibility of H₂O₂ detection through a colorimetric method.

Figure S3. Dependency of peroxidase-like activity of MoS₂@CNNS(30) on pH (a) and temperature (b) and color changes. Experiments were conducted by using 120 μ g/mL of MoS₂@CNNS(30) in 25.0 mM PBS with 2.0 mM H₂O₂ and 0.8 mM TMB as substrates. Inset: related color variations.

Furthermore, similar to natural enzymes, the catalytic activity of MoS₂@CNNS(30) is found to be pH-dependent, which was tested by UV-visible spectrophotometer with changing the pH values from pH 2.0 to 9.0. It can be seen in **Figure S3(a)** that the optimal pH value of the reaction was found to be pH 4.0, while the pH value above or lower than 4.0 would lower the peroxidase-like activity. Thus, the optimal pH was 4.0. Moreover, **Figure S3(b)** shows a temperature-dependent assay in the range of 10 °C to 50 °C. It can be seen notably that the reaction system was affected by the temperature, and the catalytic activity exhibited a continue rising tendency, indicating that the inorganic enzyme mimics could present high thermal activities. Therefore, considering the convenience of operation, the room temperature 25 °C was selected as the experimental temperature. The results also indicated the relatively stable peroxidase-like activity of MoS₂@CNNS(30) even under fairly harsh conditions.

Sample	Composite (g/L)	Mo (mg/L)	S (mg/L)	MoS ₂ /composite (wt%)
MoS ₂ /CNNS(15)	1.0	12.2	8.2	2.0
MoS ₂ /CNNS(30)	1.0	34.7	22.3	5.7
MoS ₂ /CNNS(45)	1.0	34.8	22.4	5.7

Table S1. MoS2 loading amount in MoS2/CNNS samples determined by ICP-AES.

Table S2. Comparison of Km and Vmax between MoS2@CNNS(30) and HRP for H2O2 and TMB.

Catalyst	Substance	<i>K</i> _m (mM)	V _{max} (M/s)	Reference
MoS2@CNNS(30)	H_2O_2	0.602	3.15×10^{-8}	This work
MoS2@CNNS(30)	TMB	0.117	3.03×10^{-8}	This work
HRP	H_2O_2	0.214	2.46×10^{-8}	S2, S3
HRP	TMB	0.275	1.24×10^{-8}	S2, S3

Table S3. Comparison of peroxidase-like activity in the linear range and detection limit of H₂O₂ between MoS₂@CNNS(30) and other peroxidase mimics.

Mimetic enzyme	Linear range (µM)	Detection limit (µM)	Reference
MoS2@CNNS(30)	2~50	0.02	This work
Fe ₃ O ₄	5~100	3.0	S4
Co-Al LDH	10~50	10.0	S5
WS ₂ Nanosheets	5~200	1.5	S6
g-C ₃ N ₄	5~100	1.0	S7
MoS ₂ Nanoparticles	2~100	0.32	S8
MoS ₂ Nanoflakes	0.125~1.75	4.1	S9
MoS2@MgFe2O4	2.5~300	1.0	S10
Fe-g-C ₃ N ₄	0.5~10	0.05	S11
MnSe-g-C ₃ N ₄	18~1800	1.8	S12

References

- Nicell, J.A.; Wright, H. A model of peroxidase activity with inhibition by hydrogen peroxide. *Enzyme Microb. Tech.* 1997, 21, 302-310, DOI: 10.1016/S0141-0229(97)00001-X.
- Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. *Acc. Chem. Res.* 2014, 47, 1097-1105, DOI: 10.1021/ar400250z.
- Qiao, F.M.; Chen, L.J.; Li, X.; Li L.; Ai, S.Y. Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. *Sensor. Actuator. B: Chem.* 2014, 193, 255-262, DOI: 10.1016/j.snb.2013.11.108.

- S4. Wei, H.; Wang, E.K. Fe₃O₄ magnetic nanoparticles as peroxidase mimetics and their applications in H₂O₂ and glucose detection. *Anal. Chem.* **2008**, *80*, 2250-2254, DOI: 10.1021/ac702203f.
- S5. Chen, L.J.; Sun, B.; Wang, X.; Qiao, F.M.; Ai, S.Y. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in L-asparagine solution enhanced peroxidase-like activity and colorimetric detection of glucose. *J. Mater. Chem. B* 2013, *1*, 2268-2274, DOI: 10.1039/C3TB00044C.
- S6. Chen, Q.; Chen, J.; Gao, C.J.; Zhang, M.L.; Chen J.Y.; Qiu, H.D. Hemin-functionalized WS₂ nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H₂O₂ and glucose. *Analyst* 2015, 140, 2857-2863, DOI: 10.1039/c5an00031A.
- Lin, T.R.; Zhong, L.S.; Wang, J.; Guo, L.Q.; Wu, H.Y.; Guo, Q.Q.; Fu, F.F.; Chen, G.N. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. *Biosens. Bioelectron.* 2014, 59, 89-93, DOI: 10.1016/j.bios.2014.03.023.
- S8. Zhao, K.; Gu, W.; Zheng, S.S.; Zhang, C.L.; Xian, Y.Z. SDS-MoS₂ nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H₂O₂ and glucose. *Talanta* **2015**, *141*, 47-52, DOI: 10.1016/j.talanta.2015.03.055.
- S9. Yu, J.; Ma, D.Q.; Mei, L.Q.; Gao, Q.; Yin, W.Y.; Zhang, X.; Yan, L.; Gu, Z.J.; Ma, X.Y.; Zhao, Y.L. Peroxidaselike activity of MoS₂ nanoflakes with different modifications and their application for H₂O₂ and glucose detection. J. Mater. Chem. B 2018, 6, 487-498, DOI: 10.1039/C7TB02676E.
- S10. Zhang, Y.; Zhou, Z.F.; Wen, F.F.; Tan, J.; Peng, T.; Luo, B.Q.; Wang, H.G.; Yin, S.X. A flower-like MoS2decorated MgFe2O4 nanocomposite: Mimicking peroxidase and colorimetric detection of H2O2 and glucose. *Sensor. Actuator. B: Chem.* 2018, 275, 155-162, DOI: 10.1016/j.snb.2018.08.051.
- S11. Tian, J.Q.; Liu, Q.; Asiri, A.M.; Qusti, A.H.; Al-Youbi, A.O.; Sun, X.P. Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. *Nanoscale* 2013, *5*, 11604-11609, DOI: 10.1039/C3NR03693F.
- S12. Qiao, F.M.; Qi, Q.Q.; Wang, Z.Z.; Xu, K.; Ai, S.Y. MnSe-loaded g-C₃N₄ nanocomposite with synergistic peroxidase-like catalysis: Synthesis and application toward colorimetric biosensing of H₂O₂ and glucose. *Sensor. Actuator. B: Chem.* 2016, 229, 379-386, DOI: 10.1016/j.snb.2015.12.109.