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Abstract: Graphene modified TiO2 composite photocatalysts have drawn increasing attention because
of their high performance. Some significant advancements have been achieved with the continuous
research, such as the corresponding photocatalytic mechanism that has been revealed. Specific
influencing factors have been discovered and potential optimizing methods are proposed. The latest
developments in graphene assisted TiO2 composite photocatalysts are abstracted and discussed.
Based on the primary reasons behind the observed phenomena of these composite photocatalysts,
probable development directions and further optimizing strategies are presented. Moreover, several
novel detective technologies—beyond the decomposition test—which can be used to judge the
photocatalytic performances of the resulting photocatalysts are listed and analyzed. Although some
objectives have been achieved, new challenges still exist and hinder the widespread application of
graphene-TiO2 composite photocatalysts, which deserves further study.

Keywords: photocatalyst; graphene; TiO2; electron transport

1. Introduction

As one of the low-cost technologies in the field of environmental protection, tremendous
developments in both the theories and experiments of photocatalysis have been achieved because of
the worsening pollution problem [1–10]. Among the different types of semiconductors (TiO2, ZnO,
CdS, WO3 et al.), TiO2 draws additional attention because of its low-toxic, high activity and excellent
chemical stability [11,12]. However, two bottlenecks, including its lack of response to visible light and
the high recombination rate of electron-hole pairs, hinder its widespread application [13]. The primary
causes are the wide band-gap of TiO2 (~3.2 eV, the onset wavelength is ~390 nm) and the short mean
free path of electrons in this material [14–16]. Scientists and engineers have made efforts to conquer
these two shortages and all the adopted approaches can be classified into two types: internal doping
and surface sensitization [17–30]. An impurity level will be introduced to the band-gap of TiO2 after
adding metal or non-metal ions. Zheng et al. reported that the band-gap of N doped rutile TiO2

decreases into 1.553 eV according to the first-principles calculation [25]. Zhou’s group found that the
impurity level of N, La co-doped TiO2 is ~0.3 eV lower than the conduction band of the pure TiO2

(the absorption band exhibits a red shift to 436.4 nm) [26].
Although the formation of a new energy level endows visible light activity to TiO2, the additional

impurity ions simultaneously act as recombination centers for photo-generated electron-hole pairs [17–19].
Therefore, surface sensitization is considered a preferred strategy for the modification of TiO2 with
fewer negative effects [14,15,27–30]. Selecting a proper sensitizer is key and some pre-conditions
should be satisfied. First, an elaborate selection (or design) is needed for the electronic structure of a
sensitizer. Besides the band-gap of the adopted material (which can be excited by the visible light)
should be narrower than that of TiO2, the conduction band of the sensitizer must be more positive
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than that of TiO2 (or the valence band of the sensitizer is more negative than that of TiO2). Moreover,
not only can the combination of the TiO2 and sensitizer be realized by convenient methods but also
the loading amount of the sensitizer should be controllable. Therefore, appropriate dangling bond and
morphology of a sensitizer need to be considered. Camarillo et al. prepared (Pt, Cu)-TiO2 composite
photocatalysts to convert CO2 to hydrocarbons (as the fuel) with resulting high performance [31–34].
Chowdhury et al. reported an eosin Y dye sensitized TiO2 photocatalyst with high visible light
activity [35]. Kukovecz’s group adopted PbSe quantum dot as the sensitizer to modify TiO2 nanowires
and the resulting composite displays high performance under visible light illumination [36]. Recently,
various allotropes of carbon materials, including active carbon, carbon nanotubes (CNTs) and graphene,
have been employed to combine with TiO2, opening a door to a research frontier for this traditional
semiconductor material [37–44]. Yu et al. prepared the C60 modified TiO2 and the photocatalytic
oxidation rate of gas-phase acetone is 3.3 times higher than that achieved when adopting the P25 [38].
Woan et al. reported that the CNTs (including metallic, semiconducting and defect-rich samples)
assisted TiO2 and the chemical bond between the CNTs and TiO2 was found to be a key factor in the
resulting high photocatalytic performance [45]. Vajda et al. further appraised the sensitization effects
of the single-wall CNTs and multi-wall CNTs with different mass fractions [46].

Graphene has become a ‘star’ material since its isolation by Geim and Novoselov for the
first time in 2004 and since then, the preparation and applications of this strict two-dimensional
material have quickly attracted intensive attention [47–51]. The high electron mobility, a large
Brunauer-Emmett-Teller (BET) specific surface area, excellent thermal conductivity and outstanding
mechanical strength make graphene a versatile material [52–56]. Naturally, graphene is deemed a
promising modifier for photocatalysts, based on its unique properties—Figure 1 displays the major
functions of graphene in the resulting composite photocatalysts. First of all, the zero band-gap
(semi-metal) of graphene provides the pre-condition for a perfect sensitizer (photo-induced electrons
can be excited on the Fermi level of graphene by visible light and infrared irradiation) and its high
electron mobility—which results from delocalized conjugated π electron—is beneficial to the resulting
photocatalytic performance [47,57,58]. Zhang et al. reported that the π-d electron coupling realizes the
fast transport of the photo-induced electron between graphene and TiO2, which efficiently suppresses
the recombination of the photo-generated electron-hole pairs in TiO2 [59].
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Figure 1. Three major functions of graphene in the resulting composite photocatalysts.

Secondly, a large BET area of graphene not only offers a favorable scaffold with which to anchor
TiO2 nanoparticles but also enhances its adsorption ability for various pollutants [60]. Xu et al.
Kamat et al. and our group reported that the P25, titanate nanotubes (TNTs) and silver nanoparticles
can symmetrically distribute on the graphene surface [15,60,61]. Thirdly, the high electron mobility
of graphene endows it with a great electron tank to promote the separation of electron-hole
pairs. Lastly, the efficient combination of graphene and TiO2 can be achieved by way of a facile
hydrothermal method [62–66]. Other methods including supercritical reaction, chemical vapor
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deposition (CVD) and self-assembly growth etc. are suggested for the preparation of graphene-TiO2

nanocomposites [31–34,67–72]. Camarillo and Tostón et al. found that a remarkable enhancement of
the CH4 production rate can be achieved when supercritical fluid technology is adopted [32,33]. Kim et al.
developed a self-assembly technology to prepare the graphene-TiO2 composite with a core-shell
structure and the improved photocatalytic activity results from the enhanced charge separation
ability [67].

Shao’s group synthesized graphene directly over an atomically flat TiO2 surface using the CVD
method to avoid the presence of contamination at their interface [68]. Chen et al. prepared a
graphene-TiO2 composite by using TiCl3 and graphene oxide as the raw materials and the resulting
photocatalyst demonstrates high performance because of the formation of p-n heterojunction between
graphene and TiO2 [70]. Although these approaches possess respective advantages, the hydrothermal
method is the most popular way to fabricate graphene-based composites because of the high yield
and low cost. The application area of graphene-TiO2 nanocomposites is not limited in photocatalysis
and these materials are widely utilized in solar cells and supercapacitors, which have been discussed
in some other reviews (Figure 2) [4,73–80]. Moreover, the high photocatalytic performances of the
resulting graphene-TiO2 composite photocatalysts under both the UV- and visible light irradiation
have been reported and the corresponding theories and mechanisms have been discussed [14,15,81,82].
However, some obvious deficiencies have gradually been exposed with continuous research. Firstly, the
actual BET area of the widely adopted graphene (reduced graphene oxide, RGO) is ~50 m2·g−1, which
is only 2% of its theoretical value (~2600 m2·g−1) [83,84]. The small BET area limits the adsorption
amount for pollutants, which goes against a high decomposition rate. In addition, the high defect
density of the RGO decreases the mean free path of electrons (exerts a negative effect on the lifetime
of photo-induced electrons), confining the resulting photocatalytic activity [63,65,66,83]. At last, the
uniformity of the RGO (thickness and size) is difficult to ensure, which depresses the sufficient contact
between the graphene basal plane and TiO2 particles (degraded the photocatalytic performance) [64,84].
Therefore, aiming at how to enhance their chemisorption ability, depress the recombination of the
photo-generated electron-hole pairs and promote the electron transport at the interface of graphene
and TiO2, some optimization methods have been put forward to boost the photocatalytic performances
of graphene-TiO2 composite photocatalysts [55,85,86].
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In this study, the latest progress on the graphene-TiO2 composite photocatalyst is reviewed and
the probable development directions and tendencies are predicted. In Section 2, recently reported
photocatalytic performances and the corresponding photocatalytic mechanisms of the graphene-TiO2

composite photocatalyst are abstracted and discussed. In particular, the photocatalytic mechanisms
under visible light illumination are emphatically analyzed, including the electron transport path and
probability. Various optimization approaches, which are employed to enhance the photocatalytic
performance of the graphene-TiO2 composite photocatalysts, are described and discussed in Section 3
and the core reasons behind the obtained phenomena are revealed. Specially, the three-dimensional
graphene networks (3DGNs) assisted TiO2 is put emphasis on discussing. In Section 4, a prospective is
provided. The major discussion is organized around three aspects: the improvement of chemisorption
ability of the graphene-TiO2 composite photocatalyst, the prolongation of the photo-induced electron
lifetime in TiO2 and the enhancement of the electron transport at the interface between graphene
and TiO2.

2. Overview of Graphene-TiO2 Composite Photocatalyst

2.1. Photocatalytic Performances of Graphene-TiO2 Photocatalyst

Since graphene was found to be a promising carrier for nanoparticles, the two-dimensional
material modified TiO2 composite photocatalysts have become a hot issue. Zhang et al. adopted a
one-step hydrothermal method to prepare chemically bonded RGO-TiO2 composite photocatalyst and
the resulting decomposition rate constant of methylene blue (MB) significantly enhances [84]. Because
of both the reduction process of the RGO and the combination process of the RGO and the TiO2

nanoparticles that can be achieved during the hydrothermal reaction, this technology is widely used to
fabricate the graphene-TiO2 composite photocatalysts [84,87,88]. Moreover, some other approaches
have also been adopted to fabricate the graphene-TiO2 photocatalysts in recent years. Václav et al.
adopted thermal hydrolysis of the RGO nanosheets and titania–peroxo complex to fabricate the
RGO-TiO2 composites and the resulting sample shows a high photocatalytic performance [89].
Williams et al. provide a facile method to prepare the RGO-TiO2 composites and the commonly
employed hydrothermal process is replaced by a UV-light irradiation step to achieve the reduction and
combination of the RGO and TiO2, simultaneously [90]. Miyauchi’s group employed the spin-coating
technology to fabricate the gaphene-TiO2 thin film on a glass substrate and the composite film
displays superhydrophilicity and a high photocatalytic activity [91]. In order to further improve
the homogeneous coating of TiO2 on the graphene surface, benzyl alcohol was adopted as the linking
agent by Xu’s group [92]. The resulting composite photocatalyst possesses an ultra-large 2D sheet-like
morphology and displays a high performance for the selective reduction of aromatic nitro compounds
to amines in water under ambient conditions.

To further improve the photocatalytic performance of the RGO-TiO2 photocatalysts, various
optimized designs have been carried out. Exposed crystal plane of the raw material is found imposing
a remarkable influence on the resulting photocatalytic performance. Jiang et al. Wang et al. and
Gao et al. reported that the photocatalytic performance is enhanced when the exposed facet of
TiO2 is {001} [93–95]. Moreover, doping is a useful method to improve the resulting photocatalytic
performance. Yang et al. fabricated surface fluorinated TiO2-RGO composites by a one-step
hydrothermal process and the resulting photocatalytic performance enhances significantly [96].
Pham et al. adopted Cu-doped TiO2 to hybridize with the RGO and the decomposition rate of
MB significantly improves compared with that of using a non-doped sample [97]. Safarpour et al.
found that a polyvinylidene fluoride ultrafiltration membrane modified RGO-TiO2 photocatalyst
shows an enhanced hydrophilicity and antifouling properties [98]. Similarly, doping in graphene
is also beneficial to the resulting high performances. Liu et al. synthesized N-doped TiO2 and
N-doped graphene hetero-structure by the hydrothermal method to enhance the resulting visible
light activity [99]. The B and N co-doped RGO sample was adopted to combine with TiO2 by
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Jaiswal et al. and the resulting photocatalytic performance is further enhanced [100–102]. Besides
doping, optimizing morphologies of the resulting photocatalysts also exerts a significant influence on
their photocatalytic performances. Ao et al. reported a flower-liked composite photocatalyst based
on the RGO and TiO2, the novel morphology brings about an enhanced photocatalytic activity [103].
Our group prepared the RGO-TNTs photocatalysts by adjusting hydrothermal reaction conditions
(sodium hydroxide was added into the solution to promote the formation of tubular structure). BET
area of the resulting photocatalyst is ~6 times higher than that of the traditional graphene-TiO2

nanoparticles sample, which is in favor of the better adsorption ability [15]. Perera et al. prepared
the RGO-TiO2 nanotube composites and obtained a high photocatalytic performance [104]. Li et al.
and Kim et al. further fabricated the RGO-TiO2 nanofibers composites to enhance the visible light
activity [105,106]. Qiu et al. proposed that mesoporous structured TiO2 is beneficial to the resulting
photocatalytic performance [107]. Further, the core-shell constructed graphene-TiO2 composites were
prepared to enhance their photocatalytic performance by Haldorai et al. [108]. Moreover, the graphene
quantum dots were found a proper choice to obtain the high photocatalytic activity because of the
enhanced separation efficiency of the electron-hole pairs in TiO2 [109]. Considering the nano-scaled
RGO sheets are difficult to form a continuous electron transport network, the 3D graphene has been
prepared and applied. Ding et al. and Zhang et al. reported the 3DRGO (RGO aerogel) modified TiO2

and the resulting performance is significantly enhanced compared with that of the 2DRGO added
samples [110,111]. Furthermore, perfluorophenyl azide is used as a medium to link the 3DRGO aerogel
and TiO2 nanoparticles, which depresses the agglomeration of TiO2 nanoparticles and enhances the
resulting photocatalytic performance [112]. The naturally continuous structure and low defect density
endow the 3DGNs (prepared by the CVD method) a potential sensitizer. Our group adopted the
3DGNs to hybridize TiO2 by a hydrothermal method and both the photocatalytic performances under
UV- and visible light illumination enhances significantly [55].

2.2. Photocatalytic Mechanisms of the Graphene-TiO2 Photocatalyst

2.2.1. Under UV-Light Irradiation

Photocatalytic mechanism of the pure TiO2 has been intensively studied. Under UV-light
irradiation (wavelength < 390 nm), photo-induced electrons and holes are excited on the conduction
band and valence band of TiO2, respectively [113,114]. Then, electrons transfer to surface of TiO2

and react with oxygen dissolved in aqueous solution to produce superoxide anion (O−2 ), while
holes react with hydroxyl to yield hydroxyl free radical (OH·). These resulting strong oxidizing
radicals play as active substances to decompose pollutant molecules into CO2 and H2O (Figure 3a).
The outputs of O−2 and OH· are the most important factors to determine the resulting photocatalytic
performances of photocatalysts, which are controlled by the recombination rate of the electron-hole
pairs. Therefore, adopting a proper electron tank to promote the separation of the election-hole pairs
in TiO2 is a powerful method to improve the resulting photocatalytic performance. Graphene should
be a competent material for this purpose compared with other carbon allotropes because of its highest
electron mobility in theory. Moreover, photo-generated electrons in the conduction band of TiO2

would spontaneously transport into graphene due to the more positive Fermi level of the former (work
function is 4.6 eV for graphene and 4.2 eV for TiO2) [14,115,116]. It is worth to note that the band
bending at the interface of graphene and TiO2 can be ignored due to their size (nano-scaled average
size), which will be further discussed in Section 2.2.2. Therefore, graphene is actually an excellent tank
to storage the photo-induced electrons transported from TiO2 and the corresponding photocatalytic
mechanism is displayed in Figure 3b.
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2.2.2. Visible light Irradiation

In the absence of visible light activity is the major drawback of the pristine TiO2, while the zero
band-gap structure of graphene makes it an ideal sensitizer. Park et al. revealed the views of generation
and collection processes of the photocurrent in a single-layer graphene sample under 514 nm laser light
irradiation [117]. Mai et al. calculated the scale of the photocurrent when a clean graphene sample
was irradiated by a monochromatic visible light in theory [118]. Although the above results and
following reports demonstrate the feasibility of the graphene-TiO2 composite photocatalyst working
under visible light irradiation, two questions are still unsolved: the electron transport from graphene
into TiO2 can be achieved by which path? How about the transport probability?

The band structures of graphene and TiO2 under various conditions are shown in the Figure 4a–c.
As for the pristine materials (before contact), the Fermi levels are 0 V vs. Normal Hydrogen Electrode
(NHE) for graphene and 0.5 V vs. NHE for TiO2 (Figure 4a). A metal-semiconductor contact (junction)
forms at the interface (graphene is a semimetal with a zero band-gap structure) after combining
them [14] and the thermal equilibrium would lead to a Fermi level constant throughout the composite.
Therefore, electrons will transport into the Fermi level of graphene from conduction band of TiO2

spontaneously without illumination or under UV-light irradiation (Figure 4b) [59]. Then, a Schottky
barrier and a built-in potential barrier form on the side of graphene and TiO2, respectively. Under
visible light illumination, a great number of electrons are excited on the Fermi level of graphene and
the Schottky barrier must be overcome (quantum tunneling) before these electrons inject into the
conduction band of TiO2 (Figure 4c). If the metal-semiconductor junction is composited with bulk
materials, a wide enough depletion layer appears and hinders the electron transport. However, as for
the graphene-TiO2 composite, no significant band bending occurs because their sizes are far smaller
than that of the space-charge region (the barrier width is limited) [119,120]. Therefore, photo-generated
electrons excited in graphene can inject into TiO2 by quantum tunneling and thermionic emission to
conquer the thin Schottky barrier. At room temperature, the thermionic emission (thermal voltage
~26 meV) is too small to achieve the transfer due to the higher barrier (Schottky barrier height is equal
to the difference between the work function of graphene and the electron affinity of TiO2, ~2 eV) [121].
Consequently, the quantum tunneling is the sole path to realize the electron transport. Width of
Schottky barrier is not greater than the thickness of the adopted graphene (always less than 3 layers,
~1 nm), which is much shorter than the mean free path of electrons in graphene and TiO2, indicating
no significant additional collision (such as electron-electron or electron-phonon) takes place. Therefore,
the major obstruction is Schottky barrier for the electron transport from graphene to TiO2 and the
probability can be calculated by the following equation:

Γ = exp {− 2
}

∫ d

0

√
2m(U0 − E)dx} (1)
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therein, m represents electron mass, E is kinetic energy of photo-induced electrons, d and U0 are the
width and height of the Schottky barrier, } is reduced Planck constant. Before calculating a specific
probability, the values of E and U0 should be given. In order to conservatively estimate the probability,
two extreme assumptions can be made. Firstly, the energies of all the photo-induced electrons are
deemed as EF (intrinsic Fermi level of graphene), therefore, the Schottky barrier is a constant (~2 eV).
In fact, the energies of photo-induced electrons in graphene are higher than EF because of Pauli
exclusion principle (the actual Schottky barrier is small than 2 eV) [14]. Moreover, kinetic energy E
is considered as zero for all the photo-generated electrons, which also leads to an underestimated
transport probability. By adopting these assumptions, the tunneling probability is 5.21× 10−7 when the
adopted graphene is ~1 nm in thickness (more than 1011 electrons can inject into TiO2 from graphene
every minute when the intensity of incident light is 100 mW·cm−2) [14]. Based on the above discussion,
the photocatalytic mechanism of the graphene-TiO2 composite photocatalysts is displayed in Figure 5a
(the self-degradation mechanism of dye under visible light irradiation with the pure TiO2 is shown in
Figure 5b for comparison). It is worth noting that a close chemical contact at the interface between
graphene and TiO2 is the pre-condition for the tunneling behavior. An FTIR curve is a useful tool with
which to judge the presence of a strong chemical bond and a new absorption band, resulting from the
vibration of Ti-O-C, located at ~800 cm−1 can be found [3,54,122].
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2.3. Characterization Approaches

Besides pollutant decomposition experiments, X-ray diffraction (XRD), Scanning electron
microscope (SEM), Atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), Fourier
transform infrared spectroscopy (FTIR) and Raman spectra, some novel characterization technologies
can be used to judge the photocatalytic performance of the graphene modified TiO2, including
photoluminescence (PL) spectrum (QM4CW, Photon Technology International, Birmingham, NJ, USA),
Electron paramagnetic resonance (EPR) spectroscopy (EPR-8, Bruker BioSpin Corp, Rheinstetten,
Germany), and Scanning tunneling microscope (STM) (DI Corp, Bakersfield, CA, USA).

PL spectrum is a highly sensitive tool to study photo-physics of the photo-generated species [123].
In the photocatalysis field, PL curves can be used to analyze the recombination of the electron-hole
pairs in the TiO2 [124–128]. Melnyk et al. studied the PL spectrum of TiO2 with two polydisperse
modifications (anatase and rutile) under a low temperature [127]. Sekiya’s group reported time-resolved PL
spectra of anatase single crystal samples [128]. Under UV-light irradiation, the origin of the signal peak
in visible area from PL profile is attributed to the radiative recombination of the self-trapped excitons
in TiO2 [129,130]. Therefore, PL spectrum is a direct technology to detect the recombination efficiency
of the electron-hole pairs. According to the research results from Sellappan group, Zhu’s group and
our group, the luminescence efficiency of the graphene-TiO2 composite is much lower than that of the
bare TiO2, indicating the depressed recombination of the electron-hole pairs (Figure 6) [14,131,132].
However, decreased PL intensity not means equivalent increment of strong oxidizing radicals (O−2 and
OH·) because some other possible reasons can bring about non-radiative charge carrier leakage at
the interface, such as defect and phonon scattering [131]. Therefore, PL results can be utilized as an
indirect evidence to prove the enhanced photocatalytic performance of the graphene-TiO2 composite
photocatalysts. Moreover, it is worth noting that PL spectra only can be used for the case of UV-light
irradiation because of the wide band-gap of TiO2.
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Figure 6. PL spectra of (a) pure TiO2 and the graphene-TiO2 composite, the inset displays corresponding
curve of composites by using graphene with various reduction degrees; Reproduced with
permission [131]. Copyright RSC, 2013; (b) different samples, the G0, G1, G2, G3, G4, G5 and G6
represent bare TiO2, transferred graphene-TiO2, transfer free graphene-TiO2, RGO-TiO2, GO-TiO2,
graphitic carbon-TiO2 and Ti-graphitic carbon-TiO2, respectively. Reproduced with permission [132].
Copyright RSC, 2011.

EPR spectra can be used to detect the concentrations of the O−2 and OH·, which are trapped by
5,5-dimethyl-1-pyrroline-N-oxide (DMPO) [133–135]. The intermittent pulse signal of the DMPO-O−2
occurs between 2490–3550 gauss, while continuous wave signal of the DMPO-OH· appears in the
magnetic field strength range of 3480–3550 gauss. Therefore, the outputs of strong oxidizing radicals
can be directly recorded by the EPR curve, which determines the photocatalytic performance of the
resulting photocatalyst. Under UV-light irradiation, the signal intensity acts as the criterion to judge
the photocatalytic performances of various photocatalysts. In the presence of corresponding signal
under visible light illumination can be used to prove the sensitization of graphene, while the signal
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intensity is closely related to the resulting visible light activity. Therefore, the EPR spectrum is a
powerful tool to directly estimate the photocatalytic performances of graphene-TiO2 under both UV-
and visible light irradiation. The reports from Zhang’s group, Chen’s group, Wan’s group, Dai’s group
and our group confirm the above analysis (Figure 7) [14,133–139].
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composite photocatalyst (a–d), under visible light irradiation, the EPR curves of pure TNTs and
graphene-TNTs composite photocatalysts (e) DMPO-OH· and (f) DMPO-O−2 . Figure 7a Reproduced
with permission form [133]. Copyright Elsevier, 2016. Figure 7b Reproduced with permission form [134].
Copyright Elsevier, 2012. Figure 7c Reproduced with permission form [135]. Copyright Elsevier, 2016.
Figure 7d Reproduced with permission form [139]. Copyright Elsevier, 2014. Figure 7e,f Reproduced
with permission form [14]. Copyright Elsevier, 2013.

Worth to note that graphene possesses a high stability with these strong oxidizing radicals (O−2 and
OH·) during the photocatalytic reaction, which is confirmed by the high photocatalytic performance
after cycle use. In general, the decomposition rate constants of various pollutants maintain more than
90% after repeated use compared with the first performance [3,14,15,55]. Moreover, no obvious change
can be seen from the morphology of graphene in the composite photocatalysts after photocatalytic
reaction. Wang et al. reported that the photodegradation rate of pollution does not show an obvious
decrease during five successive cycles [86]. Xu’s group found that the graphene-TiO2 composite
possesses a high stability, which is even better than that of the bare TiO2 [140]. Our group fabricated
graphene-TiO2 composite photocatalyst and the light activity maintains ~95% after 20 cycles (phenol,
methyl orange and rhodamine are used as the pollution) [3,14,15,55]. All the above reports indicate
that the photocatalytic performance of the graphene-TiO2 composite is stable, confirming the graphene
is stable during the photocatalytic reaction (do not react with O−2 and OH·) [3,14,15,94,140,141].
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STM was introduced to directly prove the electron transport from graphene to TiO2 by our
group [14]. As we known, STM is based on the quantum tunnel effect to detect electron states density
around the Fermi level of conductive materials [14,136,137]. Therefore, the fluctuation of electron
states densities under various conditions (weather with irradiation) in graphene and TiO2 can be
monitored. Different from SEM image, the STM images are derived from the electron states density
around the Fermi level rather than secondary electron from the surface of samples. Therefore, color
but not morphology is the basis to identify the graphene and TiO2 in the composites, which is the
major shortage for this technology. In STM image, lighter color represents higher electron state
density and the blue background results from the highly oriented graphite substrate. The direction
of electron transport between TiO2 and graphene under illumination can be judged by the change of
their colors. Our group found that the lighten color of TiO2 in a composite photocatalyst under visible
light irradiation, proving the electron transport from graphene to TiO2 (Figure 8) [14]. Further, Yang’s
group designed an ingenious test from the time-dependent two-photon photoemission combining
with the STM. STM tip induces molecular manipulation before and after UV-light illumination and
the bond cleavage of methanol can be observed (Figure 9) [138]. STM technology provides a direct
method to reveal the electron transport direction between the graphene and TiO2 under various
illumination conditions.
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Figure 9. (a) Time-dependent two-photon photoemission spectra were measured for the freshly CH3OH
adsorbed stoichiometric TiO2 (110) surface after it had been exposed for different time durations.
(a) This plot shows the evolution of the time-dependent two-photon photoemission spectra after the
surface was exposed for certain time durations; (b) The time dependent signal of the excited resonance
feature between 4.9 and 6.1 eV measured with the laser power of 64 mW. Reproduced with permission
from [138]. Copyright RSC, 2010.
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3. Optimizing of the Graphene-TiO2 Composite Photocatalyst

Although graphene based TiO2 composite photocatalysts display numbers of advantages compared
with other modifiers in the theory, the reported photocatalytic performances are much lower than
predicted values [62,89–92]. In order to achieve the practical application of this kind of photocatalysts,
some attempts have been carried out. During all the optimizing approaches, three categories can be
abstracted, which will be discussed as following.

3.1. Mass Fraction of Graphene

Liu et al. Yu et al. and Zhang et al. found that the mass fraction of graphene in the composite
photocatalyst is closely related to the resulting photocatalytic performance [139,142,143]. Generally,
1–5 wt % is the recommended proportion of graphene and a synergistic effect is revealed (the EPR
is used to judge the photocatalytic performance, Figure 10) [14,15,55]. Under UV-light irradiation,
insufficient graphene could not provide an enough big tank to storage the photo-induced electrons
transferred from TiO2, while excessive black graphene influences the output of the photo-induced
electrons in TiO2 by absorbing part incident light and producing additional heat. In the case of
under visible light illumination, the sensitization is deficient when the content of graphene is too
low. Contrarily, increased mass fraction of graphene could not continuously improve the visible
light activity of the resulting composite photocatalysts because only the electrons injected into the
conduction band of TiO2 can produce corresponding strong oxidizing radicals. Therefore, achieving
the synergy between the mass fraction and positive effects of graphene is significant to the resulting
high performances. Moreover, it is easy to understand the diversity of the recommended mass fraction
values of graphene from various groups by considering the distinction of morphology, thickness and
quality of the adopted RGO samples for the resulting composite photocatalysts.
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3.2. Morphologies of TiO2 and Graphene

BET area is regarded as an important parameter to determine the adsorption ability of photocatalysts.
Because of the high surface area to body weight ratio of nano materials, sizes of raw materials
(including TiO2 and graphene) are always limited to tens of nanometers. However, two shortages
greatly restrict the high BET area of the resulting composite photocatalysts. Firstly, the serious
stacking behavior of 2D RGO nanosheets leading to the practical BET area is only one-fiftieth of the
theoretical value (only the surface graphene makes contribution to the adsorption ability). Moreover,
the discrete TiO2 nanoparticles tend to an agglomerate behavior during the hydrothermal reaction,
which also exerts a negative effect on the resulting adsorbability. Generally, the reported BET areas of
the graphene-TiO2 composite photocatalysts are always less than 50 m2·g−1 (Figure 11a,b) (without
any optimizing) [83,85].
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In order to avoid the excessive agglomeration, TiO2 (including TiO2-like materials) with various
shapes were designed. By using the –COOH and –NH2 functionalized RGO nanosheets as the shape
controller, Sordello et al. prepared the high BET area RGO-TiO2 composite photocatalysts with a
controllable morphology and crystal facets [144]. Perera et al. Li et al. and Kim et al. prepared
the RGO-TiO2 nanotube/nanofiber composites by the hydrothermal method and the large BET area
brings about a high photocatalytic performance (Figure 11c,d) [104–106]. Our group prepared the
RGO-TNTs composite photocatalyst and the tubular construction of the TNTs endows a large BET
area for the resulting photocatalyst (~300 m2·g−1). The decomposition rate constant of rhodamine-B
(RB) is much higher than (~5 times) that of the reported graphene-TiO2 nanoparticles photocatalysts
(the optimized mass fraction of the RGO is 5 wt %) (Figure 11e) [15]. Moreover, the core-shell
constructed graphene-TiO2 composites also display a high photocatalytic performance due to its
increased BET area (Figure 11f) [108]. Besides morphology of TiO2, corresponding optimization
of graphene also implements a remarkable influence on the resulting BET area by depressing the
stacking behavior. Wang et al. adopted the CNTs acting as the marble pillar to construct a 3D
structure with the RGO nanosheets and TiO2, the degradation rate of MB increases 2.2 times compared
with that case of adopting an unmodified photocatalyst [145]. Although this 3D structure efficiently
inhibits the excessive stacking of the RGO nanosheets, the direction of the CNTs is difficult to control.
Zhang et al. adopted a one-pot route to achieve the formation and combination of the 3DRGO aerogel
and TiO2 and the resulting high pore volume and large BET area bring about a high adsorption
capacity and the similar composites have been reported by Yan et al. Ding et al. Zhang et al. and
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Park et al. (Figure 12a–e) [8,110–112,146]. Moreover, Zhong et al. further utilized the 3DRGO-TiO2

aerogel as a carrier to load MoS2 nanosheets for a co-catalyst, achieving a significant enhancement
in adsorbability [147]. Although the 3DRGO-TiO2 photocatalyst displays a large BET area and an
improved adsorbability, the uncontrollable thickness (which is closely related to the BET area of
graphene) and a high defect density (decrease the lifetime of electrons) of the 3DRGO hinder the
further improvement of the resulting photocatalytic performances. Contrarily, CVD is a relatively
convenient method to fabricate the high-quality 3DGNs with a controlled thickness and a large
BET area. Recently, our group prepared the thickness controllable 3DGNs by adjusting the CH4

and H2 flows during the CVD process and the BET area is as high as ~500 m2·g−1 for the resulting
3DGNs-TiO2 composite photocatalyst (Figure 12f) [53,55,148]. The decomposition rate constant of
phenol is ~5 times higher than the previous reported results and the bi-layer constructed 3DGNs is
found the best choice resulting from the following reason. The integrity and continuity of a monolayer
3DGNs sample is difficult to satisfy, while thicker sample could not provide more assistance for the
adsorption function (only surface graphene is contributed). In fact, the 3D structure of graphene not
only enhances the adsorption ability of the photocatalysts but also in favor of the uniform distribution
of TiO2 nanoparticles (increasing the contact area between them). Therefore, the 3DGNs shows
a promising potential in the photocatalysis field and the following reports from Yan’s group and
Yu’s group confirmed the conclusion [149,150]. Moreover, Cui’s group fabricated the graphene-TiO2

multilayer films by CVD and magnetron sputtering methods, which further improves the contact area
between the graphene basal plane and TiO2 [151]. The sufficient contact between the graphene and
TiO2 not only provides more opportunities for electron transport but also achieves the synergy of these
two materials.
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insets are the high magnification images. (a–e) 3D graphene aerogel prepared by RGO (f) 3D graphene
network prepared by CVD method. Figure 12a,b Reproduced with permission [8] Copyright Elsevier,
2017. Figure 12c Reproduced with permission [110] Copyright ACS, 2016. Figure 12d Reproduced with
permission [111] Copyright ACS, 2013. Figure 12e Reproduced with permission [112] Copyright ACS,
2016. Figure 12f Reproduced with permission [55] Copyright Elsevier, 2017.



Nanomaterials 2018, 8, 105 14 of 27

3.3. Quality of Graphene

The high photocatalytic performance of photocatalyst is closely related to the utilization
of photo-induced electrons and two factors including electron transport and electron-hole pairs
recombination determine the resulting utilization efficiency of photo-generated electrons. As for the
case of UV-light irradiation, how to depress the recombination of electron-hole pairs is the major
optimization approach. For the case of visible light irradiation, besides suppressing the recombination
behavior, how to enhance the electron transport at the interface between graphene and TiO2 is quite
important due to the presence of a Schottky barrier. Therefore, decreasing the width of this barrier is
vital for their visible light activities. Various defects of TiO2 and graphene always act as recombination
centers to the electron-hole pairs. Therefore, the quality of them is closely related to the resulting
photocatalytic performances. Because commercial TiO2 is used as the raw material in most reports,
only the influences from the quality evolution of graphene is discussed here.

Two types of defects can be classified in the RGO, including structure defects and additional
functional groups. The former is introduced during the violent redox and exfoliation procedure, such
as edge, carbon vacancy and pentagon (heptagon) structure. The latter, including hydroxyl, carboxyl
and epoxide groups, is resulted from the strong oxidant to intercalate laminar graphite structure and
the total amount is controllable by adjusting the reduction time [54]. Both the two types of defects
shorten electron lifetime by destroying the nonlocal π electron orbit of graphene, which adverse to
the high yield of the strong oxidizing radicals [152,153]. Therefore, the high quality of graphene is
rather important for the resulting performance of the composite photocatalysts. Xu’s group proposed
a solvent exfoliated method to prepare the high quality RGO to combine with TiO2 and the resulting
photocatalytic performance enhances because of the prolonged electron lifetime [154]. Similarly, Gray’s
group reported that the photocatalytic reduction of CO2 significantly enhances when minimizing the
RGO defects is achieved [155]. With the continuous research, surface functional groups of the RGO are
found playing a positive role, simultaneously. These surface functional groups act as a bridge to link
the graphene basal plane and TiO2 (chemical contact), achieving the π-d electron coupling and the
following electron transport [50,54]. Therefore, different from the structure defects, a moderate amount
of surface functional groups of the RGO is helpful. Elimelech’s group reviewed the influences from
functional groups of the RGO on the resulting photocatalytic performances and the corresponding
positive effect is emphasized [156]. Insufficient surface functional group could not provide enough
channels for the electron transport, while excessive functional groups decrease the intrinsic electrical
property of graphene (shorten the electron lifetime). Moreover, our group found that a moderate
surface functional group amount of the RGO is beneficial to the chemical contact between graphene
and epoxy resin, indicating the functional groups can be utilized to achieve the infiltration of graphene
in other materials (including organics and inorganics) [54].

As for the case of the 3DGNs based photocatalysts, in the absence of functional group on its
surface (because of the CVD preparation method) means the chemical contact between the graphene
basal plane and TiO2 must be achieved by other ways. Our group found that the surface defects of the
3DGNs play as the bridge and the 3DGNs with moderate defects assisted composite photocatalysts
displays the highest performances. On one hand, surface defects of the 3DGNs exert a negative
influence to shorten the electron lifetime (reduce the yield of the O−2 and OH·). On the other hand,
these defects impose a positive effect to achieve the π-d electron coupling (enhancing the electron
transport between the graphene basal plane and TiO2), simultaneously. Therefore, the 3DGNs with
a moderate defect density can realize the balance and endow the best performance for the resulting
photocatalysts. Because only the surface defect is useful, the thickness of the 3DGNs becomes another
key parameter. Sample with a bi-layer thickness is recommended because all the defects are on the
surface (a thinner 3DGNs sample possesses a larger BET area, however, the integrity of the monolayer
sample is unsatisfied, which leads to other negative effects).
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4. Prospective

Direct determinants of photocatalytic performances of the graphene-TiO2 composite photocatalysts
include the outputs of the strong oxidizing radicals and the adsorption amount of pollutant molecules.
Further, the outputs of the O−2 and OH· are closely related to the lifetime of the photo-induced electrons,
which is dependent on the recombination rate of the electron-hole pairs and the mean free path of
electrons in graphene and TiO2. Moreover, the utilization rate of the photo-induced electrons is
significantly affected by the electron transport at the interface between these two materials. Therefore,
how to give full play to the functions of graphene (an electron tank under UV-light irradiation and a
sensitizer under visible light irradiation) is the pivotal issue. As for the adsorption ability, although
BET area of a photocatalyst exerts a significant influence, the efficiently adsorbability (chemisorption)
is the determinant. In fact, optimizing the surface chemistry of the adopted graphene (the defect
density of the 3DGNs and the residual amount of surface functional groups of the RGO nanosheets) is
the fundamental approach to enhance the chemisorption ability. The specific relationship between
the photocatalytic performance and influence factors (including improvement methods) are shown in
Table 1.

Table 1. Relationship between photocatalytic performances and optimization technologies.

Bottlenecks of
Pure TiO2

Solution Essential Reason Specific Optimizing Relationship

Lacking visible
light activity

Sensitization of
graphene

Exciting
photo-induced electron
under visible light
irradiation

Optimizing thickness
of graphene

Thinner graphene
brings about a higher
quantum tunneling
probability

Optimizing functional
group amount and types
of the RGO

A higher defect density
or functional group
amount is beneficial to
a higher tunneling
probability

Providing electron
transport channels
from graphene to TiO2

Achieving the transfer
of photo-induced
electrons

Optimizing defect
density of the 3DGNs

High electron-hole
recombination rate

Improving quality of
graphene

Enhancing the mean
free path of electron

Optimizing the
preparation process of
graphene and resulting
composite
photocatalysts

A higher quality brings
about a higher mean
free path

Achieving the fast
electron transport
between graphene
and TiO2

Prolong the lifetime of
electrons

Optimizing the
morphology and defect
density (or functional
group amount)
of graphene

A higher defect density
or functional group
amount provides more
transport channels

Low chemical
adsorption ability

Increasing the
BET area

Providing more
adsorption sites

Optimizing the
morphology of graphene
and TiO2

Graphene and TiO2
with 3D construction is
beneficial to a higher
BET area

Increasing
chemisorption
active sites

Promote the formation
of chemical bond
between graphene
and TiO2

Optimizing defect
density (or functional
group amount and type)
of graphene modifier

A higher defect density
or functional group
amount provides more
chemisorption
active sites

4.1. How to Enhance the Chemisorption Ability of the Graphene-TiO2 Photocatalysts?

Adsorption experiments manifest that BET area determines the adsorption ability of a
photocatalyst [8,63,64,142–144,146]. However, a large BET area not equals a good photocatalytic
performance because only the chemisorbed pollutants can be decomposed [157–159]. A series of the
3DGNs-TiO2 composite photocatalysts by adopting the 3DGNs (bi-layer thickness) with various defect
densities were prepared by our group and all samples possess similar BET area and total adsorption
ability at room temperature (Figure 13, including physical adsorption and chemical adsorption, phenol
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and methyl orange were used as model pollutants, an agitating process with 20 min in the dark was
performed to achieve the adsorption balance). In order to abstract the chemisorption ability, more
adsorption experiments were carried out at high temperature. Under high temperature (>80 ◦C),
chemical adsorbed pollutants retain on the surface, while physical adsorbed molecules fall off due to
their enhanced kinetic energy. Various residual amounts of pollutants in the solutions by using these
composite photocatalysts under high temperature indicate the defect density of the 3DGNs imposes a
remarkable effect to the resulting chemisorption ability. Similarly, the surface functional group of the
RGO should exert a significant influence on the chemisorption ability of the composite photocatalysts.
Actually, the chemical adsorption can be deemed to form a chemical bond between the photocatalyst
and pollutant molecules. Because the interaction between the sp2 bonded carbon atoms (graphene
basal plane) and pollutant molecules is weak (π-π conjugation or Van der Waals force), additional
functional groups (or defects) of graphene enhance the chemisorption. However, the corresponding
research on revealing the relationship between the functional group amount (and types) of the RGO
and the resulting chemisorption ability of the RGO-TiO2 composite photocatalyst is insufficient.
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Figure 13. Relationship between adsorption ability and (a) mass fraction of graphene (graphene-TNTs
composites), Reproduced with permission [15]. Copyright 2011 Elsevier (b) various composites
(graphene-TNTs, graphene oxide-TNTs and physical mixture), Reproduced with permission [15].
Copyright 2011 Elsevier (c,d) defect density of 3DGNs (3DGNs-TiO2 composites). Reproduced with
permission [3]. Copyright 2017 Elsevier The model pollutant is rhodamine-B in (a,d) and phenol (b,c).

In the future, the major attention should be focused on how to promote the chemical contact
between graphene and pollutants. As for the RGO-TiO2 composites, the bonding capability between
the surface functional group (−OH, −OOH, =O) and various pollutants molecules deserves to reveal,
which is valuable to design the proper RGO-TiO2 photocatalyst for specific pollutants. As for the
3DGNs-TiO2 composites, the defect density of the 3DGNs deserves further optimizing. Moreover,
the theoretical calculation on pollutants adsorption of the graphene-TiO2 is insufficient, lacking
enough analog data to support the experimental results. On the other hand, although the major
contribution of the adsorption ability results from graphene, corresponding optimizing on depressing
the agglomeration of TiO2 also exert a positive effect to adsorb more pollutants. Cai’s group and
our group found that TiO2 with a low loading amount is beneficial for depressing the agglomeration
behavior [149,160]. Moreover, searching proper dispersing agents is one of feasible approaches for the
further study.
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4.2. How to Depress the Recombination of the Electron-Hole Pairs in TiO2 under UV-Light Irradiation?

As discussed in Section 2.2.1, one of major functions of graphene in the composite photocatalyst
under UV-light irradiation is that this material acts as an electron tank to accept the photo-induced
electrons transported from TiO2 [161,162]. The storage amount and transfer velocity determine the
performances of graphene and the resulting photocatalysts. In other words, the suppression of the
recombination of electron-hole pairs is the key factor for determining the resulting photocatalytic
performance of the photocatalyst under UV-light irradiation.

Kongkanand et al. reported that ~32 carbon atoms in the perfect CNTs and graphene can accept
one foreign electron [163]. Therefore, the storage ability of the photo-induced electrons is decided
by the mass fraction of graphene in the composite [163,164] and the corresponding optimizations
have been intensively reported [139,142,143]. However, the obvious difference of recommended
graphene content from various groups manifests the morphology, thickness and quality of the adopted
graphene also impose a significant influence. In the future, these factors should be taken into account
to build a rounded criterion to guide the optimization of graphene mass fraction. Besides electron
storage amount, the electron transport velocity also exerts a remarkable influence on the resulting
photocatalytic performance, which is determined by the amount of the electron transport channels
between graphene and TiO2. Therefore, optimizing the morphology of graphene and TiO2 to increase
the contact area between them is one of development directions. The 3D continuous structure of the
3DGNs (and the 3DRGO aerogel) endows an innate advantage for fast electron transport (Figure 14),
the further optimizing for more rational morphologies is necessary. Moreover, developing new
additives to achieve the uniform distribution of TiO2 nanoparticles on the graphene surface deserve
continuous study. In fact, large contact area is the precondition, while the chemical bonding between
the graphene basal plane and TiO2 is the core factor. As for the cases of the RGO modified samples,
further optimizing the amount and type of the surface functional groups is vital to promote the electron
transport velocity and output of the O−2 and OH·. As for the 3DGNs assisted samples, the surface
defect density of the 3DGNs is crucial for the electron transport from TiO2 to the graphene basal plane.
Therefore, providing a proper amount of bridges at the interface between graphene and TiO2 is one
of the objectives in the future (excess functional group and surface defect would shorten the electron
lifetime due to the degraded electrical property of graphene). Moreover, searching proper linkers to
achieve a better chemical contact between them is another feasible method.
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4.3. How to Promote Electron Transport at the Interface of the Graphene Basal Plane and TiO2 under Visible
Light Irradiation?

Preparing photocatalysts with a visible light activity is the development tendency because of
their wide application range. A Schottky barrier is installed because of the electronic structures



Nanomaterials 2018, 8, 105 18 of 27

of graphene and TiO2, which hinders the electron transport from the Fermi level of graphene to
conduction band of TiO2 under visible light illumination. Therefore, how to diminish the impact
from this barrier is the crucial factor to achieve the outstanding sensitization of graphene. Besides
the similar optimizing parameters discussed in Section 4.2, the thickness of graphene imposes a
significant influence to determine the visible light activity of the resulting composite photocatalyst.
Both the promotion of electron transport at the interface and suppression of recombination of
electron-hole pairs exert significant influences on the resulting photocatalytic performances under
visible light illumination. In fact, these two factors not only determine the photocatalytic properties of
graphene-TiO2 nanocomposite but also dominate their performance in other solar energy conversion
devices [4].

According to the corresponding calculation, the tunneling probability of the photo-induced
electrons is determined by the height and width of the Schottky barrier [14]. Because of the settled
electronic structure of TiO2 and graphene, the Schottky barrier height is mixed. Therefore, decrease
its width is a reasonable approach to enhance the electron tunneling at their interface (Figure 15).
The maximum width of Schottky barrier can be deemed as the thickness of the adopted graphene.
Considering the uniform thickness of the RGO nanosheets is difficult to obtain to date, how to
prepare the thickness controllable RGO samples and keep their uniform thickness in the following
hydrothermal reaction deserve further study. On the other hand, although the thickness of the 3DGNs
can be adjusted during the CVD process, the additional control of the surface defect density is needed
to ensure the chemical contact between the graphene basal plane and TiO2 [55,165,166]. Therefore, a
balance between the high electron tunneling probability at the interface and the good intrinsic electrical
property of graphene should be achieved by an elaborate design of the 3DGNs defect density in the
future (or functional group amount of the RGO).
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Researching the proper dispersing agents to keep the designed thickness of the RGO is one
of aims in the future and utilizing electrostatic repulsive force may be a feasible way of doing this.
The previous reports indicate that a bi-layer thickness of the 3DGNs is an optimizing structure to
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electron tunneling and pollutant adsorption. Therefore, how to enhance the output of the 3DGNs with
a bi-layer construction also needs the further study.

5. Conclusions

In this progress, some important evolvements of the graphene modified TiO2 composite photocatalysts
have been presented. Their photocatalytic mechanisms under UV- and visible light irradiation
are discussed according to their electronic structures. The large BET area (providing more active
adsorption sites), zero band-gap (acting as a sensitizer), high electron mobility (prolong electron
lifetime) and excellent electron storage ability (playing as an electron tank) in theory of graphene
endow it a wonderful modifier for traditional photocatalysts. In order to further enhance the resulting
photocatalytic performances of the graphene-TiO2 photocatalysts, corresponding optimizations on
the mass fraction, morphologies and quality of graphene and TiO2 have been carried out, which are
discussed and analyzed in this progress. Moreover, a prospective aiming at three core problems of
the graphene-TiO2 composite photocatalysts is provided. Specially, the corresponding discussion of
the 3DGNs assisted samples is emphasized. Moreover, some novel technologies on estimating the
resulting photocatalytic performances are also discussed here, including the STM, EPR and PL spectra.
Although some bottlenecks of the graphene-TiO2 composite photocatalyst still occur, the promising
prospects inspire researches continuous modifications and innovations.
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