Magnetic nanoparticles interact and pass an *in vitro* coculture blood-placenta barrier model

Elena K. Müller ^{1§}, Christine Gräfe ^{1§}, Frank Wiekhorst ², Christian Bergemann ³, Andreas Weidner ⁴, Silvio Dutz ⁴ and Joachim H. Clement ^{1,*}

- ¹ Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
- ² Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2-12, D-10587 Berlin, Germany
- ³ chemicell GmbH, Eresburgstr. 22-23, D-12103 Berlin, Germany
- ⁴ Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 2, D-98693 Ilmenau, Germany
- * Correspondence: joachim.clement@med.uni-jena.de; Tel.: ++49 3641 9325820

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: Schema for the timeline of preparation of the blood-placenta barrier model Figure S2: Comparison of expression of cell-cell contact markers β -catenin and ZO-1 for mono- and co-culture models, Figure S3: Cellular viability of BeWo cells and pericytes after short-term incubation with SPIONs. Table S1: Detailed characterization and properties of SPIONs, Table S2: Statistical analysis of data shown in figure 2(c), Table S3: Statistical analysis of data shown in figure 2(d), Table S4: Statistical analysis of data shown in figure 3(a), Table S5: Statistical analysis of data shown in figure 3(b).

Table S1: Detailed characterization and properties of SPIONs

	fluidMAG-		
	-D	-PEI (750/O)	-CMX
LOT	0808/14	2710/14	2006/15
coating	starch	polyethylenimine,	carboxymethyldextran,
		MW 750,000 Da	sodium
core	magnetite	magnetite	maghemite
SPION concentration	25 μg/μl	25 µg/µl	25 μg/μl
(solid content)			
Fe concentration by	10.83 µg/µl	13.24 µg/µl	12.17 μg/μl
phenantroline			
hydrodynamic diameter	150 nm	150 nm	150 nm
ζ potential	-11 ± 7 mV	54 ± 12 mV	-24 ± 6 mV

nanoscreenMAG/G- (ex/ em: 488 nm/ 588 nm)									
	-D	-PEI (750/O)	-CMX						
sLOT	2406/15	2506/15	1906/15						
coating	starch	polyethylenimine,	carboxymethyldextran,						
		MW 750,000 Da	sodium						
core	maghemite	maghemite	maghemite						
SPION concentration	25 µg/µl	25 μg/μl	25 μg/μl						
(solid content)									
Fe concentration by	n.d.	n.d.	n.d.						
phenantroline									
hydrodynamic diameter	150 nm	150 nm	150 nm						
ζ potential	-13 ± 9 mV	$56 \pm 9 \text{ mV}$	-24 ± 6 mV						

		3h				24h			
		ctr	fluidMAG-	fluidMAG-	fluidMAG-	ctr	fluidMAG-	fluidMAG-	fluidMAG-
			D	PEI	CMX		D	PEI	CMX
3h	ctr	/	0.9938	0.8679	0.9999	0.9679	0.9369	0.8995	0.4397
	fluidMAG-D	/	/	0.4584	0.9588	0.9999	0.9999	0.9994	0.1443
	fluidMAG-PEI	/	/	/	0.9600	0.3286	0.2667	0.2216	0.9919
	fluidMAG- CMX	/	/	/	/	0.8851	0.8235	0.7622	0.6152
24h	ctr	/	/	/	/	/	0.9999	0.9999	0.0927
	fluidMAG-D	/	/	/	/	/	/	0.9999	0.0715
	fluidMAG-PEI	/	/	/	/	/	/	/	0.0573
	fluidMAG- CMX	/	/	/	/	/	/	/	/

Table S2: Statistical analysis of data shown in figure 2(c). The significance of the results compared to respective control measurements without SPIONs was tested using two-way analysis of variance (ANOVA) following Tukey's multiple comparison test.

Table S3: Statistical analysis of data shown in figure 2(d). The significance of the results compared to respective control measurements without SPIONs was tested using two-way analysis of variance (ANOVA) following Tukey's multiple comparison test.

		3h				24h				
		ctr	fluidMAG-	fluidMAG-	fluidMAG-	ctr	fluidMAG-	fluidMAG-	fluidMAG-	
			D	PEI	CMX		D	PEI	СМХ	
3h	ctr	/	0.0751	0.4625	0.0317	0.0316	0.0818	0.0010	0.5099	
	fluidMAG-D	/	/	0.9331	0.9997	0.9997	0.9999	0.3690	0.9075	
	fluidMAG-PEI	/	/	/	0.7343	0.7330	0.9452	0.0543	0.9999	
	fluidMAG-CMX	/	/	/	/	0.9999	0.9994	0.6284	0.6868	
24h	ctr	/	/	/	/	/	0.9994	0.6298	0.6855	
	fluidMAG-D	/	/	/	/	/	/	0.3463	0.9224	
	fluidMAG-PEI	/	/	/	/	/	/	/	0.0464	
	fluidMAG-CMX	/	/	/	/	/	/	/	/	

A - upp	A - upper compartment		3h				24h			
		ctr	fluidMAG- D	fluidMAG- PEI	fluidMAG- CMX	ctr	fluidMAG- D	fluidMAG- PEI	fluidMAG- CMX	
3h	ctr	/	< 0.0001	0.0029	< 0.0001	> 0.9999	< 0.0001	0.7491	< 0.0001	
	fluidMAG-D	/	/	< 0.0001	0.0031	< 0.0001	0.7700	< 0.0001	< 0.0001	
	fluidMAG-PEI	/	/	/	< 0.0001	0.0029	0.0003	0.2060	0.0001	
	fluidMAG-CMX	/	/	/	/	< 0.0001	< 0.0001	< 0.0001	0.2564	
24h	ctr	/	/	/	/	/	< 0.0001	0.7491	< 0.0001	
	fluidMAG-D	/	/	/	/	/	/	< 0.0001	< 0.0001	
	fluidMAG-PEI	/	/	/	/	/	/	/	< 0.0001	
	fluidMAG-CMX	/	/	/	/	/	/	/	/	

Table S4: Statistical analysis of data shown in figure 3(a). The significance of the results compared to respective control measurements without SPIONs was tested using two-way analysis of variance (ANOVA) following Tukey's multiple comparison test.

Table S5: Statistical analysis of data shown in figure 3(b). The significance of the results compared to respective control measurements without SPIONs was tested using two-way analysis of variance (ANOVA) following Tukey's multiple comparison test.

B - B	B - BeWo cell layer		3h				24h			
		ctr	fluidMAG-	fluidMAG-	fluidMAG-	ctr	fluidMAG-	fluidMAG-	fluidMAG-	
			D	PEI	СМХ		D	PEI	CMX	
3h	ctr	/	0.6873	< 0.0001	0.0382	> 0.9999	< 0.0001	< 0.0001	< 0.0001	
	fluidMAG-D	/	/	< 0.0001	0.7843	0.6873	< 0.0001	< 0.0001	0.0032	
	fluidMAG-PEI	/	/	/	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
	fluidMAG-CMX	/	/	/	/	0.0382	< 0.0001	< 0.0001	0.0937	
24h	ctr	/	/	/	1	/	< 0.0001	< 0.0001	< 0.0001	
	fluidMAG-D	/	/	/	1	/	/	< 0.0001	0.0056	
	fluidMAG-PEI	/	/	/	/	/	/	/	< 0.0001	
	fluidMAG-CMX	/	/	/	/	/	/	/	/	

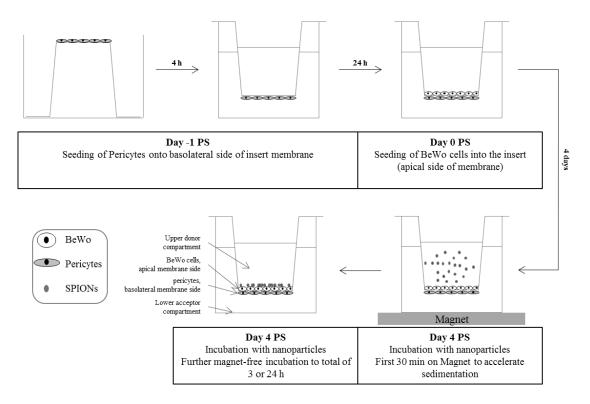


Figure S1: Schema for the timeline of preparation of the blood-placenta barrier model using a co-culture of BeWo cells and pericytes on transwell inserts, including the incubation with SPIONs. PS = post seeding.

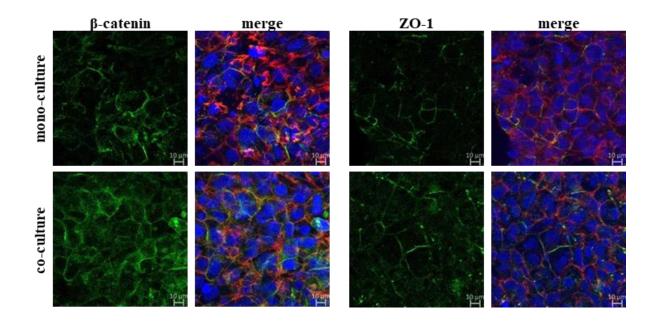


Figure S2: Comparison of expression of cell-cell contact markers β -catenin and ZO-1 for mono- and coculture models. For the co-culture, $1.1 \cdot 10^6$ pericytes cm⁻² were seeded onto the basolateral site of 24-well membrane inserts and $6.1 \cdot 10^5$ BeWo cells cm⁻² were seeded on the apical site of the insert membrane after 24 h. For the mono-culture, only BeWo cells were used. On day four post seeding (PS), cells were fixed, permeabilized and stained with rabbit anti-ZO-1 or β -catenin primary antibody followed by AlexaFluor® 488-labeled goat anti-rabbit secondary antibody (green), Hoechst33258 (blue) and AlexaFluor®633 Phalloidin (red) to visualize cell-cell contacts, cell nuclei and cell cytoskeleton, respectively. Fluorescence signals were acquired by cLSM. Scale bar represents 10 µm.

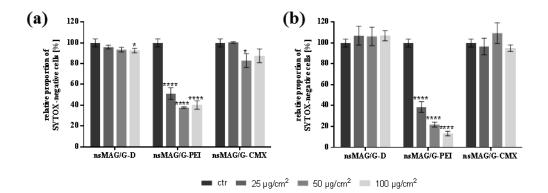


Figure S3: Cellular viability of BeWo cells (a) and pericytes (b) after short-term incubation with SPIONs. 6.6 - 9.2 \cdot 10⁴ cells cm⁻² were seeded into cell culture plates and incubated with 0, 25, 50 or 100 µg cm⁻² of nsMAG/G-D/PEI/CMX particles for 3 h after overnight cultivation. Afterwards cells were harvested, washed and stained with 2.5 nM SYTOX® red dead cell stain. Analysis of 10,000 events was performed using the FACS Calibur cytometer (BD Biosciences, San Jose, USA) and the obtained data were analyzed using the FlowJoTM software (FlowJo, LLC, Ashland, USA). Shown is the relative proportion of SYTOX-negative cells [%] normalized to diluent-treated cells ± standard deviation for three independent experiments. The significance of the results compared to respective control measurements without SPIONs was tested using two-way analysis of variance (ANOVA) following Tukey's multiple comparison test. Statistically significant differences are depicted as: * p < 0.05 and **** p < 0.0001.