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Abstract: This work aimed to produce hydrogen (H2) simultaneously with pollutant removal
from biodiesel wastewater by photocatalytic oxidation using a thermally-treated commercial
titanium dioxide (TiO2) photocatalyst at room temperature (~30 ◦C) and ambient pressure. The effects
of the operating conditions, including the catalyst loading level (1–6 g/L), UV light intensity
(3.52–6.64 mW/cm2), initial pH of the wastewater (2.3–8.0) and reaction time (1–4 h), on the
quantity of H2 production together with the reduction in the chemical oxygen demand (COD),
biological oxygen demand (BOD) and oil and grease levels were explored. It was found that all the
investigated parameters affected the level of H2 production and pollutant removal. The optimum
operating condition for simultaneous H2 production and pollutant removal was found at an initial
wastewater pH of 6.0, a catalyst dosage of 4.0 g/L, a UV light intensity of 4.79 mW/cm2 and a
reaction time of 2 h. These conditions led to the production of 228 µmol H2 with a light conversion
efficiency of 6.78% and reduced the COD, BOD and oil and grease levels by 13.2%, 89.6% and 67.7%,
respectively. The rate of pollutant removal followed a pseudo-first order chemical reaction with a rate
constant of 0.008, 0.085 and 0.044 min−1 for the COD, BOD and oil and grease removal, respectively.
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1. Introduction

Biodiesel is recognized as an alternative fuel that can be used in compression-ignition diesel
engines, either in a pure form or blended with petroleum diesel, with little or no modifications due to
its high cetane number and lubricity [1]. In addition, it is safer and cleaner than fossil fuel-derived
diesel because it has a high flash point and emits a lower level of sulfur dioxide, hydrocarbons,
particulates, polycyclic aromatic hydrocarbons and carbon monoxide [2].

Currently, most biodiesel is derived from the chemical modification, specifically the transesterification
(or alcoholysis), of vegetable oil or animal fat in the presence of methanol with acid and basic
catalysts [3]. This process allows the use of higher (e.g., C4) alcohols in the process and produces
a less polar and corrosive fatty acid methyl ester mixture with reduced cloud and pour points [4].
However, for every 100 L of biodiesel produced, approximately 20 L of wastewater are generated,
which contains a high content of several impurities, such as saturated and unsaturated free fatty
acids (FFA), glycerol, methanol, water and soap [5,6]. In Thailand, it is expected that the biodiesel
consumption will grow by 8% to 1.27 × 109 L in 2017, compared to 1.18 × 109 L in 2014. This is
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because the prevailing low prices for diesel encourage diesel vehicle users (mainly trucks or trailers)
to switch to diesel from compressed natural gas and also stimulates the increased use of diesel
among smaller vehicles (e.g., pick-up trucks) [7]. This means that at least 2.54 × 108 L of biodiesel
wastewater will be produced, which will have to be managed and treated prior to discharge into the
environment. Currently, several processes have been developed to treat or improve the properties of
biodiesel wastewater, such as biological [5], physical [8,9], chemical [10–12], electrochemical [6,13–16]
and combined chemical-electrochemical [17,18] processes. However, most of these processes can
function only in organic pollutant degradation/removal and leave the chemical substances in the
treated wastewater or generate large volumes of low density sludge, which still leaves economic and
environmental problems with its disposal.

A new wastewater treatment process, known as the photocatalytic oxidation process, is able
to remove the organic pollutants from biodiesel wastewater simultaneously with the production of
hydrogen (H2), a green fuel. In this process, when the photocatalyst is irradiated with light having
a photon energy equal to or greater than its band gap energy, the electron (e−) is excited from the
valence band to the conduction band, leaving a hole (h+) in the valence band [19]. The photogenerated
h+ is able to oxidize the surface-bonded water molecules to produce highly reactive hydroxyl radicals
(OH•), which are able to oxidize the organic pollutants in the biodiesel wastewater, while the generated
e− can further react with a proton (H+) to form gaseous H2 [20–22]. In addition, excess photogenerated
h+ can react irreversibly with organic molecules in the wastewater, resulting in a suppressed e−–h+

recombination and/or a reduced reverse reaction between O2 and H2 [23]. The mechanism for organic
substances denoted as RCH2OH and R′CH2OH degradation to H2 via the photocatalytic oxidation has
been proposed, as shown in Equations (1)–(6) [20].

RCH2OH→ H+ + RCH2O− (1)

RCH2O− + h+ → RCH2O• (2)

RCH2O• + R′CH2OH → RCH2OH + R′
•
CHOH (3)

R′
•
CHOH + h+ → H+ + R′

•
CHO• → R′CHO (4)

R′CHO + HO• → [R′COOH]− + H+ (5)

2H+ + 2e− → H2 (6)

where RCH2OH and R′CH2OH are the organic substances contained in wastewater.
If the complete organic pollutant degradation is achieved, the carbon dioxide (CO2) is obtained as

the co-product with H2, as shown in Equation (7) [20].

[R′COOH]− + h+ → R′H + CO2 (7)

According to our published work, it was found that the simultaneous H2 production and
pollutant removal from biodiesel wastewater could be achieved by UV photocatalytic oxidation
with titanium dioxide (TiO2) using a 3.3-fold dilution of the wastewater [24], and the crystal
structure of TiO2 markedly affected the rate of H2 production and pollutant removal. The mixed
anatase-rutile phase crystal structure of TiO2 photocatalysts exhibited a higher photocatalytic activity
than that with a single rutile crystal structure, due to the co-presence of rutile and anatase phases of
TiO2. Thus, in order to achieve a high efficiency of H2 production together with pollutant removal,
the optimum operating condition was determined at ambient temperature and pressure using a mixed
anatase-rutile phase crystal structure TiO2. The novelty of this work is the determination of optimum
operating condition to produce the H2 simultaneously with pollutant removal from real biodiesel
wastewater, which had never been studied before. The information on the optimum condition for
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simultaneous H2 production and wastewater treatment will have a beneficial effect on the economics
of the biodiesel production plants.

2. Experimental Section

2.1. Preparation of the Photocatalyst and Characterization

The photocatalyst used in this work was prepared by a thermal treatment of a commercial TiO2

(P25, Degussa, St. Louis, Mo, USA) in air at 400 ◦C for 3 h in order to achieve the formation of
micropore structures and eliminate some impurities [24]. Its morphology and textural property were
respectively characterized by the X-ray diffractometer (XRD, D8 Discover-Bruker AXS, Billerica, MA,
USA) and a surface area analyzer (Quantachrome Instruments, Autosorb-1, Boynton Beach, FL, USA)
according to the Brunauer–Emmett–Teller (BET) method. The optical absorption spectra was analyzed
by a UV-visible spectrophotometer (UV-2550, Shimadzu, Kyoto, Japan) at a wavelength range of
350–550 nm. The point of zero charge (PZC) of the utilized photocatalyst was obtained by dispersing
0.4 g of photocatalyst with 20 mL of 0.1 M KNO3 (Ajax Finechem, Taren Point, Australia) at room
temperature (~30 ◦C). The initial pH of KNO3 was adjusted to a value between 2 and 12 by adding
0.1 M HNO3 (QReC, Chonburi, Thailand) or 0.1 M KOH (QReC). The suspended solution was agitated
at a constant rate of 120 rpm for 24 h. The PZC value was determined by plotting the initial and final
pH of the KNO3 solution [25].

2.2. Simultaneous H2 Production and Pollutant Removal

The biodiesel wastewater used in this work was collected from the biodiesel industry in Thailand.
Prior to use, some contaminants were preliminary removed by acidification with sulfuric acid (H2SO4;
98%, Fisher, Guangzhou, China) to a pH of around 1–2 [14], whereupon the wastewater automatically
separated into the two phases of an oil-rich top layer and water-rich bottom layer or the pretreated
wastewater that was then separated by slow decantation. The pretreated wastewater was then diluted
3.3-fold with distilled water [24] and subjected to the photoreactor to produce H2 simultaneously with
pollutant removal (Figure 1). In each experiment, approximately 150 mL of pretreated wastewater
was filled in a hollow closed Pyrex glass cylinder and put in the middle of a UV-protected box
(0.68 m × 0.68 m × 0.78 m). The required dosage of the photocatalyst (range of 1.0–6.0 g/L) was
added under a constant agitation rate of 250 rpm. To eliminate the air from the system, argon (Ar)
gas was flushed at constant flow rate of 500 mL/min for an hour. The reactor was then illuminated
by a 120-W UV high-pressure mercury lamp (RUV 533 BC, Holland, The Netherlands) set on the
roof of the UV-protected box [24] at the selected light intensity (range of 3.52–6.64 mW/cm2) for the
desired reaction time (14 h). As the experiment progressed, the photogenerated gas was quantitatively
characterized by gas chromatography (GC 2014, Shimadzu, Kyoto, Japan) coupled with a thermal
conductivity detector and molecular sieve 5A column. The liquid product was also collected and
centrifuged on a KUBOTA KC-25 digital laboratory centrifuge (Tokyo, Japan) to separate the solid
catalyst, and the supernatant was analyzed for the pollutant contents in terms of the levels of the
biological oxygen demand (BOD), chemical oxygen demand (COD), oil and grease, total dissolved
solids (TDS) and total suspended solids (TSS) according to the standard method [26]. In addition,
the soap content was analyzed according to the modified version of the American Oil Chemists’ Society
(AOCS) Method Cc 17–79 [27]. The free fatty acid (FFA) content was determined from the ratio of acid
value to 2.19 using the potentiometric titration according to the ASTM D 664 [27,28].
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Figure 1. Scheme of the photoreactor.

3. Results and Discussion

3.1. Properties of Photocatalyst

The morphology and properties of the utilized photocatalyst were already mentioned in our
previous work [24]. It had a crystallite size, anatase content, band gap energy and point of zero
charge (PZC) of 26.4 nm, 87.4%, 3.18 eV and 6.8, respectively. In addition, it had a BET surface area,
micropore volume and mesopore volume of 51.8 m2/g, 0.022 cm3/g and 0.240 cm3/g, respectively.

3.2. Properties of Fresh and Acid-Pretreated Biodiesel Wastewater

The fresh biodiesel wastewater was a pale yellow solution (Figure 2a). Quantitatively, it contained
low FFA content and a high content of soap and glycerol (Table 1). In terms of the wastewater quality,
it was slightly acidic (pH 4.07–4.12) and contained very high COD and TDS contents compared with
the BOD, oil and grease and TSS contents. That is, the COD, BOD, oil and grease, TDS and TSS levels
were some 296–367-, 10–20-, 44–125-, 2.5–4.5- and 3.5–4.2-fold greater, respectively, than the respective
acceptable values set by the Thai Government for discharging into the environment. The color and
property of the fresh wastewater was slightly improved after the H2SO4 pretreatment step (Figure 2b).
Quantitatively, the soap content was markedly reduced, while the FFA and glycerol contents increased
over seven- and 1.2-fold, respectively, (Table 1). This is due to the (i) fast protonation of the fatty
acid salts by H+ dissociated from the utilized H2SO4, resulting in the formation of the less polar and
water-insoluble free fatty acids (FFAs) [19]; and (ii) the combination of some dissociated H+ with
the biodiesel leading to the formation of water-insoluble free fatty acid methyl ester (FAMEs) [18].
Nevertheless, the H2SO4-pretreated wastewater still contained COD, BOD, oil and grease, TDS and TSS
contents that were greater than the acceptable value of around 152–241-, 3.5–7.7-, 22.4–89.2-, 3.8–4.2-
and 0.8–2.0-fold, respectively.
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Figure 2. Appearance of (a) fresh wastewater; (b) acid-pretreated wastewater and (c) treated wastewater
by photocatalytic oxidation.
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Table 1. Properties of the fresh, acid-pretreated and UV-TiO2-treated biodiesel wastewater. COD,
chemical oxygen demand; BOD, biological oxygen demand.

Property Thai Standard Fresh Wastewater Pretreated Wastewater a Treated Wastewater b

pH 5.5–9.0 4.07–4.12 1.12–2.22 8.75–8.78
Soap (wt %) - 50.68–51.75 31.05–33.33 0.09–1.07
FFA (wt %) - 1.09–1.23 7.63–7.82 0.02–0.04

Glycerol (wt %) - 0.85–0.86 0.98–1.11 N/D
COD (mg/L) ≤400 118,220–146,878 60,815–96,600 24,738–24,911
BOD (mg/L) ≤60 620–1193 210–460 9.0–13.6

Oil and grease (mg/L) ≤15 660–1885 336–1338 205–243
TDS (mg/L) ≤3000 7392–13,568 11,496–12,584 7710–9100

TSS ≤150 528–628 128–312 140–190
a Pretreated by H2SO4 addition to a pH of around 2, as reported [14]. b Treated by photocatalytic oxidation with
3.3-fold dilution, initial pH of 6.0, TiO2 dosage of 4.0 g/L, UV light intensity of 4.79 mW/cm2 and irradiation time
of 4 h.

3.3. Simultaneous H2 Production and Pollutant Removal

3.3.1. Requirements for Both UV Irradiation and the Photocatalyst

The simultaneous H2 production and pollutant removal was evaluated with (i) UV irradiation
only (4.79 mW/cm2, no photocatalyst); (ii) the photocatalyst only (4.0 g/L, no UV light) and (iii) in
the presence of both UV light and the photocatalyst (4.79 mW/cm2 and 4.0 g/L, respectively) with
the 3.3-fold diluted acid-pretreated wastewater at an initial pH of around 2.0 at 4 h. As exhibited
in Figure 3, the levels of BOD, COD and oil and grease were slightly reduced (7% for COD, 12% for
BOD and 18% for oil and grease) in the presence of the photocatalyst only or in the presence of the
UV light only (9% for COD, 25% for BOD and 44% for oil and grease), without any detected H2

production. However, in the presence of both the UV irradiation and photocatalyst, these pollutants
were more markedly reduced (20% for COD, 83% for BOD and 84% for oil and grease) along with H2

production (~270 µmol). This is probably attributed to the different mechanisms for H2 production
and pollutant removal. That is, the removal of pollutant molecules in the presence of the UV light only
occurred by the breakdown of pollutant molecules via the hydroxyl radicles (OH•) generated from
the water photolysis (Equation (8)) [29]. However, this reaction is a poor source of radicals, and in
the oxidation process, some intermediates absorbing part of the radiation are generated, causing a
decrease in the photooxidation kinetics of the pollutants. For the presence of photocatalyst without
UV irradiation, the removal of pollutant molecules was probably caused by the adsorption process
between the positive surface charge of the photocatalyst (TiOH+

2 ) and the negative charge of pollutant
molecules. These are also the reasons why no H2 was produced in these two conditions.

H2O + hv→ H• + OH• (8)
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Figure 3. Comparison of pollutant removal and H2 production of the 3.3-fold diluted acid-pretreated
biodiesel wastewater after a 4-h treatment with (A) UV light at an intensity of 4.79 mW/cm2;
(B) photocatalyst at 4.0 g/L and (C) UV/TiO2 at a dosage of 4.0 g/L and UV light intensity of
4.79 mW/cm2.
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In the presence of both UV irradiation and photocatalyst, the possible mechanism for H2 production
and pollutant removal via this condition might follow the reactions shown in Equations (1)–(6).
The complete organic pollutant degradation via the photocatalytic oxidation released the H2 as
the main product with the carbon dioxide (CO2) as the co-product, as shown in Equation (7).
However, in our experiment, no trace of CO2 was detected, suggesting that a complete photooxidation
of the organic substances in biodiesel wastewater was not achieved, leaving intermediate species
that would be accounted for in terms of the residual COD, BOD and oil and grease levels in the
treated wastewater.

3.3.2. Effect of the Photocatalyst Loading

The effect of varying the photocatalyst loading (1.0–6.0 g/L) on the H2 production and pollutant
removal was evaluated using the 3.3-fold diluted acid-pretreated biodiesel wastewater at an initial
pH of 2.3, UV light intensity of 4.79 mW/cm2 and reaction time of 4 h. The maximum H2 production
level (Figure 4a) and lowest residual level of COD, BOD, oil and grease contents (Figure 4b) were all
obtained with a photocatalyst loading of 4.0 g/L. The increased H2 production and COD, BOD and
oil and grease removal levels with an increasing photocatalyst loading from 1.0–4.0 g/L presumably
reflects the increased number of available adsorption sites, supplying more molecules in the biodiesel
wastewater to perform the reaction. However, the decreased H2 production and pollutant removal
levels with photocatalyst loading above 4.0 g/L might be attributed to the formation of the self-shading
effect [30,31], in which catalyst particles reduce the light intensity in the wastewater of the photocatalyst
particles, owing to their low photo-excitation centers. Another possible reason is the light absorption
and scattering according to the Beer–Lambert law, resulting in a lower effective quantity of incident
light on the catalyst surface. Regardless, the optimal level of photocatalyst in this study was 4.0 g/L.
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In terms of the light conversion efficiency, the efficiencies calculated from the ratio of the total
energy value of the obtained H2 to the total energy input to the photoreactor by light irradiation,
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derived from Equation (9) [32], were 0.59%, 1.02%, 1.13%, 4.01%, 0.86% and 0.43% for a photocatalyst
loading of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/L, respectively (Figure 4a). This emphasized that the photocatalyst
loading of 4.0 g/L was the optimum level, since it exhibited the highest light conversion efficiency:

η =
33.61ρH2 VH2

IAt
× 100 (9)

where VH2 is the volume of produced H2 (L), ρH2 is the density of the produced H2 (g/L), I is the light
intensity (W/m2), A is the irradiated area (m2) and t is the duration of H2 production (h).

3.3.3. Effect of the UV Light Intensity

Figure 5 shows the effect of varying the UV light intensity (3.52–6.64 mW/cm2) on the H2

production and pollutant removal levels from the 3.3-fold diluted acid-pretreated biodiesel wastewater
at an initial pH of 2.3 with photocatalyst loading of 4.0 g/L for 4 h. Increasing the light intensity
from 3.52–4.79 mW/m2 increased the H2 production from 169–270 µmol (Figure 5a), decreased the
levels of COD and BOD only slightly and oil and grease more markedly in the wastewater (Figure 5b).
Further increasing the UV light intensity above 4.79 mW/cm2 did not markedly change the amount
of produced H2, suggesting the saturation of H2 production in the presence of high light intensity.
The saturation of H2 production has been observed previously for the photobiological production of
H2 at a high light intensity using malate and sodium glutamate as the carbon and nitrogen sources,
respectively [32,33]. The low pollutant removal and H2 production levels at a light intensity of less
than 4.79 mW/cm2 likely reflected an insufficient light penetration onto the photocatalyst surface.
There was no increase in pollutant removal or H2 production at UV light intensities greater than
4.79 mW/m2, which is probably attributed to (i) a high e−–h+ recombination rate compared with the
surface reaction when there was an extremely high e−–h+ generation rate [20] and/or (ii) the limitation
of available photocatalyst surface to absorb a large quantity of incident light to perform the reaction.
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The light conversion efficiencies were 3.43%, 3.05%, 2.64% and 3.13% in the presence of a UV light
intensity of 3.52, 4.79, 6.13 and 6.64 mW/cm2, respectively. The slight change in the light conversion
efficiency as the light intensity increased indicated the limitation of the photocatalyst surface to absorb
the incident light. In other words, the efficiency of H2 production and pollutant removal at a high light
intensity range was controlled by the surface reaction instead of the light intensity.

3.3.4. Effect of the Initial Wastewater pH

The effect of the initial pH of the wastewater on the H2 production rate and pollutant removal
was explored using the 3.3-fold diluted acid-treated biodiesel wastewater with a UV light intensity of
4.79 mW/cm2, photocatalyst loading of 4.0 g/L and a reaction time of 4 h. As exhibited in Figure 6a,
increasing the initial pH of the wastewater from 2.3–6.0 enhanced the H2 production level from
270–408 µmol. Further raising the initial pH of the wastewater to 8.0 decreased the H2 production
almost two-fold. For the pollutant removal, increasing the initial pH from 2.3–8.0 insignificantly
affected the BOD removal, but above pH 4.0, it decreased the oil and grease removal (Figure 6b).
The highest COD removal was observed at an initial wastewater pH of 4.1 and decreased with
increasing initial pH. The light conversion efficiency of the wastewater with an initial pH of 2.3,
4.1, 6.0 and 8.0 was 3.56%, 4.44%, 6.07% and 2.92%, respectively. Thus, the appropriate initial pH of
the wastewater for H2 production and pollutant removal were not the same, pH 6.0 being optimal
for H2 production, but pH 4.1 for pollutant removal. This might be attributed to the effect of the
PZC and agglomeration behavior of the utilized photocatalyst with the change in the wastewater
pH. The surface of the utilized photocatalyst is positively charged (TiOH2

+) in wastewater with a
pH less than the PZC of photocatalyst, while it is negatively charged (TiO−) in wastewater with
a pH higher than the PZC [34]. Under an acid condition, the electrostatic repulsion between the
positively-charged surface of photocatalyst and H+ would decrease as the initial pH of the wastewater
increased, resulting in an agglomeration of the catalyst particles. In other words, the catalyst was
well-dispersed (low agglomeration) at a pH less than PZC and poorly-dispersed (high agglomeration)
at a pH close to the PZC. This agglomeration brought the catalyst nanoparticles in close contact with
each other through the grain boundaries, allowing the migration of e− and h+ to an adjacent particle
hopping through the grain boundary [35], resulting in a low probability of e−–h+ recombination, as well
as the high production of H2 according to Equation (7). Thus, the wastewater with an initial pH of 6.0
provided a higher H2 production level than that with an initial pH of 4.1. However, the agglomeration
of the T400 particles reduced the available surface area to adsorb the pollutant molecules to degrade
with the photogenerated h+ and OH•, as shown in Equations (5) and (6), resulting in a lower level
of pollutant removal in the presence of wastewater with an initial pH of 6.0 compared to that with
a pH of 4.1. The H2 production and pollutant removal rates decreased markedly, at an initial pH
of 8.0, which was probably due to the electrostatic repulsion between the negative charges on the
photocatalyst surface and the lone-pair electron of the pollutant molecules, which would inhibit the
adsorption of pollutant molecules and so result in a decreased photocatalytic activity. Although the
wastewater with an initial pH of 6.0 had a 1.92-fold lower COD removal level than that with initial
pH of 4.1, it provided a 1.4-fold higher H2 production level. The final pH of the treated wastewater
was 4.74 and 8.76 for the wastewater with an initial pH of 4.1 and 6.0, respectively. Thus, an initial
pH of wastewater of 6.0 was selected as the optimum pH for the simultaneous H2 production and
pollutant degradation.
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3.3.5. Effect of the Operating Time and Reaction Rate

Figure 7 exhibits the variation in the H2 production and decrease in the COD, BOD and oil and
grease levels via the photocatalyst-UV light-mediated photocatalytic oxidation of the 3.3-fold diluted
acid-pretreated biodiesel wastewater at an initial pH of 6.0, a photocatalyst loading of 4.0 g/L and
UV light intensity of 4.79 mW/cm2. The amount of H2 produced increased linearly with the reaction
time, while the light conversion efficiency decreased with increasing reaction times up to 3.0 h and
then slightly increased at 4 h (Figure 7a). With respect to the COD, BOD and oil and grease levels,
their concentration decreased rapidly during the first 30 min of reaction time and then remained
broadly constant afterwards (Figure 7b).

The rate of COD, BOD and oil and grease removal was dependent on the amount of the reactive
oxidizing species (ROS), including the h+ and OH•, generated in the system and the concentration of
pollutants, as demonstrated in Equations (5) and (6). Thus, it can be written as Equation (10);

dC
dt

= −k′C[ROS] (10)

where k′ is the rate constant, C is the concentration of COD, BOD and oil and grease and [ROS] is the
concentration of the generated ROS.

Since the quantity of ROS was generated constantly at a given set of experimental conditions,
their concentration did not limit the rate of pollutant degradation. Therefore, Equation (10) can be
written as Equation (11);

dC
dt

= −kC (11)

where k is the pseudo-first order rate constant of pollutant degradation.
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Integrating Equation (11) with the boundary condition at t = 0, C = C0 and t = t, C = Ct and
rearrangement yields Equation (12);

Ct = C0 exp(−kt) (12)

The pseudo-first order rate constant (k) can be determined from this relationship by plotting
ln(Ct/C0) against t. Accordingly, the pseudo-first order rate constants of COD, BOD and oil and grease
removal were found to be 0.008, 0.085 and 0.044 min−1, respectively. The rate constant of COD removal
was lower than those of BOD and oil and grease removals by around 10.6- and 5.5-fold, respectively.
This is probably due to the very high initial COD concentration compared with that of BOD and
oil and grease. Another possible reason is the degradation of long organic molecules to short-chain
non-biodegradable molecules, which would then be accounted for in terms of the residual COD level
in the treated wastewater.

After the photocatalytic oxidation at optimum condition (3.3-fold dilution, initial pH of 6.0,
photocatalyst loading of 4.0 g/L, UV light intensity of 4.79 mW/cm2), the clear wastewater was
obtained as shown in Figure 2c. There, soap and FFAs were decreased to 0.09–1.07 wt % and 0.02–0.04 wt %,
respectively, without any detectable trace of glycerol (Table 1). The pH and BOD levels were reduced
to within the acceptable Thai standard, whilst the levels of COD, oil and grease, TDS and TSS were
still greater than the acceptable values by around 61.8–62.3-, 13.7–16.2-, 2.6–3.0- and 0.9–1.3-fold,
respectively. Thus, a more extensive study is still required and currently underway to improve the
photocatalyst’s morphology in order to increase the rate of H2 production together with pollutant
removal, and the obtained results will be reported soon.

4. Conclusions

The optimum conditions for the simultaneous H2 production and pollutant removal from
acidified biodiesel wastewater by photocatalytic oxidation with photocatalyst, a thermally-treated
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commercial TiO2 photocatalyst, were explored at room temperature (~30 ◦C) and ambient pressure.
The photocatalyst loading level, UV light intensity, initial pH of the wastewater and reaction time
all affected the H2 production and pollutant removal levels. At the optimum conditions found,
approximately 228 µmol of H2 were produced with COD, BOD and oil and grease removal levels of
13.2%, 89.6% and 67.7%, respectively, and with a light conversion efficiency of 6.78%. The pH and
BOD levels were reduced to within the acceptable Thai standard, but the levels of COD, oil and grease,
TDS and TSS were still greater than the acceptable values.
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