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Abstract: We describe the synthesis of mesoporous Al2O3 and MgO layers on silicon wafer
substrates by using poly(dimethylacrylamide) hydrogels as porogenic matrices. Hydrogel films
are prepared by spreading the polymer through spin-coating, followed by photo-cross-linking
and anchoring to the substrate surface. The metal oxides are obtained by swelling the hydrogels
in the respective metal nitrate solutions and subsequent thermal conversion. Combustion of the
hydrogel results in mesoporous metal oxide layers with thicknesses in the µm range and high specific
surface areas up to 558 m2·g−1. Materials are characterized by SEM, FIB ablation, EDX, and Kr
physisorption porosimetry.

Keywords: mesoporous; Al2O3; MgO; poly(dimethylacrylamide); hydrogel; thin film; spin coating;
SEM; FIB; Kr physisorption

1. Introduction

The synthesis of metal oxides with uniform mesopores is often achieved by utilization of porogenic
structure directors or matrices. For example, micellar aggregates of amphiphilic species—such as
surfactants or block co-polymers—are frequently utilized as porogens. They form spontaneously by
self-organization and serve as pore fillers or even as structure-directing species during the formation
of the inorganic phase by a sol–gel-based synthesis (‘soft templating’) [1,2]. This synthesis method is
applicable to a limited variety of inorganic products, such as silica and some other oxidic materials,
including aluminum oxide (Al2O3) [3–5]. For uniform, continuous layers (‘solid films’) of mesoporous
metal oxides at a substrate surface the soft-templating approach is usually the method of choice,
because the spontaneous self-aggregation into micellar units can take place inside a liquid film that
contains both the amphiphilic species and the inorganic precursor compounds. For this purpose,
the micellization is induced by evaporation of the solvent (evaporation-induced self-assembly, EISA) [6,7].
It needs to be stressed, though, that several metal oxides cannot be obtained in this way as their
formation may go along with phase-separation and segregation from the amphiphilic species. As an
alternative, the concept of using solid, porous structure matrices (‘hard templates’) has been shown to
be a more versatile option [8,9]. This method, often called ‘nanocasting’, comprises the synthesis of
the desired products within the pores of a silica or carbon matrix, followed by selective removal of
the matrix; the product is obtained as a ‘replica’ of the pore system in the matrix. Nanocasting can
be used for the fabrication of a multitude of metal oxides, including Al2O3 [10–12], as well as those
that have so far not been obtained by soft templating, e.g., magnesium oxide (MgO) [12–15]. However,
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the nanocasting concept still has its limitations when it comes to the synthesis of porous films, since
the removal of the structure matrix may cause detachment of the replica film from the substrate.

We have recently described the synthesis of mesoporous metal oxides by using
poly(dimethylacrylamide) hydrogels as matrices [16,17]. Hydrogels are three-dimensional structures
composed of hydrophilic polymer chains, which can absorb and hold large quantities of water in the
spaces between the chains [18]. They can be fabricated via physical or chemical cross-linking [19] and
have been used as matrices for porous inorganic materials [16,17,20–22]. Their utilization as porogenic
matrices may be regarded as halfway between ‘soft’ and ‘hard templating’. The hydrogel forms a
continuous network that can take up the inorganic precursor species (such as a metal salt) with no
risk of phase-separation, similar to a hard structure matrix. At the same time, the swollen hydrogel
is a highly flexible phase; the (cross-linked) polymer strands are more or less loosely arranged and
displaceable, like a soft matrix. In fact, the porogenic impact may even occur when the water-soluble
polymer strands are not even cross-linked, but only sterically entangled [23]. We have rationalized that
thick bundles of polymer chains (rather than single, individual chains) in poly(dimethylacrylamide)
hydrogels form the porogenic entities [16]. The products obtained so far were powders with somewhat
uniform mesopores and high specific surface areas.

Here we report on utilizing the same kind of porogenic hydrogels for mesoporous layers
(solid films) of aluminum oxide (Al2O3) and magnesium oxide (MgO) at the surface of silicon wafer
substrates. Photo-cross-linked poly(dimethylacrylamide) hydrogels are attached to the substrate by
chemical bonding and serve as matrices for the metal oxides (Scheme 1). Porous Al2O3 and MgO
with a high surface-to-volume ratio play an important role in separation [24,25] and heterogeneous
catalysis [26–29]. Especially for the latter application immobilized layers of the catalyst (MgO) or
support (Al2O3) materials with large pores are considered advantageous to facilitate easy access of the
reactants by diffusion.
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Scheme 1. Preparation of porous metal oxide (Al2O3, MgO) layers: (a) anchoring of the adhesion
promoter on the Si wafer substrate; (b) spreading of the polymer by spin coating; (c) hydrogel formation
and immobilization on the substrate by photo-induced cross-linking; (d) swelling in metal salt solution
(Al(NO3)3, Mg(NO3)2); (e) formation of the porous metal oxide and combustion of the hydrogel
by calcination.

2. Materials and Methods

Materials: Acryloyl chloride (Alfa Aesar, Karlsruhe, Germany, 96%), allylamine (Sigma-Aldrich,
Taufkirchen, Germany, 98%), aluminum nitrate nonahydrate (Sigma-Aldrich,≥98.0%), ammonia solution
(Stockmeier, Bielefeld, Germany, 25%), bicyclohexyl (Acros, Geel, Belgium, 99%), chloroform (Stockmeier),
chlorodimethylsilane (Alfa Aesar, 97%), 1,2-diaminoethane (Acros, >99%), 2,3-dimethylmaleic anhydride
(Acros, 97%), di-tert-butyl dicarbonate (Boc2O, Acros, 97%), ethanol, absolute (Sigma-Aldrich),
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hydrochloric acid, conc. (Stockmeier, 37%), hydrogen peroxide (Stockmeier, 35%), magnesium
nitrate hexahydrate (Sigma-Aldrich, ≥97%), magnesium sulfate (Grüssing, Filsum, Germany, 99%),
platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex solution in xylene (Sigma-Aldrich,
Pt ~2%), 4”-silicon-wafer (Plano, Wetzlar, Germany), sulfuric acid, conc. (Stockmeier, ≥98%),
thioxanthone (Sigma-Aldrich, 98%), and triethylamine (TEA, Grüssing, 99%) were used as received.
Acetone (Stockmeier), diethyl ether (Hanke+Seidel, Steinfurt, Germany), ethyl acetate (Stockmeier),
n-hexane (Stockmeier), methanol (Stockmeier), n-pentane (Stockmeier), silica gel (VWR), sodium
bicarbonate (Stockmeier), and sodium chloride (Stockmeier) were of technical grade and used as
received. 1,4-Dioxane (Carl Roth, Karlsruhe Germany, ≥99.5%), N,N-Dimethylacrylamide (DMAAm,
TCI, Eschborn, Germany, 99%), tetrahydrofuran (THF, BASF, Ludwigshafen, Germany), and toluene
(Grüssing, 99.5%) were distilled under low pressure. α,α′-Azobisisobutyronitrile (AIBN, Fluka, Seelze,
Germany, >98%) was recrystallized from methanol. Cyclohexanone (Sigma-Aldrich, ≥99.0%) was
distilled. Dichloromethane (Stockmeier) was dried over CaCl2 and distilled.

Characterization: 1H and 13C NMR spectra were recorded on a Bruker AV 500 spectrometer at
500 MHz and 125 MHz, respectively. Reference solvent signals at 7.26 and 2.56 ppm were used
for spectra in CDCl3 (99.8 atom % Deuterium) and DMSO-d6 (O=S(CD3)2, 99.9%), respectively.
Gel permeation chromatography (GPC) was performed in chloroform for PDMAAm at 30 ◦C and
at a flow rate of 0.75 mL·min−1 on a Jasco 880-PU Liquid Chromatograph connected to a Shodex
RI-101 Detector. The instrument was equipped with four consecutive columns (PSS-SDV columns
filled with 5 µm gel particles with a defined porosity of 106 Å, 105 Å, 103 Å and 102 Å, respectively)
and were calibrated by poly(methyl methacrylate) standards. Krypton (Kr) physisorption analysis
was performed at 77 K on a Quantachrome Autosorb 6B instrument. The masses of the films were
determined by weighing the wafer substrates before and after film synthesis. Several samples of
identical films (7 × 7 mm substrate dimensions) were combined for each sorption measurement to
provide sufficient overall film masses (1–200 mg). Samples were degassed at 120 ◦C for 12 h prior to
measurement. The specific surface areas were assessed by multi-point BET analysis [30] in the range
0.1 ≤ p/p0 ≤ 0.3. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy
were performed on a Zeiss NEON® 40 microscope connected with an UltraDry detector from Thermo
Fisher Scientific (Waltham, MA, USA).

Cross-Linker Synthesis: 2-(Dimethyl maleimido)-N-ethyl-acrylamide (DMIAAm) was synthesized
through a four-step reaction as described in the literature [31] and can be found in detail in the
Supplementary Materials.

Polymer Synthesis: Poly(DMAAm-co-DMIAAm) was synthesized with DMAAm monomer and
DMIAAm cross-linker by free radical polymerization initiated with AIBN in an analogous fashion as
described in the literature [31]. DMAAm (95 mol %) and DMIAAm (5 mol %) and about 0.002 mol %
AIBN relative to the total amount of monomer were dissolved in 1,4-dioxane and purged with argon
for 20 min. The total monomer concentration was 1 mol·L−1. The polymerization was carried out
at 70 ◦C for 7 h under argon atmosphere. Afterwards, the polymer was precipitated in diethyl ether
and re-precipitated from tetrahydrofuran into diethyl ether for purification. Finally, the polymer was
dried in high vacuum and characterized by NMR spectroscopy and GPC. 1H NMR (500 MHz, CDCl3):
δ (ppm) = 1.51–1.83 (m, CH2), 1, 94 (s, CH3), 2.3–2.75 (m, CH), 2.77–3.19 (m, N-CH2, NH-CH2, N-CH3),
3.6 (b, NH). Yield: 88%, Mn: 39,000 g·mol−1, DMIAAm composition: 5 mol % (Feed)/4.8 mol % (NMR),
PD: 5.1.

Synthesis and Immobilization of the Adhesion Promoter: 1-[3-(Chloro-dimethyl-silanyl)-propyl]-3,4-
dimethyl-maleimide was synthesized as described in the literature [32] (see Supplementary Materials).
A Si wafer (7 mm× 7 mm) was activated with a mixture (7:3 vol.) of concentrated sulfuric acid (H2SO4)
and 30% hydrogen peroxide (H2O2) solution at 90 ◦C for 1 h. After repeated rinsing with water and
ethanol and drying in argon stream the adhesion promoter was absorbed from 1 vol % solution in
bicyclohexyl for 24 h. Finally the wafer was rinsed with chloroform and abs. ethanol and dried in an
argon flow.
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Preparation of Hydrogel Films: Solutions of the polymer in cyclohexanone (2 mL) with 2 wt %
thioxanthone as a sensitizer were spin-coated on a pre-treated Si wafer, using variable spin velocities
and polymer concentrations (see Results and Discussion section); polymer solutions were first spread
at 250 rpm for 25 s, followed by 60 s of spinning at the final velocity. The polymer layer on the wafer
was irradiated with UV light for one minute by using a 200 W mercury short arc lamp with an intensity
of 266 mW·cm−2.

Preparation of Porous Al2O3 and MgO layers: For the preparation of Al2O3, the hydrogel film was
re-swelled in saturated aqueous aluminum nitrate solution (1.9 mol·L−1) overnight and then treated
with the vapor of an aqueous ammonia solution (12.5 wt %) for 3 h at 60 ◦C to convert Al(NO3)3 to
Al(OH)3/AlO(OH), followed by drying overnight at 60 ◦C. The material was calcined in a tube furnace
for 4 h at 500 ◦C with a heating rate of 1 ◦C·min−1 to combust the polymer and to form a porous
Al2O3 film on the Si wafer. For the preparation of MgO the hydrogel film was re-swelled in saturated
aqueous magnesium nitrate solution (4.9 mol·L−1) overnight and then dried at 120 ◦C. The material
was calcined in a tube furnace for 2 h at 300 ◦C and 2 h at 500 ◦C with a heating rate of 1 ◦C·min−1 to
combust the polymer and to form a porous MgO film on the Si wafer.

In an alternative approach, the above-described preparation of the hydrogel film was modified by
dissolving the polymer in methanol (instead of cyclohexanone) and by adding aluminum nitrate or
magnesium nitrate to this solution before (instead of after) spin-coating (2500 rpm final spin velocity)
and subsequent photo-cross-linking. Otherwise, the same synthesis protocol was used.

3. Results and Discussion

Photo-cross-linked hydrogel films were used as structure matrices for the preparation
of porous alumina (Al2O3) and magnesia (MgO) layers. The polymer for the hydrogels was
synthesized by free radical polymerization of N,N-dimethylacrylamide (DMAAm) and 2-(dimethyl
maleimido)-N-ethyl-acrylamide (DMIAAm) (Scheme 2a). The synthesized polymers have a molecular
weight (Mn) of ca. 39,000 g·mol−1. DMIAAm served as a photo-cross-linker to form a three-dimensional
polymer network (Scheme 2b) by a reaction mechanism that can be primarily described as a [2+2]
cycloaddition; however, other mechanisms are also possible [32]. According to NMR data the DMIAA
fraction in the polymers is 4.8 mol %, slightly less than the feed composition (5 mol %), which is in
accordance with previous findings [33]. To covalently attach the hydrogel to a silicon wafer substrate,
1-[3-(chloro-dimethyl-silanyl)-propyl]-3,4-dimethyl-maleimide was used as an adhesion promoter.
The promoter was applied to the wafer prior to coating with the polymer. For this purpose, the wafer
surface was chemically activated by oxidative treatment with piranha solution (H2SO4/H2O2).
The promoter bonds to the surface via its reactive chloro-silane function (Scheme 2c); the maleimide
function can react with the polymer during photo-induced cross-linking.

Porous Al2O3 or MgO layers were created by pre-fabricating hydrogel films on the substrate and
then adding the inorganic precursor species in a second step (Scheme 1). The polymer was spin-coated
on the pretreated Si wafer by using cyclohexanone as a solvent. The polymer concentration and spin
velocity were varied in order to obtain variable film thicknesses. Photo-cross-linking of the polymer
film was then achieved by UV irradiation as described in the Experimental Section. The cross-linked
network forms a thin hydrogel film at the Si wafer surface. Figure 1 shows example scanning electron
microscopic (SEM) images of dry films exhibiting high degrees of homogeneity. (further examples are
shown in Figure S1 in the Supplementary Materials). The film thicknesses were analyzed by focused
ion beam (FIB) ablation. Figure 1d shows a rectangular hole cut out of the film. The image was taken
from a tilted angle (ca. 45◦ to the film surface), showing both the section through the film and the
underlying substrate. This way, the average thickness of the film can be measured; depending on
polymer concentration and spin velocity it ranges from 0.187 µm to 0.851 µm (Table 1).

The hydrogel film was then impregnated with Al(NO3)3 or Mg(NO3)2 by swelling in a saturated
aqueous solution of the respective salt. The Al salt was transformed to Al(OH)3/AlO(OH) by exposure
to ammonia vapor and subsequently calcined to create Al2O3; this procedure is frequently applied for
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the structure-directed synthesis of Al2O3 [10,11]. The Mg salt was directly transformed to MgO by
calcination. In both cases, the calcination procedure leads to the thermal combustion of the hydrogel
matrix, leaving behind metal oxide layers that remain attached to the Si wafer substrates (presumably
by Si-O-Al bonds in case of Al2O3 and by ionic interaction with the charged oxidized Si surface in case
of MgO, respectively). Identification of the metal oxide phases by XRD was not feasible due to the very
low thickness of the layers (see below), but previous studies [16,17,23] have shown that the applied
synthesis conditions lead to formation of γ-Al2O3 (with low crystallinity) and MgO, respectively.
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Figure 1. SEM images of dry hydrogel films prepared by spin-coating with variable polymer
concentration and spin velocity (average film thicknesses: (a) 0.187 µm; (b) 0.588 µm; (c,d) 0.851 µm;
see Table 1). Image (d) shows an example of the FIB ablation analysis of a film (average thickness:
0.851 µm; green bars: 0.8796, 0.8439, 0.8320 µm).
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Table 1. Characteristics of dry hydrogel films obtained by spin-coating of the polymer and subsequent
photo-cross-linking.

Spin Velocity (rpm) Polymer Conc. (wt %) Film Thickness (µm)

2500 5 0.187
2500 7.5 0.306
2500 10 0.588
1000 5 0.607
1000 7.5 0.801
1000 10 0.851

Figure 2 shows SEM images with FIB analysis of two examples of porous Al2O3 and MgO layers.
(further examples are shown in Figure S2 in the Supplementary Materials) EXD analysis confirms the
approximate stoichiometry of Al/O = 1.5 and Mg/O = 1, respectively (Table S1 in the Supplementary
Materials). The Al2O3 layer (Figure 2a,b) exhibits a fairly smooth and homogeneous texture and an
average thickness of 1.77 µm, three times the thickness of the non-swollen (dry) hydrogel film that was
used as the matrix (0.588 µm). This difference reflects the swelling of the hydrogel and also indicates a
certain degree of porosity in the Al2O3 layer, as will be substantiated below.
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Figure 2. SEM images and FIB ablation analysis of two example layers of Al2O3 ((a,b); average
thickness: 1.77 µm, prepared with a hydrogel film of 0.588 µm thickness; green bars: 1.766 and
1.782 µm) and MgO ((c,d); average thickness: 0.646 µm, prepared with a hydrogel film of 0.851 µm
thickness; green bars: 0.5862, 0.7313, 0.6197 µm).

Assessment of the pore size distribution by nitrogen (N2) or argon (Ar) physisorption analysis
was not possible due to the low overall amount of material (as frequently encountered for thin layers
of porous material), but krypton (Kr) physisorption allowed a five-point BET analysis, as shown
in Figure 3a. The isotherm showing the adsorbed amount of Kr is shown in Figure S3 in the
Supplementary Materials. The specific surface area of the Al2O3 layer is 370 m2·g−1, corresponding to
0.259 m2·cm−2 if normalized to the covered area of the substrate. The latter value incorporates the
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respective film thickness, while the former value is independent of the film dimensions. This large
surface area confirms that the Al2O3 layer is indeed porous. As mentioned in the Introduction section,
we have recently reported on the synthesis of γ-Al2O3 materials synthesized by the same procedure
(using the same type of hydrogels), but in form of powders rather than as thin layers [16,17,23].
The powder samples exhibited similar BET surface areas (250–370 m2·g−1) with narrow pore size
distributions around ca. 4 nm and mesopore volumes in the range of 0.4–0.5 cm3·g−1. Hence, it is
fair to assume similar mesopores for the Al2O3 layer presented here. The origin of these mesopores is
the porogenic impact of bundles of polymer strands in the hydrogel; the combustion of the hydrogel
creates disordered, tubular mesopores, as previously described [16]. The MgO layer (Figure 2c,d),
on the other hand, is significantly less homogeneous than the Al2O3 layer; it exhibits a rough surface
with raptures and an almost granular texture. Its average thickness is 0.646 µm, which is actually
less than the thickness if the respective non-swollen (dry) hydrogel film (0.851 µm). This indicates a
lower degree of porosity which is confirmed by a low BET surface area of 112 m2·g−1 (0.025 m2·cm−2;
Figure 3b). Obviously, the polymer network does not have a strong porogenic impact in this case.
This may be due to the fact that the hydrogel matrix starts to decompose before a sufficiently stable
network of MgO has formed.
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In an alternative synthesis approach, we simplified the process by dissolving the metal salts
and the precursor polymer in methanol before applying them to the silicon wafer by spin-coating
and subsequent photo-cross-linking of the polymer. Hence, no drying of the hydrogel films and
subsequent re-swelling in metal salt solutions is necessary which facilitates the overall procedure.
The rest of the synthesis was carried out in the same way as before. Two example SEM images of
the resulting Al2O3 and MgO layers are shown in Figure 4. Further examples are listed in Table S2
and shown in Figure S4 in the Supplementary Materials. The Al2O3 layer (Figure 4a) exhibits an
average thickness of 0.364 µm and shows a fairly homogeneous texture, although not as smooth as in
case of the synthesis procedure described above (i.e., by re-swelling the pre-fabricated hydrogel films
with metal salt solutions). However, it exhibits a higher BET surface area of 558 m2·g−1. Figure 3c;
the surface area per substrate area, 0.080 m2·cm−2, is lower as a consequence of a lower layer thickness.
The MgO layer (Figure 4b) is even less homogeneous; it appears seriously granular and rough, with a
similar BET surface area as for the material prepared by the first route (112 m2·g−1). In summary,
the alternative synthesis approach, despite being simpler and easier to carry out, cannot be regarded
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as equally successful as the first route in terms of the homogeneity and smoothness of the resulting
metal oxide layers.Nanomaterials 2018, 8, x FOR PEER REVIEW  8 of 10 
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4. Conclusions

In summary, we have shown that the concept of using poly(dimethylacrylamide) hydrogels as
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Homogeneous mesoporous layers of Al2O3 with high specific surface areas (up to 558 m2·g−1) are
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