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Abstract: We analyzed the coupling behavior between the localized surface plasmon (LSP) and
quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag
nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and
CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved
PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional
(3D) finite difference time domain (FDTD) simulation was performed using a three-body model
consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated
from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation
was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper,
the coupling mechanism is discussed and a novel emission structure is proposed.

Keywords: localized surface plasmon; green LED; cathodoluminescence; FDTD

1. Introduction

Despite GaN-based blue light-emitting diodes (LEDs) achieving rather high external quantum
efficiency (EQE), the green gap is still a key issue for high-quality illumination [1,2]. Because of the
imperfect structure and high polarization field in high-indium content InGaN quantum wells (QWs),
the EQE for a green LED is quite low compared with that for a blue LED. Various approaches have been
applied to solve this problem, such as the use of nonpolar/semipolar substrates, the use of a Si substrate,
band engineering, and the introduction of a surface plasmon (SP) [3–6]. The polarization reduction and
incorporation of indium into the InGaN alloy have been improved by these methods except for the last
one, the SP method. Because of the high density of states (DOS) of the SP, the spontaneous emission
rate (SER) in QWs can be very high, leading to a higher internal quantum efficiency (IQE) [6]. Two main
perspectives on light emission enhancement via SP–QW coupling have emerged. One perspective
is that the SP modes in the metal are excited by spontaneous emission (SE) in QWs and radiate to
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air in dipole mode [7,8], thus the energy transferred to SP is divided into “SP radiation” and “metal
dissipation”. The other perspective is that the spontaneous emission rate in QWs is greatly enhanced
by the strong near-field strength of the SP excited by SE in QWs [9–11]. Both of these perspectives
can explain the light emission enhancement by SP–QW coupling. As to SP radiation, less than 50% of
the coupled energy can be radiated into air, and the emission enhancement is effective for emitters
with low original EQE [8]. The latter perspective introduces the possibility of emission enhancement
for a green LED [10,11]. However, the energy distribution dynamics in the SP–QW coupling system
remain unclear.

Although evidence of the SER enhancement has been reported for several decades, the problem of
energy dissipation in the metal is not yet well resolved. The energy dissipation in the metal corresponds
to the Ohmic loss and to the electron-hole pair creation [12]. Many techniques have been reported
to reduce the energy dissipation effects, including using a localized surface plasmon (LSP), placing
the emitters into a metal gap, adjusting the dipole orientation, and coupling the QWs between each
other [8,10,11,13,14]. An enhancement of the SER exceeding 1000 times with a quantum efficiency
above 50% indicates that the energy dissipation is greatly reduced by the gap modes [10]. However,
the complicated fabrication procedure for the gap structure prevents its further application. LSP–QW
coupling between the radial or orbital dipoles and Ag NPs is quite different in the simulation [13].
The enhancements of radiated power of a radial and an orbital dipole are induced through coupling
with the lower-order (dipole) and higher-order LSP resonance, respectively. Because the conventional
InGaN QWs are thin and flat, the dipoles are mainly orbitally oriented [9,13], that is, some energy
dissipation always occurs for planar QW structure.

Recently, several reports of electron beam (e-beam)-excited SP in metal nanoparticles (NPs)
by cathodoluminescence (CL) have been reported [15–18]. Because CL measurements combine the
ultrahigh spatial resolution of an electron microscope with broadband optical sensitivity, they can be
used to study the optical process in metal NPs. There is a direct link between CL and radiative modes
(“bright modes”) or the radiative electromagnetic local density of states (LDOS) [16]. Some simulation
results for CL measurements have also been performed by regarding the e-beam as a dipole source
along the incident direction [15,18]. Although Ag NP–QW structures excited by an e-beam have been
reported [19–21], these works did not consider the SPs induced by the e-beam. In fact, the e-beam,
approximated by a vertical dipole induces the high near-field strength near the Ag NPs [15–18],
will greatly influence the coupling between the LSP and the QWs. Moreover, the dipoles representing
the QW and the e-beam are in-plane and out-plane, respectively. The configuration of a single Ag
NP and two orthogonal dipoles can be used to study the energy transfer process of the LSP–QW
coupled system.

In this work, we fabricated LSP–QW coupled samples of an array of Ag NPs embedded in photonic
crystal (PhC) holes in the p-GaN layer of a green LED. Photoluminescence (PL) and time-resolved
photoluminescence (TRPL) and CL measurements were carried out. A novel three-dimensional (3D)
finite difference time domain (FDTD) numerical simulation model for CL and PL measurements
was also put forward using Lumerical software (FDTD Solutions v8.17, Vancouver, BC, Canada) to
illustrate the difference in the LSP–QW coupling mechanism under light and e-beam excitations [22].
The LSP-two orthogonal dipoles coupling mechanism is discussed and an effective way to reduce the
energy dissipation in Ag NPs is proposed.

2. Experimental

GaN-based green LED structures with a peak wavelength of 545 nm were grown by metal organic
chemical vapor deposition (MOCVD) on the double-polished c-plane sapphire substrate. The structure
consisted of 10 pairs of InGaN/GaN (2.5 nm/12.5 nm) multiple quantum wells (MQWs), on which
is 160 nm thick p-GaN. As shown in Figure 1, LSP–QW coupled samples (Ag–PhC) were fabricated
based on the PhC structure in the p-GaN layer. The scanning electron microscope (SEM) images
of the Ag arrayed LED were recorded using an FEI NanoSEM 430 (FEI, Hillsboro, OR, USA). First,
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a 120 nm thick SiO2 mask was deposited onto the surface of p-GaN. The PhC patterns were obtained
via nano-imprinting using an Obducat Eitre 3 instrument (Obducat, Lund, Sweden) with a standard
PhC stamp whose period was 545 nm. Then, the hexagonal nanohole array was subsequently obtained
using an induced coupled plasma (ICP) etcher to etch the pores to a depth of 150 nm, i.e., the bottom of
each pore was 10 nm away from QWs. Then, a 30 nm thick Ag film was deposited onto the patterned
surface. After thermal annealing at 600 ◦C for 10 min under a N2 atmosphere, Ag NPs were formed
in the PhC holes, followed by the lift-off process to remove the Ag NPs on the SiO2 mask. The Ag
NPs were spherical cap-shaped. Statistically, the diameter and height were 160 ± 10 and ~80 nm,
respectively. For comparison, reference samples (denoted PhC) with the same pattern but without Ag
NPs were also prepared.

Figure 1. SEM image of a Ag–photonic crystal (PhC) sample. The period of the PhC is 545 nm.
The diameter and height of the Ag NPs are 160 ± 10 and ~80 nm, respectively. The inset shows the
cross-sectional image of a single Ag NP in the hole.

PL measurements using a 405 nm laser diode with a power of 150 mW and a spot diameter of
~1 mm and CL measurements using a Gatan Mono-CL2 system (Gatan, Pleasanton, CA, USA) were
performed at room temperature on the Ag–PhC and PhC samples with a configuration of top excitation
and top detection. The electron acceleration voltage was set to 15 kV with a beam current of 158 pA.
The TRPL measurements were conducted using a LifeSpec-Red picosecond lifetime spectrometer
with a pulsed 372 nm laser (Edinburgh Instruments, Livingston, UK). The pulse duration was 69 ps.
This instrument was made use of a time-correlated single photon counting (TCSPC) technique with a
time resolution of ~30 ps within a range of 10 ns.

3. Results and Discussion

TRPL measurement is an efficient method to confirm LSP–QW coupling. Figure 2A shows the
TRPL results at the peak wavelength 545 nm of the Ag–PhC sample and the PhC sample. The decay
curves were fitted by a double exponential function as reported in the previous work [14]. The fast
decay time, which corresponds to the rapid carrier recombination in InGaN QWs, were obtained as
0.23 and 0.76 ns for the Ag–PhC and PhC samples, respectively. The 3.3-fold reduction of the decay
time indicates that LSP coupling with QWs substantially enhances the SER [14]. Contrarily, the PL
intensity of the Ag–PhC decreased by 1.7 times compared with that of PhC sample, as shown in
Figure 1B. This decrease is attributed to the large energy dissipation in Ag NPs as a result of their
small aspect parameter (α), which is defined as the ratio between the height of the Ag NP and its
radius [14,23]. When the α is greater than 1.5, the emission enhancement will be realized with Ag
NPs with diameters ranging from 90 to 200 nm [23]. Because the LSP–QW coupled energy was either
radiated into the air or dissipated in the Ag NPs, the ratio between radiated energy and the dissipated
energy would determine whether the final PL intensity was enhanced or suppressed.
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Figure 2. (A) Time-resolved photoluminescence (TRPL) and (B) PL spectra for Ag–PhC and PhC samples.

A schematic setup for the CL measurement is shown in Figure 3A. An e-beam was highly focused
and directed onto the surface of samples. CL measurement was performed using a 15 kV acceleration
voltage and a beam current of 158 pA. The electron penetrating depth into the Ag NPs was greater
than 20 nm [19,20]. The light emitted from the samples was collected by a retractable parabolic mirror
and collimated to an optical monochromator, after which the signal was detected by a charge-coupled
device (CCD). To ensure the maximum light collection efficiency, the samples were placed at the focal
plane of the parabolic mirror, approximately ~1 mm away from the mirror. Figure 3C,D show the
panchromatic CL (PanCL) image of an Ag–PhC sample and a PhC sample, respectively. The PanCL
image, where all of the emitted light from the sample was collected by the e-beam scanning point
by point, can clearly depict the LSP-induced luminescence around the Ag NPs. The holes are much
brighter than the platform of the Ag–PhC sample. The dark spots in the holes are related to the Ag NPs.
However, the spot size is much smaller than the actual size of Ag NPs in Figure 1. This discrepancy
arises because of the penetration ability of high-energy electrons [19] and the strong coupling between
the LSPs induced by the e-beam [16–18] and the QWs. The darker cloudy areas in Figure 3C,D are
mainly attributed to the InGaN phase separation in QWs. CL spectra were recorded by scanning the
electron beam over the entire surface of interest under the same conditions, as shown in Figure 3B.
To confirm that the emission originates from QWs rather than from the Ag NPs, samples without QWs
were fabricated. It was found that CL spectrum of the sample without QWs mainly originated from the
emission of GaN and its intensity was approximately two orders of magnitude smaller than that of the
sample with QWs. The CL intensity of the Ag–PhC sample is 2.91 times greater than that of the PhC
sample, whereas the PL intensity of PhC sample is 1.7 times that of the Ag–PhC sample. Compared
with laser excitation, e-beam excitation enhances the emission intensity of the Ag–PhC sample by a
factor of 4.95. Considering the penetration electron energy loss in Ag NPs, even if all the electrons
can penetrate through the Ag NP to excite the QW directly, it is impossible for the enhancement factor
to be as high as 4.95. The high near-field strength of the LSP in the Ag NPs induced by continuously
injected e-beam should be considered in the LSP–QW coupling process [16–18]. Moreover, how the
energy dissipation is reduced by the e-beam excitation is interesting.
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Figure 3. (A) Schematic setup for the cathodoluminescence (CL) measurement; (B) CL spectra for
Ag–PhC and PhC samples. Panchromatic CL images for (C) the Ag–PhC sample and (D) the PhC
sample. CL intensity for the Ag–PhC sample is enhanced 2.91 times compared with that for PhC sample.

To distinguish the different LSP–QW coupling mechanisms by e-beam excitation and laser
excitation, 3D-FDTD numerical simulations were carried out [22]. In FDTD, Maxwell’s equations
are solved in discretized space and time. Figure 4 shows the schematic structure of Ag–PhC sample
used in the 3D-FDTD simulation. Since the separation between Ag NPs is greater than 200 nm,
the coupling between Ag NPs can be ignored [24]. Therefore, only one Ag NP needs to be considered.
The dispersion relation of the Ag NP adopts “Ag (silver)-Palik (0–2 um)” data provided by the FDTD
material database [22]. The Ag NP was placed in the hole center of PhC on p-GaN (n = 2.55) to simplify
the simulation. The sizes of Ag NP and PhC are consistent with the SEM result as shown in Figure 1.
The space between Ag NP and the first QW is 10 nm. The perfectly matched layer (PML) absorbing
boundaries were adopted on all sides. To improve the simulation accuracy, an override region was
applied over the Ag NPs and x-dipole with the mesh size of 2 nm. Outside that region, automatic
graded meshing was used. Moreover, the simulation span was 6 um*6 um (x–y plane), which is large
enough for the light to propagate.

Figure 4. The schematic structure of the Ag–PhC sample in 3D finite difference time domain (FDTD)
simulation. The purple, green, and black boxes were used to collect the total power radiated by the
dipole, the dissipation power in the Ag NP, and the scatted energy, respectively. The red line (plane)
was used to record the radiated power from top surface.
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Given the symmetry in the QW plane, where the radiating dipoles lie, only one dipole polarized
along x direction (x-dipole) was placed below the Ag NP to represent the QW. The e-beam, however,
was represented by a dipole polarized along its trajectory (z-dipole) in order to simplify the model [18].
Both the x-dipole and z-dipole adopted the built-in broadband source model, with the wavelength
range from 480 to 630 nm. In FDTD, broadband sources can be used to perform simulations in which
wideband frequency data is required. Since the e-beam impinging on different positions of the Ag
NP may lead to different excitation, the z-dipole was successively placed with an interval of 30 nm
at the positions of A, B, C, and D, as shown by the yellow arrows in Figure 4. To calculate the power
transition, four monitors were used in the simulations. The purple, green, and black boxes were used
to collect the power of x-dipole (QW), dissipated power, and scattering power, respectively, while the
upper red plane monitor was used to record the energy successfully extracted into the air.

The actual power emitted by a dipole can vary dramatically depending on what dielectric
envelopments are nearby. The field induced by a dipole or reflected from the surrounding structures
can feed back on itself, causing it to radiate more or less power than expected in a homogenous
material [10,11,13]. As a result, the calculated power should be normalized to the power that a dipole
would emit in a homogenous material (such as vacuum), rather than the actually emitted power.
In FDTD, the quantum mechanical decay rate can be related to the power collected by a monitor box
in the same environment. Therefore, the decay rate can be normalized by [22],

γ

γ0
=

P
P0

(1)

where γ and P are the decay rate and radiated power by a dipole in an inhomogeneous environment,
and γ0 and P0 are the corresponding parameters in a homogeneous environment (here GaN).
In particular, when a dipole is surrounded by a monitor box (i.e., the purple box in Figure 4), γ would
become the well-known Purcell factor (Fp), which is defined as the ratio of the radiation power of a
dipole near Ag NPs to that in a bulk dielectric material (GaN). Thus, the EQE—namely the ratio of
power measured in the far field to the total power injected into the x-dipole (QW)—as well as the IQE
and light extraction efficiency (LEE) can be defined as [11,22],

ηEQE = ηIQEηLEE =

(
Fpγrad

Fpγrad + γnon

γscat

γdiss + γscat

)
γout

γscat
(2)

where γscat and γdiss are the scattering and dissipation rate, γrad and γnon are the radiative and
nonradiative decay rate, and γout is light extraction rate. According to our temperature-dependent
PL measurements, the internal quantum efficiency is calculated as 26%. A rough estimation of the
ratio of the nonradiative decay rate (γnon) to the radiative decay rate (γrad) for the PhC sample is
3:1. Based on the data drawn from the aforementioned monitors, EQE, IQE, LEE, and Fp can be
calculated, respectively.

In the PL simulation, because the Ag NPs are opaque to light excitation [19] or the laser wavelength
cannot match the SP resonant wavelength [14], z-dipole is not included, similar to our previous
work [11,23]. Figure 5 shows the simulated PL spectra for the Ag–PhC and PhC samples. The IQE
and LEE of the Ag–PhC sample as a function of wavelength are normalized to those of the PhC
sample, as also shown in Figure 5. According to the broadband simulation results, the final emitted
light spectrum can be obtained through post processing by multiplying the EQE with the actual
normalized QW spectrum that is obtained without any Ag NPs nearby [11]. The simulated PL spectra
show that the intensity of Ag–PhC sample decreases by 2.5 times, which agrees with the experimental
result. However, the enhancement is not completely consistent with that of the experimental result,
which is attributed to the approximations, including the dipole-QW approximation [9], the single
Ag NP approximation [8], and the simplification of a single dipole for the QWs [11]. Moreover,
the transmitted diffraction across the Ag NPs may also affect the consistence. The Purcell factor at
545 nm is calculated as 18.7, which indicates that LSP–QW coupling is strong and that the SER is
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greatly enhanced. However, due to the dissipation by Ag NP [11], the IQE of the Ag–PhC sample
is only 54% of that of PhC sample at 545 nm. Furthermore, the LEE of Ag–PhC is also decreased
by a factor of 1.8, as shown in Figure 5B. Obviously, the decreases of both IQE and LEE lead to the
suppression of PL intensity.

Figure 5. (A) Simulated PL spectra for Ag–PhC and PhC samples, (B) internal quantum efficiency
(IQE) and light extraction efficiency (LEE) of Ag–PhC sample normalized to those of the PhC sample.

To simulate the CL measurement for the Ag–PhC sample, the z-dipole is added to the system as
shown in Figure 4. Since the e-beam excitation is dependent on its impinging position as discussed
above, the simulations are carried out at e-beam impinging points A, B, C, and D individually.
Considering that the electron beam itself does not radiate light, after a z-dipole is added to simulate
the electron beam impinging at specific impinging points, the energy radiated by the z-dipole must
be subtracted. With the presence of both the z-dipole and x-dipole, the net powers flowing through
the green box, purple box, black box, and the upper red plane monitor (PgBox, PpBox, PbBox and PrPlane
respectively) have the relationship of

PrPlane = Pup−xDipole + Pup−zDipole (3)

PpBox = PxDipole (4)

PgBox = PzDipole −
(

PAg−xDipole + PAg−zDipole

)
(5)

PbBox = PxDipole + PzDipole −
(

PAg−xDipole + PAg−zDipole

)
(6)

where PxDipole and PzDipole are the power radiated by the x-dipole and z-dipole, which can be directly
recorded in the simulations. Pup is the power extracted upward into the air, and PAg is the dissipated
power by Ag NP. These two quantities can also be recorded directly; however, they are the sum of
the x-dipole and z-dipole components. To distinguish the efficiencies of the x-dipole (QW) from the
two orthogonal dipoles system, simulations at each point without x-dipole have also been performed.
Similarly, Equations (3)–(6) without x-dipole component is rewritten as

P′rPlane = P′up−xDipole + P′up−zDipole (7)

P′pBox = P′xDipole = 0 (8)

P′gBox = P′zDipole − P′Ag−zDipole (9)

P′bBox = P′xDipole + P′zDipole − P′Ag−zDipole (10)

where the prime (′) indicates all the powers recorded in the case without the x-dipole.
As mentioned above, for the laser beam with a power of 150 mW and a spot diameter of ~1 mm,

the power density of the laser beam is on the order of ~100 mW/mm2. Additionally, for the e-beam
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with a beam current of 158 pA at 15 kV impinging on the 160 nm diameter Ag NP, the power
density of the e-beam is on the order of ~100 W/mm2. Considering the dipole-QW and dipole-e-beam
approximations and that the energy of e-beam cannot be fully converted to the QW radiation, the ratio
of the amplitude of z-dipole to that of x-dipole was roughly set to be only 10 since the power of a
dipole is proportional to the square of its amplitude. By default, the power recorded by different
detectors in Equations (3)–(6) and (7)–(10) are normalized to the sum of power from all sources (Psource).
For consistency, all power in Equations (3)–(10) were renormalized by multiplying a correction factor
of Psource/P0, where P0 is defined in Equation (1). Figure 6A clearly shows that PzDipole and P′zDipole
vs. wavelength almost coincide in the wavelength range from 480 nm to 630 nm at point B. We set
PzDipole = (1 + β)P′zDipole, where β is a modification coefficient for the x-diploe. According to the
simulation results, β is a small quantity. On the contrary, the power of x-dipole (PxDipole) changes
greatly with the presence of the z-dipole, as shown in Figure 6B. Figure 6C shows the Purcell factor for
the x-dipole and z-dipole without the Ag NP. It is noted that the direct interaction between x-dipole
and z-dipole is far weaker than that shown in Figure 6B. Therefore, the great change in Figure 6B is
attributed to the SP strongly excited by z-dipole rather than z-dipole itself. Besides, the peak on the
left of 545 nm in Figure 6B is enhanced with the presence of the z-dipole, indicating that high-order
modes in LSP are excited and radiated [13]. According to the simulation, the electric field mapping
under the Ag NP also exhibits a quadrupole characteristic at shorter wavelength peak, which again
confirms the excitation of the high-order modes.

Table 1 lists the powers of z-dipole and x-dipole at different positions at 545 nm for Ag–PhC
sample. The simulation results at all the points show that the presence of x-dipole can hardly affect
z-dipole whereas the z-dipole strongly influences on the x-dipole through the excitation of the LSP.
Thus, it is reasonable to assume that the dissipated power and extracted power of z-dipole linearly
changes with PzDipole, that is

PAg−zDipole = (1 + β)P′Ag−zDipole (11)

Pup−zDipole = (1 + β)P′up−zDipole (12)

By subtracting Equations (4)–(10) from Equations (3)–(6), the effects of x-dipole can be separated
from the e-beam–LSP–QW coupling system as follows

PxDipole = PpBox (13)

PAg−xDipole = PgBox − (1 + β)P′gBox (14)

Pup−xDipole = PrPlane − (1 + β)P′rPlane (15)

Figure 6. Renormalized powers vs. wavelengths of (A) z-dipole with and without x-dipole and (B)
x-dipole (i.e., Fp in this case) with and without z-dipole at impinging point B; (C) Purcell factor for the
x-dipole and z-dipole without the Ag NP.
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Table 1. Powers of z-dipole and x-dipole and efficiencies of x-dipole at different positions at 545 nm for
Ag–PhC sample.

Position
Power of z-Dipole Power (Fp) of x-Dipole Efficiency of x-Dipole

With
x-Dipole

w/o
x-Dipole

With
z-Dipole

w/o
z-Dipole LEE IQE EQE

A 189.04 196.55 11.38 18.7 2.69 1.15 3.02
B 530115 530081 7.11 18.7 2.41 1.43 3.36
C 1346570 1346580 15.32 18.7 1.86 1.52 2.75
D 44715.1 44427.7 17.12 18.7 0.64 0.43 0.27

Based on Equations (1), (2), and (13)–(15), the EQE for the x-dipole (QW) in the e-beam–LSP–QW
system can be obtained. The typical impinging positions A, B, C and D in the Ag–PhC sample are
calculated and their weights are considered. The efficiencies of the x-dipole at 545 nm are also listed
in the Table 1. Figure 7A shows the averaged CL spectra of Ag–PhC sample. The CL intensity of
the Ag–PhC is enhanced by 2.4 times compared with that of the PhC sample, which agrees with the
experimental result. The incomplete consistency is attributed to the approximations, as mentioned
above. It is found that the EQE of the x-dipole in most areas around the Ag NP are enhanced by
more than 2 times, except at its central area. The EQE at position D is only 0.27 times that of the PhC
sample, which agrees with the panchromatic CL images in Figure 3C. In order to better understand the
CL enhancement, the EQE at point B was divided to IQE and LEE, as shown in Figure 7B. Both the
LEE and the IQE of the x-dipole are enhanced in the emission range compared with those of the
PhC sample, which is quite different from that of the PL case. The LEE and IQE is enhanced by
2.41 and 1.43 times at 545 nm, respectively. It is notable that the Fp of x-dipole at point B is the
smallest in the four points in the CL simulation, as shown in Table 1. When the Fp is enhanced to a

certain value, it is no longer important for IQE enhancement. Since the term Fpγrad
Fpγrad+γnon

in Equation (2)

approaches 1, IQE is dominated by the scattering ratio (i.e., γscat
γdiss+γscat

). Compared with the simulated
PL results, the scattering ratio of the x-dipole is enhanced 2.65 times. That is, when the z-dipole is added,
less dissipation in the Ag NP can be obtained even when the Fp decreases. According to References [8,13],
with the presence of the z-dipole, the blue-shifted resonant peak in Figure 6B and the enhanced IQE in
Figure 7B indicates that the original higher-order nonradiating modes and lower-order radiating modes
are suppressed and enhanced, respectively. A high Fp may lead to severe luminescence quenching
effect via the high-order LSP modes [8].

Figure 7. (A) Simulated CL spectra for Ag–PhC and PhC samples; (B) IQE and LEE of x-dipole
normalized to those of the PhC sample at impinging point B for the Ag–PhC sample.

In addition, the LEE in CL simulation is also surprisingly enhanced by 4.3 times at 545 nm at point
B compared with the PL results in Figure 5B. The LEE enhancement of 68% of the Ag–PhC sample
compared with the PhC sample has been obtained in our previous work, which was explained by the
resultant modification of the waveguide mode, which combines the effects of the LSP and the PhC [11].
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In this work, the enhancement may occur because the excessive LSP modes excited by the z-dipole
also modify the waveguide mode in the GaN LEDs. The penetration ability of high-energy electrons is
stronger than that of the laser, which will enhance the CL intensity as well.

As described above, the z-dipole introduction enhances both the IQE and LEE of the QWs in the
LSP–QWs coupling process. The dissipated energy is reduced and the waveguide modes are extracted
effectively. It is reasonable to make an orthogonal emission dipole in LSP–QW coupling systems to
enhance the light output of the devices. The InGaN QWs epitaxy on pyramids or V-pit structures
seems to provide the possibility of two orthogonal dipoles coupling to LSP [25], where dipole radiators
within the quantum wells on the facets are similar with the z-dipole in this work compared with the
dipole radiators within normal quantum wells.

4. Conclusions

In summary, PL and CL measurements were performed on a green LED with Ag NPs filled in
photonic crystal holes. The suppression of PL and the enhancement of CL were observed compared
with the PhC sample. In the FDTD simulations, the two orthogonal dipoles were used to couple with the
LSP. The x-dipole (QW) effect was separated in the e-beam–LSP–QW system by linear approximation.
The simulation showed that both the IQE and the LEE were enhanced by the z-dipole added to the
LSP–QW system. The enhancements were attributed to the LSP excited by z-dipole coupled to some
LSP modes excited by the x-dipole. A novel LED device was proposed with orthogonal emission
dipoles based on the simulation and experimental results.
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