Supplementary Materials

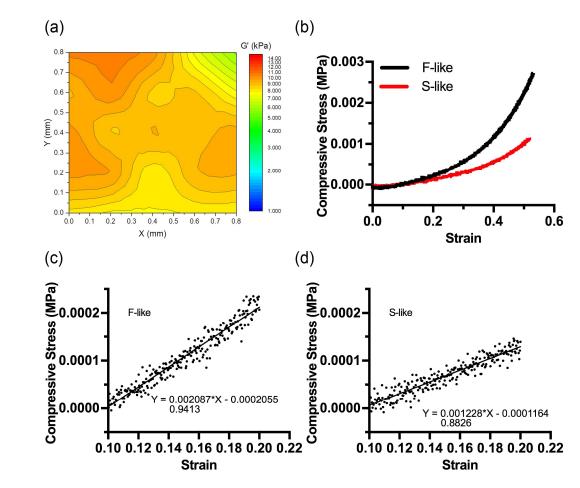
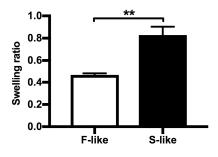
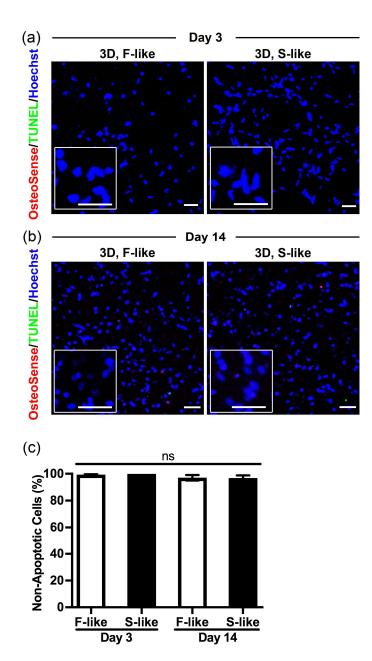
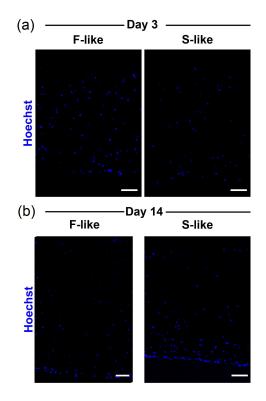

Layer	E (kPa)		G' (kPa)		G" (kPa)		G* (kPa)		tan ð	
	Whole Valve	26.7	22.2-	8.2	7.1-	3.0	2.2-6.7	8.9	7.8-	0.35
		43.2		12.6				14.8		0.48
Fibrosa	37.1	20.3 -	11.2	5.4-	4.4	2.8-6.3	12.4	6.8-	0.42	0.25-
		56.7		18.0				18.9		0.75
Spongiosa	15.4	12.8-	4.7	3.9-8.5	2.0	1.9-2.9	5.1	4.3-8.9	0.43	0.33-
		26.8								0.49
Ventricularis	26.9	16.6-	8.7	5.4-	3.4	2.0-4.0	9.0	1.9-	0.39	0.38-
		33.5		13.2				11.2		0.73
Calcification	670.1	259.5-	212	78.6-	69.2	36.2-	223.4	86.5-	0.32	0.29-
		1080.7		345.3		102.1		360.2		0.36

Table S1. Compressive Young's modulus (E), Storage modulus (G'), Loss modulus (G''), Complex modulus (G*), and $\tan \delta$ of all valve layer samples.


Table S2. Compressive Young's modulus (E), Storage modulus (G'), Loss modulus (G''), Complex modulus (G*), and tan δ of samples with different hydrogel formulations.

Cross- linking time (s)	GelMA % 1	E (kPa)		G' (kPa)		G'' (kPa)		G* (kPa)		tan ð	
		Median	Range	Median	Range	Median	Range	Median	Range	Median	Range
30	5	21.8	15.0 - 26.6	7.2	4.6 - 8.8	0.6	0.4 - 1.9	7.3	5.0 - 8.9	0.08	0.06- 0.42
30	6.67	38.6	23.6 - 60.1	10.5	7.8 - 20.0	0.9	0.4 - 1.9	10.7	7.9 - 20.0	0.09	0.04- 0.15
30	8.33	50.2	38.2 - 54.1	16.7	12.7 - 18.0	1.3	0.6 - 2.0	16.7	12.7 - 18.0	0.08	0.05- 0.11
30	10	49.1	28.3 - 76.4	15.9	9.4 - 25.5	1.7	0.8 - 4.0	16.4	9.4 - 25.5	0.13	0.09- 0.24
90	5	38.5	33.3 - 64.9	12.8	11.1 - 21.6	0.9	0.8 - 1.0	12.8	11.1 - 21.6	0.06	0.05- 0.09
90	6.67	50.4	29.3 - 70.2	16.8	8.9 - 23.3	2.3	1.3 - 4.4	16.8	9.8 - 23.4	0.12	0.08- 0.49
90	8.33	53	42.2 - 63.1	17.2	13.0 - 19.4	3.6	1.8 - 9.7	17.7	14.1 - 21.0	0.26	0.08- 0.50
90	10	53.7	34.8 - 77.8	16.8	9.2 - 25.9	3.5	1.6 - 7.1	17.9	11.6 - 25.9	0.26	0.06- 0.78


¹All hydrogels contain 1% HAMA in addition to the stated % of GelMA.


Figure S1. Mechanical testing of aortic valve tissue and GelMA/HAMA hydrogels demonstrated the validity of bulk nanoindentation measurements: (a) Heat map of storage moduli (G') generated from 9 nanoindentations performed across the surface of a valve leaflet layer demonstrated uniformity of nanoindentation-measured G' values, (b–d) Stress/strain curves generated by unconfined compression testing of F-like and S-like hydrogels showed that the modulus of F-like hydrogels was ~2x that of S-like hydrogels, consistent with moduli measured by nanoindentation. Parts c and d are magnification of the linear region of the loading curves in part b. Calculation of moduli by linear regression in these regions found a ~2x increase in loading curve slope between F-like and S-like hydrogels.

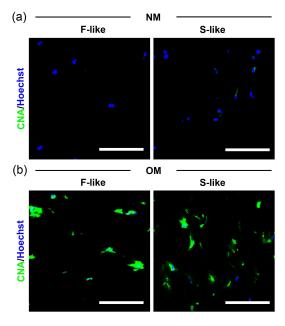

Figure S2. 24-hour hydrogel swelling ratios: There was a significant increase in the swelling ratio of acellular S-like hydrogels vs. those of F-like hydrogels after 24 hours in PBS at room temperature. Swelling ratio = $(weight_{24hr} - weight_{24hr})/weight_{24hr}$, n = 4 samples per condition, ** p < 0.01.

Figure S3. Low levels of short- or long-term apoptotic cell death in 3D-bioprinted hydrogels, green = TUNEL apoptosis assay, blue = Hoechst nuclear stain: (**a**–**c**) VICs isolated from non-diseased human AV and cultured in NM showed negligible levels of apoptosis at 3 (**a**) or 14 (**b**) days after bioprinting. There were no significant differences in apoptosis between F-like or S-like hydrogels, nor between the day 3 and day 14 time points. n = 3 samples per condition (3 images per sample); scale bar = 50 µm. **Note:** Part **b** and associated quantification data is duplicated from Figure 5a, to enable direct comparison here.

Figure S4. Uniformity of encapsulated VIC distributions in 3D-bioprinted hydrogels, blue = Hoechst nuclear stain: (**a/b**) Representative cross-sectional images of cell distribution in F-like and S-like hydrogels after 3 (**a**) and 14 (**b**) days in NM culture demonstrated evenly distributed initial VIC seeding was maintained over long-term culture of hydrogels; scale bar = 100 µm.

Figure S5. OM stimulation induced marked VIC collagen secretion after 28 days in hydrogel culture: (**a**,**b**) VICs isolated from non-diseased human AV and exposed to OM (and not NM) for 28 days stimulated substantial production of collagen, as shown by representative images of collagen-binding probe (CNA35) fluorescence (green); scale bar = $100 \mu m$.