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Abstract: TiO2 nanoparticles with surface porosity were prepared by a simple and efficient
method and presented for the removal of malachite green (MG), a representative organic pollutant,
from aqueous solution. Photocatalytic degradation experiments were systematically conducted to
investigate the influence of TiO2 dosage, pH value, and initial concentrations of MG. The kinetics
of the reaction were monitored via UV spectroscopy and the kinetic process can be well predicted
by the pseudo first-order model. The rate constants of the reaction kinetics were found to decrease
as the initial MG concentration increased; increased via elevated pH value at a certain amount
of TiO2 dosage. The maximum efficiency of photocatalytic degradation was obtained when the
TiO2 dosage, pH value and initial concentrations of MG were 0.6 g/L, 8 and 10−5 mol/L (M),
respectively. Results from this study provide a novel optimization and an efficient strategy for water
pollutant treatment.
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1. Introduction

Environmental water pollution is becoming more serious with the development of the social
economy and the high density of industrial activity [1,2]. Many countries have suffered water pollution
because of the indiscriminate release of untreated wastewater. Among all water, environmental
contaminants, synthetic dye, a typical organic pollutant, such as malachite green (MG, C23H25CN2),
has been attracting growing attention [3–5]. MG is a common triphenylmethane dye in the textile
industry, and it has also been widely used in the fish farming industry as a fungicide, disinfectant,
ectoparasiticide, and antibacterial agent [6,7]. However, many researchers have reported that MG
and its metabolite leucomalachite green (LMG) are environmentally persistent due to their complex
chemical structures. They may also lead to teratogenic, carcinogenic, and mutagenic effects in human
beings [8,9]. Thus, MG has been banned or is restricted in many countries. Nevertheless, MG is still
illegally used in aquaculture because of its high efficacy and low cost [10]. To minimize the harm
caused by MG, it is very important to efficiently remove MG residue from water systems.

In the past few decades, several methods have been applied for MG removal from wastewater.
The conventional methods used for MG removal include adsorption, biodegradation, oxidation with
ozone or hydrogen peroxide, membrane technology, etc. [11–13]. However, many of these methods
are costly, time-consuming, difficult to control, and have high energy consumption and low efficiency.
Fortunately, an alternative to the methods mentioned above is advanced oxidation processes, of which
photocatalysis is the most popular. The photocatalytic degradation of pollutants through the use
of nanomaterials has aroused world-wide attention. In the photocatalysis process, a semiconductor
oxide is needed to generate radicals under illuminated light, which are the responsible active species
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for removal of hazardous compounds [14]. Among the various photocatalyst, titanium dioxide
(TiO2) has been widely used in degrading organic pollutants due to its strong oxidizing power
under ultraviolet (UV) light, extraordinary chemical stability, biocompatible features, relatively low
cost, and environmental friendliness [15–17]. The principle of TiO2 photocatalytic properties is
straightforward: When TiO2 absorbs energy greater than the band gap (approximately 3.2 eV) of itself,
electrons can be excited to create electron-hole pairs. These electron-hole pairs migrate to the surface
and form hydroxyl groups, which can react with chemicals adsorbed there [18,19]. Therefore, simple,
low-cost, and high-efficiency TiO2 used as a photocatalyst to degrade pollutants is considered an
attractive and promising treatment for water pollution.

Herein, we report a simple hydrothermal method to prepare TiO2 as an efficient photocatalyst for
MG treatment from water under irradiation of UV light. Our procedure for material fabrication is easily
operated, has a low cost and is scalable. We tried to determine the optimum operation conditions that
can improve the efficiency of MG removal. A series of contrast experiments were performed to confirm
TiO2 dosage, pH, and the concentrations of MG, which can maximize the utilization efficiency of TiO2

under UV lights. The whole dynamic process of photocatalytic degradation of MG with TiO2 under
UV lights was monitored using a UV-vis spectrophotometer to evaluate the efficiency of MG removal.
The results revealed that this simple photocatalytic platform can efficiently remove water pollutants.

2. Results and Discussion

2.1. Characterization of TiO2

TiO2 particles were prepared according to a classical hydrothermal method [19].
Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images
demonstrated that the TiO2 particles were sphere-shaped and had a uniform size distribution, with a
diameter around 600 nm (Figure 1 and Figure S1). High resolution transmission electron microscopy
(HRTEM) images demonstrated that the lattice fringe, with a spacing of about 0.35 nm, corresponded to
the (101) plane of anatase titania. It also revealed that the TiO2 particles were well-dispersed without
any aggregation, indicating the stability of these dispersions. The UV-vis spectra showed that TiO2

had an absorbance peak centered at 249 nm (Figure S2).
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Figure 1. (A) TEM image of the TiO2 particle; (B) enlarged HRTEM image of details of the TiO2 particle.

The X-ray diffractometer (XRD) pattern of the TiO2 nanoparticles (Figure 2) were in agreement
with the standard values of anatase-phase TiO2, with peaks at 2θ = 25.3◦, 38.6◦, 48.1◦, 54.3◦, 55.4◦,
62.8◦, 68.9◦, 70.4◦, 75.2◦, 83.2◦ (JCPDS files No. 21-1272). Anatase-phase TiO2 has been reported to
demonstrate the best photocatalytic degradation activity among various TiO2 crystallinities [20].
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2.2. Kinetics of Photocatalytic Degradation

2.2.1. TiO2 Dosage Effect on MG Removal

MG and UV light were used to investigate the photocatalytic activity of TiO2 particles.
TiO2 particles were dispersed in MG solution (100 mL) in a quartz tube. For obtaining the accurate
concentration of MG in photocatalytic degradation, the solution was first stirred for 2 h in the dark to
reach an adsorption–desorption equilibrium between the nanoparticles and the solution. Upon UV
light irradiation for a designated time, 3 mL of MG aqueous solution was taken out and centrifuged,
then the supernatant was used for measuring the absorbance by UV-vis spectroscopy. In practical
systems, the optimal operating conditions are very important for the efficiency of pollutant removal [21].
Thus, the optimal amount of TiO2, pH value and the concentrations of MG would be obtained in the
next series of experiments.

Figure 3 demonstrates the influence of amounts of TiO2 on the efficiency of MG removal.
The absorbance spectra of MG (1 × 10−5 M) photocatalyzed by 0.6 g/L TiO2 particles under UV
light irradiation, as a function of irradiation time, are shown in Figure 3A. With the increasing
of irradiation time, the absorption intensity of MG at 615 nm gradually decreased, indicating the
degradation of MG under the used conditions. The photocatalytic activity of TiO2 could be evaluated
through a comparison between the supernatant concentration at each exposure time to that at time
zero. Figure 3B plots time-dependent curves of the Ct/C0 ratio, an indicator of the degradation degree.
C0 was the original concentration of MG at time zero and Ct was the supernatant concentration of
MG after the sample was photocatalyzed by TiO2 particles under UV light for time t. Ct was obtained
from comparing the 615 nm absorbance of the MG supernatant with that of the standard MG solution.
After 1 h of irradiation, almost all the MG solution was photocatalytic degraded, regardless of the
amount of TiO2. However, the degradation rates of the different amounts of TiO2 were different during
the whole photocatalytic degradation process. In order to further evaluate the degradation rates
mentioned above, Figure 3C shows the kinetics of the photocatalytic degradation reactions, which can
be described as a pseudo first-order by Equation (1) [22].

ln
Ct

C0
= −kt (1)

The rate constants (k, min−1) were calculated from plots of ln (Ct/C0) vs. irradiation time.
The calculated rate constants with 0.4, 0.6 and 0.8 g/L of TiO2 are 0.0716, 0.0805, and 0.0711 min−1,
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respectively (Figure 3D and Table 1). The results indicated that the rate constant reached best when
TiO2 dosage was 0.6 g/L under current conditions. The reaction rate constant was found to decrease
with increasing TiO2 dosage up to 0.8 g/L. The probable reason is that light scattering induced by the
increased turbidity can reduce the UV light penetration into the bulk suspension and counteract the
effect of photocatalyst surface area, resulting in decreased efficiency of MG removal [23,24]. The R2 of
pseudo first-order kinetic model for the photocatalytic degradation of MG with 0.4, 0.6 and 0.8 g/L of
TiO2 are 0.964, 0.995, and 0.976, respectively (Table 1). The R2 values indicated that there was a better
correlation to photocatalytic degradation of MG under TiO2 particles based on the pseudo first-order
kinetic model [25].
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and reaction rate constants under UV light with different TiO2 dosage.

Table 1. Comparison of pseudo first-order model parameters, rate constants (k, min−1) and R2 under
different TiO2 dosages.

TiO2 Dosage (g/L) k (min−1) R2

0.4 0.0716 0.964
0.6 0.0805 0.995
0.8 0.0711 0.976

2.2.2. Initial Concentrations of MG Effect on the Efficiency of Photocatalytic Degradation

To obtain the capacity of the photocatalyst, different concentrations of MG solution were
photocatalyzed using 0.6 g/L TiO2 under UV light (Figure 4). Figure 4A shows the absorbance
spectra of MG (1 × 10−5 M) photocatalyzed using 0.6 g/L TiO2 particles under UV light irradiation
as a function of the irradiation time. Similarly, Figure 4B plots time-dependent curves of the Ct/C0



Nanomaterials 2018, 8, 428 5 of 11

ratio to indicate the photocatalytic activity of TiO2. After 1 h irradiation, almost all MG solution with
concentrations of 10−5 and 5 × 10−6 M had been photocatalytically degraded. Fifty-six percent of the
MG solution (5 × 10−5 M) was degraded, and 64% of MG solution (2.5 × 10−5 M) was degraded after
1 h. Meanwhile, both of the degradation ratios of MG increased continuously with growing irradiation
time and reached about 99% after 2 h of irradiation.Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 10 
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under UV light; (B–D) The calculated time-dependent ratios of Ct/C0, first-order degradation rates,
and reaction rate constants for different concentration of MG photocatalyzed by 0.6 g/L TiO2 under
UV light.

The kinetics of the photocatalytic degradation reactions also can be described as pseudo first-order
according to Equation (1) (Figure 4C). The calculated rate constants with the MG concentrations
of 5 × 10−5, 2.5 × 10−5, 10−5 and 5 × 10−6 M were 0.0151, 0.0220, 0.0805 and 0.0550 min−1,
respectively (Figure 4D and Table 2), using the methods mentioned above. The results demonstrated
that the rate constant reached its best performance when the concentration of MG was 10−5 M under the
used conditions. Generally, the reaction rate constant will increase by decreasing the concentration of
pollutants. However, the ability of the photocatalyst may not show efficiently when the concentration
of pollutants is too low. Thus, 10−5 M of MG was chosen in subsequent experiments. The R2 of the
pseudo first-order kinetic model for the photocatalytic degradation of MG, with concentrations of
5 × 10−5, 2.5 × 10−5, 10−5 and 5 × 10−6 M, were 0.965, 0.935, 0.995 and 0.989, respectively (Table 2).
The results indicated that the correlation to photocatalytic degradation of MG under TiO2 particles
based on the pseudo first-order kinetic model was good.
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Table 2. Comparison of pseudo first-order model parameters, rate constants (k, min−1) and R2 under
different concentrations of MG.

Concentration of MG (M) k (min−1) R2

5 × 10−5 0.0151 0.965
2.5 × 10−5 0.022 0.935

10−5 0.0805 0.995
5 × 10−6 0.055 0.989

2.2.3. Effect of pH Values

The pH of the aqueous solution is a significant parameter which influences the efficiency of the
photocatalytic degradation at the solution-photocatalyst interfaces [26]. Figure 5 indicates the influence
of pH on the efficiency of photocatalytic degradation. The absorbance spectra of MG (1 × 10−5 M)
photocatalyzed by 0.6 g/L TiO2 particles at pH = 8 under UV light irradiation, as a function of the
irradiation time, are shown in Figure 5A. The time-dependent curves of the Ct/C0 ratio were also
used to indicate the photocatalytic activity of TiO2 (Figure 5B). After 1 h of irradiation, 48%, 90% and
95% of MG solution were degraded at pH = 4, 6 and 8, respectively. When the pH value was 10,
the degradation ratio of MG reached about 92% after only 20 min of irradiation.
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under UV light at pH = 8. (B–D) The calculated time-dependent ratios of Ct/C0, first-order degradation
rates and reaction rate constants for MG (10−5 M) photocatalyzed by 0.6 g/L TiO2 with different
pH values.

The kinetics of photocatalytic degradation was determined using Equation (1), and the reaction
rate constant could be readily derived from the linearly-fitted slope (Figure 5C). The calculated rate
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constants at pH = 4, 6, 8 and 10 were 0.010, 0.039, 0.048 and 0.124 min−1, respectively (Figure 5D and
Table 3). The results indicated that the reaction rate constant increased with the increasing of the pH
values. The surface of the photocatalyst acquired a positive charge when the pH of the solution was
less than 7. The amount of MG on the surface of the photocatalyst decreases because of the electrostatic
repulsion between the positive surface of photocatalyst and the positive surface of MG. Meanwhile,
a photocatalytic degradation reaction generally occurs on the surface of a photocatalyst [27,28]. Thus,
acidic conditions were a disadvantage for the reaction. On the contrary, alkaline conditions can
promote MG molecules to the surface of the photocatalyst because of the electrostatic attractions
between the negative surface of the photocatalyst and the positive surface of MG, resulting in a high
efficiency of reaction. The R2 of pseudo first-order kinetic models for the photocatalytic degradation of
MG at pH = 4, 6, 8 and 10 were 0.961, 0.983, 0.995 and 0.737, respectively (Table 3). The results indicated
that the correlation to the photocatalytic degradation of MG under TiO2 particles based on the pseudo
first-order kinetic model was good, except for when the pH value was 10. In general, water is weak to
mildly alkaline in nature, pH = 8 is close to the pH of natural riverine water. Thus, this condition has
great practical application potential in photocatalytic treatment. More importantly, the efficiency of
reaction at pH = 8 was also good. Overall, the relatively moderate conditions of pH = 8 were better for
this reaction.

Table 3. Comparison of pseudo first-order model parameters, rate constants (k, min−1) and R2 under
different pH values.

pH Values k (min−1) R2

4 0.01 0.961
6 0.039 0.983
8 0.048 0.995
10 0.124 0.737

2.3. Mechanism of Photocatalytic Degradation

In order to understand the possible mechanisms for the UV-activated photocatalytic degradation
activity of TiO2 nanoparticles, electron spin resonance (ESR) measurements were conducted.
The spectra displaying signals with the characteristic intensity 1:2:2:1 for DMPO-·OH adducts
was obtained, which indicated that the ·OH radical was formed under the used conditions
(Figure S3) [29]. The possible mechanism for the photocatalytic degradation reaction was discussed
(Scheme 1). Under the irradiation of UV light, TiO2 absorption the energy larger than its band gap
(approximately 3.2 eV), electrons were excited from the valence band (CB) to the conduction band
(VB), creating electron-hole pairs [30]. And then these electron−hole pairs will migrate to the surface
and take part in surface reactions. When the excited electrons arrived at the surface, they reacted with
the oxygen to form superoxide ·O2− radical anions. The superoxide ·O2− radical anions reacted with
H+, and finally formed hydroxyl radicals (·OH). Meanwhile, holes also reacted with H2O and formed
·OH [15,31]. Therefore, the organic molecules present in the solution could react with these oxidizing
agents to induce oxidative degradation. In addition, the strong oxidizing power of ·OH could oxidize
most of the organics to carbon dioxide (CO2) and water (H2O).
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3. Materials and Methods

3.1. Chemicals and Materials

Titanium n-butoxide (Ti(OBu)4), alcohol and Malachite green (MG) were obtained from Shanghai
Reagent Co. (Shanghai, China), and these chemicals were analytical reagents and were used without
further purification. The solutions were prepared with distilled water without further pH regulation,
and all experiments were carried out under room temperature (25 ◦C) in a water system.

3.2. Preparation of TiO2

Titanium n-butoxide (Ti(OBu)4) was employed as the Ti source because the hydrolysis rate of
Ti(OBu)4 was ca. 150 times slower than that of tetraethyl titanate, Ti(OEt)4 [32]. A typical procedure
for preparing titania [33] is described as follows: 300 µL of Ti(OBu)4 was added into 10 mL of ethanol
solution. Then, this newly-formed complex precursor solution was transferred into a 60-mL autoclave
containing 5 mL of ultrapure water and was heated at 180 ◦C for 20 h. The resulting product was
collected by centrifugation, washed several times with distilled water and ethanol, respectively,
and then dried at 60 ◦C in a drying oven.

3.3. Photocatalytic Experiments

The photocatalytic activities of the TiO2 were evaluated by the degradation of MG under the
irradiation of a UV lamp (set at 175 W). In a typical process, the TiO2 particles were dispersed into
an MG solution in a quartz tube under different conditions, including the amount of TiO2, pH value
and the concentrations of MG. The desired pH of the MG solution was adjusted with 1 M HCl/NaOH
to determine the real concentration of MG in the photocatalytic degradation. The solution was then
stirred for 2 h in the dark to reach an adsorption–desorption equilibrium between the nanoparticles
and the solution. Subsequently, the quartz tube was exposed to irradiation from a UV lamp; 3 mL of
MG aqueous solution was intermittently collected at given time intervals for centrifugation, the filtrates
measured the absorbance by UV-vis spectroscopy.

3.4. Apparatus

The scanning electron microscopy (SEM) images were taken by a Sirion 200 field-emission
scanning electron microscope (ThermoFisher, Waltham, MA, USA). X-ray scattering patterns were
determined by analyzing the powder samples on a Philips X-Pert Pro X-ray diffractometer (XRD)
(Philips, Amsterdam, Holland) with Cu Ka radiation. Transmission electron microscopy (TEM) images
were recorded using a JEOL 2010 high resolution transmission electron microscope (Japan Electronics
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Co., Ltd., Tokyo, Japan), operated at an acceleration voltage of 200 kV. The absorbance of the MG
solution was measured using a Lambda 35 UV-vis spectrometer (Perkinelmer, Waltham, MA, USA).

4. Conclusions

In summary, TiO2 nanoparticles were prepared using a simple and efficient method, which has
been proved to be a highly-efficient photocatalyst to degrade MG, a representative and worldwide
pollutant in water systems. The kinetics of reaction were successfully monitored by UV spectroscopy,
and the kinetic process can be well predicted by the pseudo first-order model. The optimal conditions
of the key factors, including TiO2 dosage, concentration of MG and pH values, were determined by
analyzing the kinetics of the photocatalytic reaction. The maximum efficiency of MG removal was
obtained with the conditions of TiO2 dosage, pH value and initial concentrations of MG at 0.6 g/L,
8 and 10−5 M, respectively. These results provide an efficient strategy to study the photocatalytic
degradation of water pollutants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/6/428/s1,
Figure S1: SEM and TEM imagines of TiO2 particles, Figure S2: The UV-vis spectra of TiO2, Figure S3: ESR spectral
features of the DMPO-·OH spin adducts in the system without addition MG under irradiation of UV light
with TiO2.
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