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Abstract: The physical and chemical properties of V-M′′ and Nb-M′′ (M′′ is 3d or 4d transition metal)
co-doped BaTiO3 were studied by first-principles calculation based on density functional theory.
Our calculation results show that V-M′′ co-doping is more favorable than Nb-M′′ co-doping in terms
of narrowing the bandgap and increasing the visible-light absorption. In pure BaTiO3, the bandgap
depends on the energy levels of the Ti 3d and O 2p states. The appropriate co-doping can effectively
manipulate the bandgap by introducing new energy levels interacting with those of the pure BaTiO3.
The optimal co-doping effect comes from the V-Cr co-doping system, which not only has smaller
impurity formation energy, but also significantly reduces the bandgap. Detailed analysis of the
density of states, band structure, and charge-density distribution in the doping systems demonstrates
the synergistic effect induced by the V and Cr co-doping. The results can provide not only useful
insights into the understanding of the bandgap engineering by element doping, but also beneficial
guidance to the experimental study of BaTiO3 for visible-light photoelectrical applications.
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1. Introduction

Perovskites have been extensively studied because of their unique structure and properties. Over
the past decade, organic-inorganic hybrid perovskite iodides have received considerable attention due
to their high efficiency in the photovoltaic process [1]. However, stability is a major issue, hindering a
large-scale commercialization of the perovskite for photovoltaic applications [2–5]. To overcome this
problem, inorganic perovskites, especially ferroelectric oxide perovskites, have attracted much current
interest [6]. For example, Bi2FeCrO6 as a double perovskite material with its bandgap tunable by
bandgap engineering has been reported [7]. [KNbO3]1−x[BaNi1/2O3−δ]x has a bandgap adjustable in
the range of 1.1–3.8 eV [8]. Other perovskites, such as BaTiO3 [9–11], BiFeO3 [12–15], LiNbO3 [16–19]
and PbTiO3 [20–22] have also been extensively studied.

Inorganic oxide perovskites ABO3 have been investigated for photovoltaic applications due to
their tunable bandgap [23], wide range of possibilities for switchable component [24], low cost [8],
and high chemical stability. Recently, the potential of this class of materials for photovoltaic applications
has been demonstrated by several theoretical and experimental studies. However, it is also known that
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these materials usually have limited light absorption due to the wide bandgaps and poor electrical
conductivity [25]. Currently, the most common method used to overcome these problems is doping
with either metal or non-metal elements. In terms of the feasibility and effectiveness, element doping
is one of the most important strategies to regulate the bandgap of oxide perovskites at the atomic scale
structure modification.

In one of our previous papers, we have systematically investigated the effects of single element
doping with various metals on the performance of BaTiO3 [26]. We showed that impurity levels could
be introduced in the bandgap by the metal doping. These impurity levels can act as recombination
centers for electrons and holes, which are harmful for the performance of the materials for photovoltaic
applications. In general, wide bandgap semiconductors with doping may exhibit some unwanted
properties or behaviors [27]: (i) desirable impurities may have limited solubility; (ii) for those impurities
that have sufficient solubility, they may form deep levels that are not effective for carrier transitions;
and (iii) spontaneous formation of compensating defects. In the literature, it has been shown that
some of these unwanted features could be avoided by co-doping two different types of elements [28].
Ishii et al. [29] reported that Cr3+ and Ta5+ co-doped SrTiO3 can improve photocatalytic activities.
Kako et al. [30] reported a visible-light sensitive TiO2 with Fe-Ta co-doping ((Fe,Ta)xTi1−xO2, 0 ≤ x ≤ 1)
that has a higher photocatalytic activity than the Fe3+ doped TiO2. Masahiro et al. [31] also reported
that N and La co-doped SrTiO3 had better visible-light absorption (≥400 nm) compared with the
pure SrTiO3.

In this paper, we screened out the suitable co-doped elements by studying the defect formation
energy and electronic properties of the transition metals co-doping on the Ti-site in BaTiO3.
In comparison to the results of single doping, we evaluated the synergistic effects between the
two co-doping elements and tried to use co-doping to overcome the shortcomings of single metal
doping and avoid the formation of the deep levels in the bandgap, so as to promote the separation of
photogenerated electron-hole pairs and expand the visible-light absorption range. Such information
can provide beneficial guidance for the experimental regulation of the BaTiO3 bandgap at atomic scale
for visible-light utilization.

2. Calculation Details

In order to avoid the strong interaction between the co-doping elements and obtain a relatively
reasonable doping concentration, the co-doping system was modelled using a 2 × 2 × 3 (60 atoms)
supercell of the cubic BaTiO3 unit cell, as shown in Figure 1a. The dopant concentration was 3.3%.
Two Ti atoms are substituted by two different transition metals (M′ and M′′) and the chemical formula
can be expressed as Ba8 (M′M′′) Ti6O24, where M′ refers to V or Nb, while M′′ includes 3d transition
metals (Cr, Mn, Fe, Co and Ni) and 4d transition metals (Mo, Tc, Ru and Pd). There are three kinds of
possible substitution. These doping situations are schematically shown in Figure 1b–d and the lowest
energy situation is described in Figure 1b. The pure BaTiO3 system was modelled using a 1 × 1 × 1
supercell. To keep the doping concentration similar between the single doping and co-doping systems,
the single doping system was modelled using 2 × 2 × 2 supercell. The atomic percentage of the
impurity was 2.5%.

The spin-polarized first-principles density functional theory (DFT) calculations were performed
using the Vienna ab initio simulation package (VASP, Version 5.2, Materials Design Inc., Vienna,
Austria) [32–34]. We used the generalized gradient approximation (GGA) [35] with the Perdew–
Burke–Ernzerhof formulation (PBE) [36] to treat the exchange and correlation energy. The plane-wave
energy cutoff was set as 500 eV within the projector-augmented-wave method (PAW).
The Monkhorst–Pack scheme K-points mesh was set as 4 × 4 × 2 [37]. The structure optimization
was performed until the residual force was less than 0.01 eV/Å on every atom [38]. In the process
of calculating the band structure, the special points are X→R→M→Г→R (1 × 1 × 1 and 2 × 2 × 2
supercell) and Г→F→Q→Z→Г (2 × 2 × 3 supercell). The special points coordinates are shown in
Table S1.
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configurations for transition metals co-doping in BaTiO3. The purple and green spheres indicate the 
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experimental value of 4.0 Å (within an error of 0.07%) [39]. The lattice parameter of the transition 
metal co-doped BaTiO3 was also obtained after geometric structure optimization. The volume of the 
co-doped structure is not only dependent on the radii of the doped elements, but related to the 
interaction between atoms. As shown in Figure S1, after co-doping, the lattice constants a and b 
decrease slightly (except V-Ni and Nb-Ni) while c increases and oscillates. It indicates that the 
crystal cell is slightly enlarged in the c direction. As shown in Tables S2 and S3, the interatomic 
bond length varies due to the lattice distortion after co-doping. This means that the center of the 
positive charge after metal co-doping into the octahedral does not coincide with the center of the 
negative charge, resulting in the internal dipole moment. Since different elements co-doping causes 
a different interaction force, the deformation degree of the octahedral is different and the lattice 
constant accordingly changes. In this study, we chose V or Nb as one of the co-doping elements. 
Namely, the co-doping systems can be divided into two groups: V-M″ and Nb-M″. On one hand, V 
and Nb are typical 3d and 4d transition metals, respectively. On the other hand, the locations of V 
and Nb in the periodic table of elements are close to Ti, and their atomic radii are similar. Thus, it is 
more suitable for V and Nb to replace Ti. In addition, the radius of V is less than Nb, so the volume 
of the V-M″ co-doping system is smaller than that of the Nb-M″ co-doping system. Also, the 
volume of the 3d transition metals co-doping systems is usually smaller than that of the 4d 
transition metals co-doping systems. 

Figure 1. Models for the calculation. (a) the structure of 2 × 2 × 3 supercell model of BaTiO3; (b–d)
configurations for transition metals co-doping in BaTiO3. The purple and green spheres indicate the
transition metal dopants. The pink, blue and red spheres indicate Ba, Ti and O atoms, respectively.

3. Results and Discussion

3.1. Structure

The calculated lattice parameter of pure BaTiO3 is 4.03 Å, which is in good agreement with the
experimental value of 4.0 Å (within an error of 0.07%) [39]. The lattice parameter of the transition
metal co-doped BaTiO3 was also obtained after geometric structure optimization. The volume of
the co-doped structure is not only dependent on the radii of the doped elements, but related to the
interaction between atoms. As shown in Figure S1, after co-doping, the lattice constants a and b
decrease slightly (except V-Ni and Nb-Ni) while c increases and oscillates. It indicates that the crystal
cell is slightly enlarged in the c direction. As shown in Tables S2 and S3, the interatomic bond length
varies due to the lattice distortion after co-doping. This means that the center of the positive charge after
metal co-doping into the octahedral does not coincide with the center of the negative charge, resulting
in the internal dipole moment. Since different elements co-doping causes a different interaction force,
the deformation degree of the octahedral is different and the lattice constant accordingly changes.
In this study, we chose V or Nb as one of the co-doping elements. Namely, the co-doping systems
can be divided into two groups: V-M′′ and Nb-M′′. On one hand, V and Nb are typical 3d and 4d
transition metals, respectively. On the other hand, the locations of V and Nb in the periodic table of
elements are close to Ti, and their atomic radii are similar. Thus, it is more suitable for V and Nb to
replace Ti. In addition, the radius of V is less than Nb, so the volume of the V-M′′ co-doping system
is smaller than that of the Nb-M′′ co-doping system. Also, the volume of the 3d transition metals
co-doping systems is usually smaller than that of the 4d transition metals co-doping systems.
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3.2. Defect Formation Energy

The defect formation energy (EForm) of transition metals co-doping BaTiO3 can be calculated
according to the formulas:

EForm = Eco−doped − Epure − µM′ − µM′′ + 2µTi (1)

µM′/M′′ =
(

µ(M′ /M′′ )m
On − nµO

)
/m (2)

ETiO2 = µTi + 2µO (3)

where Eco-doped is the energy of the co-doped BaTiO3 system, Epure is the total energy of pure BaTiO3

supercell, µM ′ and µM ′′ are the chemical potentials of the co-doping metal elements, and µTi is the
chemical potential of Ti. The µM ′ and µM ′′ are defined and calculated from Equation (2), and the µTi is
defined by Equation (3). The µ(M′ /M′′ )m

On is the energy of the most stable oxide of the doping metal
atom. µO can be calculated from the ground state energy of O2. Under the equilibrium condition,
the concentrations of point defects are controlled by their formation energies, which rely on the
chemical potentials of impurity atoms and host [6]. Thus, the smaller the defect formation energy value
is, the more stable the co-doped BaTiO3 is. The defect formation energies of all co-doped BaTiO3 are
shown in Figure 2. In comparison, the defect formation energies of Nb-M′′ co-doping are energetically
more favorable than V-M′′ co-doping. It is difficult to find the tendency of EForm with the increase
of the atomic number of M′′. The formation energies of V-M′′ (Cr, Fe and Ni) and Nb-M′′ (Cr, Mn,
Fe, Co, Ni, Mo, Tc, Ru, and Pd) are negative, which means that the co-doping system is energetically
favorable and could be easily prepared in the experiment. From Tables S2 and S3, the average bond
length of Nb-O appears identical with that of Ti-O. Therefore, the influence of Nb doping into the
structure of BaTiO3 is smaller, and thus the formation energy is smaller and the structure is more stable.
The deformation of the octahedral in the V-M′′ co-doping system is thus more serious, corresponding
to the stronger internal stress and unstable structure.
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Figure 2. The defect formation energies of transition metals co-doped cubic BaTiO3. (a) V or Nb with
3d metal M′′ (Cr, Mn, Fe, Co, and Ni); (b) V or Nb with 4d metal M′′ (Mo, Tc, Ru, and Pd).

3.3. Electronic Properties

Figure 3 shows the calculated band structure and density of states (DOS) of pure cubic BaTiO3.
The band structure shows an indirect bandgap of 1.56 eV, which is smaller than the experimental value
(3.2 eV) as the small calculated bandgap is a systematic error in the DFT calculation [40]. However,
the DFT calculation can still give a reliable description of the result on the trend of bandgap variation
due to doping. The valence band maximum (VBM) is mainly derived from the Ti 3d and O 2p states [41].
The conduction band minimum (CBM) is derived from the Ti 3d states. Ba does not contribute to
the VBM and CBM, although it does provide electrons to balance the system charge [42]. Therefore,
the bandgap value of BaTiO3 depends on the relative energy positions of the Ti 3d and O 2p states.
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However, as a light absorbing material, the bandgap of BaTiO3 is too large to efficiently absorb the
visible light.
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In order to clarify the co-doping effects with different transition metals on the electronic properties
of the cubic BaTiO3, we systematically and carefully compared the band structures and density of
states of the different co-doping systems. The co-doping systems can be divided into two types:
BVM′′TO and BNbM′′TO. M′′ includes 3d transition metals (Cr, Mn, Fe, Co, and Ni) and 4d transition
metals (Mo, Tc, Ru, and Pd). Accordingly, the classified discussion is conducted in detail as follows.
Although there exist the spin channels, the magnetic properties of the system have not been discussed
in the article. The main reason is that this article mainly focuses on the change of the bandgap in the
co-doped system and the effect on the absorption of light.

3.3.1. V and 3d M′′ Co-Doping (Cr, Mn, Fe, Co and Ni)

Figure 4 reveals that the bandgap of BaTiO3 after co-doping is narrowed due to the introduction
of the impurity energy levels (IELs). It is noticed that BaTiO3, after V-M′′ co-doping, exhibits
ferromagnetism, except for V-Co co-doping. The ferromagnetism caused by transition metal doping
is also found in other doped semiconductors, such as V-Cr co-doped ZnO [43], Mn doped GaN [44],
and Mn doped AIN [45]. The majority spin (up-spin) DOS has a smaller bandgap than the minority
spin (down-spin) DOS. The bandgaps on both spin states are formed by the interaction of the V 3d or
M′′ 3d states with the O 2p states. The electronic structure of BaTiO3 is significantly modified by the
dopants. The V 3d states are located at the bottom of the conduction band (CB), while the 3d states of
Cr, Mn, Fe, Co, and Ni show up at the top of valence band (VB) (V-Cr, V-Mn and V-Fe co-doping) or
in the middle of the bandgap (V-Co and V-Ni co-doping). Thus, the energy states from the dopants
form new CBM, VBM, or a transition state in the bandgap, leading to a relatively narrow bandgap.
Figure 4 shows that the IELs (from Cr, Mn, Co, and Ni) move from left to right, which means the
highest occupied energy level of the 3d states is arranged in the order of Cr < Mn < Co < Ni from lower
to higher energy, consistent with the number of the d electrons in these atoms.

For further analysis of the effect of IELs in the co-doping systems, we compared the band
structures of the V-Cr (a) and V-Co (b) co-doping systems (Figure 5). The bandgaps of V-Cr (a) and
V-Co (b) are 0.4 eV and 1.46 eV, respectively. The V 3d and Cr 3d states make the VBM and CBM shift
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to the middle and result in a smaller bandgap. But the Co 3d states are located in the middle of the
bandgap, forming an intermediate level. Such a level in the bandgap usually plays two roles. One is
to form a step for the electron transition and the other is to work as the electron-hole recombination
center when the doping concentration is too high. The former is beneficial to visible light absorption,
but the latter hinders electron-hole separation. Therefore, combining Figures 4 and 5, the results show
that V-Cr, V-Mn, and V-Fe co-doping should have suitable bandgap and better visible light absorption
than V-Co and V-Ni.
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3.3.2. V and 4d M′′ Co-Doping (Mo, Tc, Ru and Pd)

As shown in Figure 6, the IELs introduced by V-4d M′′ co-doping emerges in the middle of
bandgap and CB. Compared with Figure 4, the IELs of the 4d metals are even closer to the CB than
the IELs of 3d metals. The reason is that the 4d states have higher energy than the 3d states of the
transition metals. Therefore, the IELs of V co-doping with the 4d transition metals are closer to the
conduction band and belong to the significant n-doping. The Fermi level (EF) gradually shifts from
the conduction band to the valence band with the increase of the atomic number of the M′′ elements.
The definition of the Fermi level is the highest energy level of the electron at the absolute zero degree,
which corresponds to the energy state at 0 eV. It can act as a reference to discuss the effects of the
transition metal co-doping on the band edge modification and the bandgap variation. The IELs in the
bandgap and near the bottom of the CB partially (V-Tc, V-Ru and V-Pd co-doping systems) or wholly
overlap with the CBM (V-Mo co-doping system). Both cases can lead to the CBM downward shifting,
while the valence bands remain barely unchanged upon the co-doping. The Fermi levels of the V-M′′

(Mo, Tc, Ru and Pd) co-doping systems pass through the IELs, that is to say, the electrons can occupy
the IELs below the Fermi level in the ground state. Due to the small distance between this energy level
and the bottom of the CB, electrons can be excited by absorbing small photon energy [46,47].
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Figure 6. The total and partial density of states of the V-M′′ (4d metal elements: Mo, Tc, Ru and Pd)
co-doped BaTiO3. The black dashed line indicates the position of the Fermi level.

3.3.3. Nb and 3d M′′ Co-Doping (Cr, Mn, Fe, Co and Ni)

Figure 7 shows that the effects of this series of co-doping are similar to the V-M′′ (Cr, Mn, Fe, Co
and Ni) co-doping described in Figure 4. The only difference is that the energy of the Nb 4d states is
higher than that of the V 3d states. Consequently, the V 3d states are located at the CBM but the Nb 4d
states are in the upper CB. Therefore, the Nb 4d states have little effect on the bandgap and there is no
synergistic effect between the co-dopants. The Fermi level moves from CB to VB with the increase of
the atomic number of M′′ elements. The Cr, Mn, and Ni 3d states occur in the middle of the bandgap
and become the intermediate level. The intermediate state might be beneficial to the electron transition
under visible-light irradiation. However, it might not be conducive to the effective separation of the
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electron-hole since it could also act as the recombination centers on the other hand. In addition, the Fe
and Co 3d states are divided into two parts, where the high energy part is weak at the bottom of the
CB, and the low energy part is strong, which is located at the top of the VB. Both cases can lead to the
bandgap narrowing and are beneficial to visible-light absorption.

In these Nb-M′′ co-doping systems, we chose two typical doping forms, the Nb-Mn and Nb-Co
co-doping systems, to further investigate their band structures, as shown in Figure 8. The bandgaps
are found to be 1.2 and 0.96 eV, respectively. In the Nb-Mn co-doping system, the IELs in the middle of
bandgap are contributed by the Mn 3d states. However, in the Nb and Co co-doping system, the Co
3d and O 2p states form the p-d hybridization and locate above the original VB or partly coincided
with the bottom of the CB. Overall, both co-doping could reduce the bandgap effectively but with
different causes. It is also necessary to consider that Nb and Mn heavy co-doping might lead to a
serious recombination due to the IELs in the bandgap.
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Mn 3d states (a) and Co 3d states (b).
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3.3.4. Nb-4d M′′ Co-Doping (Mo, Tc, Ru and Pd)

As shown in Figure 9, Nb-Mo, Nb-Tc, Nb-Ru, and Nb-Pd co-doping have very little influence
on the top of valence band, but it changes the distribution of the electron states at the bottom of the
conduction band. The Nb 4d states are in the middle of the conduction band, while the Mo, Tc, Ru,
and Pd 3d states are located at the conduction band bottom or in the bandgap. Hence this series of
co-dopings have no synergistic influence, and the doping effects around the bandgap are similar to the
individual Mo, Tc, Ru, or Pd doping.
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Figure 9. The total and partial density of states of the Nb-M′′ (4d metal elements: Mo, Tc, Ru and Pd)
co-doped BaTiO3. The black dashed line indicates the position of the Fermi level.

Generally, according to the results above, transition metal co-doping can have three effects on
reducing the bandgap. Firstly, the IELs appear below the CB, partially or wholly overlap with the
bottom of the CB, and eventually cause the CBM to move downward. Secondly, the IELs are located
above the VB, overlap with the top of VB in different degrees, and make the VBM move up. Thirdly,
the IELs lie in the middle of the bandgap to form the intermediate energy level. In the actual co-doping
system, two or more effects can coexist to modify the energy bandgap.

In order to further study the difference between the single doping and co-doping systems,
we calculated the band structures and total and partial DOS of V doped BaTiO3, Nb doped BaTiO3,
and Cr doped BaTiO3, as shown in Figure 10. The band structures clearly show that V doping reduces
the bandgap to 1.15 eV since the V 3d states appear at the bottom of CB and form a new CBM. But the
bandgap after Nb doping is 1.63 eV, which is even a bit larger than pure BaTiO3 (1.56 eV). The reason
is that the Nb 4d states are located in the CB and far away from CBM, which have little effect on the
bandgap. Thus, in the Nb-M′′ co-doping system, the doping effect mostly depends on the single M′′

doping. In the Cr-doped BaTiO3, an IEL emerges in the bandgap, which is quite different from the V
and Nb doping systems.
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Figure 10. Band structures and total and partial density of states (DOS) of (a,b) Ba8Ti7VO24,
(c,d) Ba8Ti7NbO24, and (e,f) Ba8Ti7CrO24.

In addition, we compared the band structure and DOS of V, Cr, and V-Cr doped BaTiO3. In the
V-doped BaTiO3, the IELs are located at the bottom of the CB. In the Cr-doped BaTiO3, the IELs appear
in the middle of the bandgap and form the intermediate energy level. But in the V-Cr co-doped
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BaTiO3 as shown in Figure 4, the IELs divided into two parts. One was situated at the bottom of
the CB, and the other at the top of the VB. Finally, as the intermediate energy level raised from the
single Cr, doping disappeared, as confirmed in Figure 5a. Thus, the V-Cr co-doping can overcome the
shortcoming of the single Cr doping and combine the advantages of the V and Cr doping in reducing
the bandgap to effectively shift the CBM and VBM toward the bandgap. Through such synergistic
effect, the light absorption range could be expanded and the visible-light photoelectrical activity is
expected to improve.

Furthermore, the charge density distribution was investigated for the V-doped, Cr-doped, and
V-Cr co-doped BaTiO3 as shown in Figure 11, which indicates that Ti-O, Cr-O, and V-O form covalent
bonds. Due to different electronegativity (Ti < V < Cr < O), the covalent bond strength is different.
The greater the metal electronegativity is, the smaller the electronegativity difference between the
metal and oxygen atoms, and the more uniform is the charge density distribution. According to an
effective empirical determining method, the electronic energy level of an element is usually inversely
proportional to its electronegativity. That is to say, the higher the electronegativity, the lower the
position of the energy level and the lower the position of the corresponding energy band [48]. Therefore,
when Cr or V with larger electronegativity was doped into BaTiO3, the IELs with a relatively low energy
position were introduced around the CBM or in the bandgap, leading to a narrower bandgap after
doping. The results are verified by the line profile of the charge density as displayed in Figure 11a–c.
The charge density of Ti, O, Cr, and V is slightly decreased in various degrees after Cr-V co-doping
compared to the single Cr or V doping. It can be found that in comparison to the single doping, where
the charge density is more localized around the atoms, V-Cr co-doping could result in a relatively
evener charge distribution. This not only causes the hybridization of the newly introduced IELs and
the initial CBM or VBM of the pure BaTiO3, but is associated with the interaction among the newly
introduced energy states due to the V-Cr synergistic effect, which accounts for the bandgap engineering
by the co-doping for visible-light activation.
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(f) V doped BaTiO3.

In order to further analyze the charge density near the bandgap, we calculated the distribution
of the partial charge density from the top of the valence band to the bottom of the conduction band,
as shown in Figure 12, which could reveal the visual information of the electron densities mainly
derived from the doped/co-doped atoms. The calculated partial electron density in the V-Cr co-doped
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BaTiO3 distributed around the V and Cr dopants is shown in Figure 12a, and is mainly derived from
the Cr 3d isolated non-bond states and the hybrids between the V 3d and O 2p electronic states,
as suggested by Figures 4 and 5. Figure 12b presents the partial electron density on Cr in the Cr
doped BaTiO3, which consists significantly of the isolated Cr 3d orbitals confirmed by Figure 10f.
From Figure 12c, the partial electron density calculated in the V doped BaTiO3 distributed around
the V atom, which primarily originates from V-O bonds arising from the hybridization of the O 2p
and V 3d orbitals. As such, the doped/co-doped atoms play a key role in narrowing the bandgap of
BaTiO3. These results also reveal that the appropriate selection of co-doping elements, such as V-Cr
co-doping, can result in synergistic effects by the two co-dopants that can effectively manipulate the
bandgap. Before choosing the pair of dopants for co-doping, it is important to examine the electronic
structures of the individual doping and their interaction so that the pair of dopants in the co-doping
system can coexist to properly modify the bandgap edge and improve the visible-light adsorption
properties. Besides the electronic structure, charge mobility and surface properties/states also play
important roles in the photoelectric behavior, which should be addressed in the future.
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effect, which has been demonstrated by the detailed analysis of the density of states, band structure, 
and charge-density distribution of the doping systems. V-Cr co-doping could overcome the 
shortcoming of the single Cr doping and combine the advantages of both the V and Cr doping. For 
this optimal co-doped BaTiO3 system, the Cr 3d states are located just above the VBM and the V 3d 
states occupied band just below the CBM, corresponding to a bandgap narrowing of about 0.4 eV, 
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the CBM, corresponding to a bandgap narrowing of about 0.4 eV, which is beneficial for efficient
visible-light adsorption. The results can provide an important guideline for future experiments to
modify the wide BaTiO3 bandgap for visible-light driven solar applications.
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