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Abstract: Research in boron nitride nanosheets (BNNS) has evoked significant interest in the field of
nano-electronics, nanoelectromechanical (NEMS) devices, and nanocomposites due to its excellent
physical and chemical properties. Despite this, there has been no reliable data on the effective
mechanical properties of BNNS, with the literature reporting a wide scatter of strength data for
the same material. To address this challenge, this article presents a comprehensive analysis on
the effect of vital factors which can result in variations of the effective mechanical properties of
BNNS. Additionally, the article also presents the computation of the correct wall thickness of BNNS
from elastic theory equations, which is an important descriptor for any research to determine the
mechanical properties of BNNS. It was predicted that the correct thickness of BNNS should be
0.106 nm and the effective Young’s modulus to be 2.75 TPa. It is anticipated that the findings from this
study could provide valuable insights on the true mechanical properties of BNNS that could assist in
the design and development of efficient BN-based NEMS devices, nanosensors, and nanocomposites.

Keywords: boron nitride nanosheet; molecular dynamics; thickness; mechanical strength;
vacancy defects

1. Introduction

Research on boron nitride nanosheets (BNNS) has evoked great prominence in recent days owing
to its unique physical and electronic properties [1,2]. BNNS is the best example of a 2D single-layer
compound nanomaterial, consisting of boron and nitrogen atoms in equal numbers in a hexagonal
lattice arrangement. While the mechanical strength of BNNS is not as high compared to that of its
elemental counterpart—graphene [3], it possesses better thermal and oxidation resistance [4]. This
makes BNNS an attractive alternative to graphene for applications under extreme conditions, such
as nanocomposites [5,6], nanoelectronics [7,8], and nanoelectromechanical (NEMS) devices [9,10].
This creates a major initiative in investigating the mechanical strength of BNNS, which will provide
valuable information for the design of next-generation BNNS-based nano-devices and components.

Previous studies investigating the mechanics of BNNS by experiments mainly focused on
reporting the Young’s modulus of BNNS. The reported Young’s modulus of BNNS was scattered and
was found to be dependent on the method of fabrication of the BNNS. For instance, Falin et al. [1] and
Bosak et al. [11] and devised the fabrication of BNNS by exfoliation from BN crystals and found the
Young’s modulus of BNNS to be 0.865 and 0.811 TPa, respectively. However, Song et al. [12] predicted
that the BNNS fabricated by the chemical vapour deposition (CVD) process, yielded a Young’s modulus
of only about 0.334 TPa. The low strength was attributed to the inherent defects and grain boundaries
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resulting from the CVD process. Kim et al. [13], on the other hand, adopted the CVD process using an
iron foil with a borazine precursor to synthesize high-quality BNNS. They reported that the Young’s
modulus of BNNS can be substantially higher for the case of BN with little or no inherent defects
and obtained a Young’s modulus of 1.16 ± 0.1 TPa. A similar observation was also reported for the
case of boron nitride nanotubes (BNNTs) by Chopra and Zettl [14] who devised a water cooled arc
for synthesizing pure BNNTs. They found that the Young’s modulus of BNNS is 1.22 ± 0.24 TPa.
Suryavanshi et al. [15] measured the Young’s modulus of 18 different BNNTs with varying lengths
and diameters and also reported a wide scatter of the Young’s modulus, varying from 0.505–1.031 TPa.
These studies also adopted varying measurement techniques, such as atomic force microscopy (AFM),
transmission electron microscopy (TEM), inelastic X-ray scattering (IXS) technique, etc., to name a few.
The measurement errors in these techniques might have also contributed to the diverse range of
strength data of BNNS available in the literature. A summary of the mechanical strength of BNNS as
reported from the abovementioned experimental studies are presented in Table 1.

Table 1. Mechanical properties of BNNS and BNNTs determined by experiments.

Experimental Method Young’s Modulus (TPa)

Nanoindentation measurement of few layer BNNS exfoliated from single
crystal BN [1]. 0.865 ± 0.073

IXS of BNNS crystal synthesized from Ba-B-N catalyst system under high
temperature and pressure [11]. 0.811

Nanoindentation measurement on defective BNNS synthesized by CVD
from bulk BN crystal [12]. 0.334 ± 0.024

AFM measurement on high quality BNNS synthesized from borazine
precursor using CVD process [13]. 1.16 ± 0.1

Thermal assisted vibration of cantilevered BNNT observed using TEM [14]. 1.22 ± 0.24

Electric-field-induced technique to apply sinusoidal signal which induces
vibration in BNNT [15]. 0.505–1.031

It is evident from the above experimental studies that the variation in the Young’s modulus and
the mechanical strength of BNNS can be influenced by many factors. Computational modelling
has emerged as an effective means of studying the influence of various parameters, such as
defects, geometry, and lattice orientation on the strength data of BNNS. Molecular dynamics (MD)
studies [16–18] showed that the Young’s modulus of BNNS is highly sensitive to defects in BNNS
lattice. Similar conclusions were also obtained from density functional theory (DFT) analysis by
Wang et al. [19]. Another advantage of deploying computational model is that the lattice parameters
or geometry of BNNS can be easily modified and the resulting mechanical strength can be estimated.
For instance, Le [20] adopted a molecular mechanics (MM) model for BNNS undergoing tensile loading,
and found that BNNS loaded in armchair direction exhibits lower tensile strength. This observation
was also confirmed by MD simulation results of Mortazavi and Rémond [21] and DFT analysis by
Wu et al. [22]. In addition to defects and lattice orientation, the strength of BNNS was also reported
to be strongly influenced by temperature. Adopting a quasi-harmonic approximation (QHA) model,
Mirnezhad et al. [23] showed that the Young’s modulus of BNNS is highly sensitive to temperature,
reaching a stable value at elevated temperature. Other computational approaches, such as hybrid
Tersoff-Brenner (T-B) [24] and continuum-lattice (C-L) [25] models, also reported similar results. Some
computational studies also analysed the strength variation of boron nitride nanotubes (BNNTs) [26]
and their strength comparison with carbon nanotubes or graphene [27,28]. Most of these studies
reported the Young’s modulus and mechanical strength of BNNS by considering the wall thickness
of BNNS to be around 3.3 to 3.4 Å. Some studies also reported thickness-independent mechanical
strength descriptors, such as the axial stiffness and bending stiffness from conventional modelling
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techniques, such as MD simulations [29,30] or other techniques, such as atomistic-finite element
modelling (FEM) [31] or the discrete media homogenization (DMH) technique [32]. A consolidation of
all mechanical properties of BNNS investigated by various computational approaches is presented in
Table 2.

Table 2. Mechanical properties of BNNS and BNNTs by computational modelling.

Technique Temperature
(K)

Young’s Modulus
(TPa)

Axial Stiffness
(TPa nm)

Bending Stiffness
(eV)

Tersoff potential [16] 300 0.930 NA NA
Tersoff potential [17] NA 0.730–0.890 0.248–0.292 NA
Tersoff potential [18] 0–2000 0.398–0.720 NA NA
DFT calculation [19] NA NA 0.293–0.311 NA

Mechanics model [20] 0 NA 0.332 NA
Tersoff potential [21] 300 0.800–0.850 0.264–0.280 NA
DFT calculation [22] NA 0.760–1.055 NA 0.95

DFT-QHA model [23] 0–1000 NA 0.278–0.283 NA
T-B potential [24] 300 0.881 NA NA

Continuum model [25] NA 0.900–1.000 NA NA
Tight binding [26] NA NA 0.284–0.310 NA

MM-DFT model [27] NA 0.83 0.282 1.74
DFT calculation [28] NA 0.700–0.830 NA NA
Tersoff potential [29] 0 NA 0.267 NA

Tersoff-like model [30] 300 NA NA 1.5–1.7
Atomistic-FEM [31] NA NA 0.240–0.315 NA
DMH technique [32] NA NA 0.267 NA
Tersoff potential [33] NA 0.295–0.695 NA 0.22–0.56

MM model [34] NA NA 0.260–0.269 NA
Ab initio [35] NA NA 0.271 1.29

DFT calculation [36] NA NA 0.279 NA
Modified T-B [37] NA 0.982–1.113 NA NA

Tersoff potential [38] 300 0.716 NA NA
Tersoff potential [39] 0 0.749–0.770 0.248–0.258 NA

From the literature studies presented above, it is possible to map the effect of individual factors
on the mechanical strength of BNNS. Table 3 presents the effect of various factors which can influence
the mechanical characteristics of BNNS. This offers a quick glance of the dominant factors which
results in the variation of the reported strength data of BNNS. It is also possible to determine the
knowledge gaps on the existing studies on the mechanics of BNNS. For instance, while it is evident
that the strength of BNNS is adversely affected by the presence of defects and increasing temperature,
superior mechanical properties can be obtained by orienting the BNNS along a zigzag direction. While
the effect of individual factors, such as defects and temperature, has been well documented, none
of the abovementioned studies focused on analysing the effect of BNNS geometry, the position of
defects, and the combined effect of two or more factors in influencing the strength data of BNNS.
Additionally, almost all of the existing studies in the literature reported the mechanical strength
and Young’s modulus of BNNS by assuming the thickness of BNNS to be 3.3 to 3.4 Å, which is the
inter-layer separation distance of graphene. This assumption is not true given that the BNNS exhibits
a discrete hexagonal lattice arrangement of atoms and, hence, its wall thickness is not well defined.
Estimating the correct wall thickness is very crucial to determining the effective Young’s modulus
and mechanical properties of BNNS at the nanoscale. Assuming an incorrect wall thickness leads
to a scatter of the Young’s modulus and mechanical strength data of BNNS, this leads to a critical
knowledge gap on exploiting these nanomaterials for high-strength applications.
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Table 3. Relationship mapping of the effect of various factors on the mechanical strength of BNNS.

Factors Tensile Strength of BNNS

Temperature Decreases
Defect concentration Decreases

Geometry Unknown
Defect position Unknown

Defects and Temperature Unknown
Loading direction Superior in zigzag direction

Motivated by the above research questions, this article aims to provide a comprehensive analysis
on the mechanics of BNNS under tensile loading conditions. To this end, the critical factors which can
result in a variation of strength data of BNNS are identified and the extent to which the strength data is
varied is determined first. Additionally, this article also addresses the need to compute the correct wall
thickness of BNNS, and thereby its effective Young’s modulus and mechanical strength at the nanoscale.
The correct wall thickness of the BNNS is estimated by adopting the Vodenitcharova-Zhang [40] and
Wang-Zhang [41] criteria. Once the correct wall thickness is determined, the effective Young’s modulus
and the mechanical strength of BNNS is then calculated and presented.

2. Computational Model

This article focuses on the mechanics of a single-layer BNNS using MD simulation.
The simulations are performed on the large scale atomic/molecular massively parallel simulator
(LAMMPS) package of March 2017 version, developed by Sandia National Laboratories, Livermore,
CA, USA [42]. The modified Tersoff potential [43,44] with optimized parameters defined by
Kinaci et al. [45] is used to describe the interactions between the boron and nitrogen atoms of BNNS.
The Tersoff potential, with its precise parameters, has the ability to accurately match the experimental
results with density functional theory calculations, while also ensuring the computational efficiency
for large-scale atomic systems [46]. In addition, the Tersoff potential has also been successfully used
in previous studies on computational modelling of BNNS [21,47–49]. The complete details of this
potential function with associated parameters can be found in [18].

The studies described in this paper analyses the effect of geometry, loading direction, defects,
and temperature on the mechanical strength of BNNS. The effect of geometry is considered by
suitably modifying the aspect ratio (ratio of length to the width) of the BNNS in zigzag and armchair
directions. The effect of concentration and position of vacancy defects is studied by constructing various
concentrations axial or transverse defects along the direction of loading of the BNNS. The temperature
factor is investigated by subjecting the BNNS structure to tensile loading at 300, 600, and 900 K. At the
beginning, the BNNS is equilibrated at the specific temperature, after which the boundary atoms of
the BNNS are fixed and subjected to constant outward displacement to simulate tension (Figure 1).
The BNNS is again equilibrated at every 1000 time steps to relax the structure, after which the readings
are recorded and the procedure is repeated until the BNNS fails under tension.
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stiffness of the BNNS (defined as twice the coefficient of the second degree term of the strain energy 

polynomial curve) is 277.4 J/m2 which is comparable with the ab initio prediction of 271 J/m2 [35] and 
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Figure 2. Force and strain energy graph of BNNS under tensile loading at 300 K. 

Figure 1. Simulation of BNNS under tensile loading. The atoms enclosed inside the black rectangle at
either ends of BNNS is subjected to tensile loading. The loading direction is indicated by the arrows.
Atoms depicted in ochre are boron and atoms depicted in blue are nitrogen.

3. Results and Discussion

3.1. Validation of the Simulation Model

The simulation model adopted in the present study is validated by considering an approximate
square shaped BNNS of dimension 62.38 Å × 60.27 Å consisting of 700 boron and nitrogen atoms.
The BNNS is loaded in tension along the zigzag direction as depicted in Figure 1 at 300 K. The plot
of the force and strain energy per atom measured against the tensile strain is illustrated in Figure 2.
The plot shows that the tensile force varies almost linearly with strain, ε, until ε = 0.05. After this, the
force shows a parabolic variation until it reaches a maximum value of 198.14 nN before undergoing
failure as indicated by the spontaneous drop of strain energy. The observed tensile strain of ε = 0.27 from
the present MD simulation is in good agreement with the finite element prediction value of 0.257 by Le
and Nguyen [39] who adopted a square-shaped model of BNNS. The computed axial stiffness of the
BNNS (defined as twice the coefficient of the second degree term of the strain energy polynomial curve)
is 277.4 J/m2 which is comparable with the ab initio prediction of 271 J/m2 [35] and MD prediction
of 267 J/m2 [29]. Hence, the above confirmation study validates the accuracy of the simulation model
adopted in the study.
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3.2. Effect of Geometry and Tensile Loading Direction

The effect of geometry and tensile loading direction on the mechanical characteristics of BNNS is
described in this section. It is useful to note that previous studies have modelled BNNS with varying
geometry, such as rectangular [18,21], square shaped [39], or even as a circle [50], and have reported
varying data of tensile strength of single-layer BNNS. The strength data of BNNS should be ideally
investigated by standardizing the variation in geometry. This is accomplished in this work by varying
the aspect ratio (ratio of length, L to the width, W) of BNNS, while maintaining almost the same
number of boron and nitrogen atoms. The effect of the loading direction is considered by tensile
loading of BNNS along either armchair or zigzag directions. The geometry and atomic configuration
of armchair and zigzag BNNS considered in the study is presented in Tables 4 and 5, respectively.
The plot of the maximum tensile force for armchair and zigzag BNNS as a function of the aspect
ratio at 300 K is shown in Figure 3. The plot shows that the BNNS exhibits superior tensile strength
when loaded in the zigzag direction, which is consistent with the previous literatures. Additionally,
the maximum tensile force of BNNS decreases with the increasing aspect ratio. This is because a small
aspect ratio BNNS is wider than a larger aspect ratio BNNS. In the present study, as there is minor
variation in the atom numbers of BNNS across aspect ratios, a wider BNNS has more atomic bonds
which can resist the tensile loading. Furthermore, the loading characteristics tend to stabilize with the
increasing aspect ratio of the BNNS. Hence, the mechanical strength of the BNNS can be effectively
modified by varying the system geometry.

Table 4. The atomic configuration of single layer BNNS loaded in the zigzag direction.

Aspect Ratio (L/W) BNNS Dimensions (L × W) Total Number of Atoms

1.0 62.38 Å × 60.27 Å 1408
2.0 89.11 Å × 42.63 Å 1420
3.0 104.39 Å × 33.81 Å 1328
4.0 120.94 Å × 29.40 Å 1344

Table 5. The atomic configuration of single layer BNNS loaded in the armchair direction.

Aspect Ratio (L/W) BNNS Dimensions (L × W) Total Number of Atoms

1.0 62.48 Å × 61.11 Å 1450
2.0 86.73 Å × 43.28 Å 1400
3.0 104.37 Å × 33.10 Å 1344
4.0 119.81 Å × 30.55 Å 1374
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The snapshots of the single layer BNNS of aspect ratio 2.0 undergoing tensile loading at 300 K is
depicted in Figure 4. The initial equilibration at 300 K results in some wrinkles on the BNNS structure.
The application of tensile displacement results in elongation and increase in strain energy of the atoms,
which results in tensile failure of the BNNS sheet marked by fracture and segmentation.
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3.3. Effect of the Concentration and Position of Vacancy Defect

The influence of vacancy defects on the tensile loading characteristics of BNNS is investigated
by considering a BNNS sheet of aspect ratio 2.0, loaded in armchair and zigzag directions at 300 K.
The vacancy defect is constructing by removing a set of covalently bonded boron and nitrogen atoms
from the BNNS lattice. Figure 5 shows that increasing the concentration of defects deteriorates the
mechanical strength of BNNS. It is, however, intriguing to note that the extent of the influence exerted
by the defects has strong dependency on their position or placement in the BNNS. For instance,
the maximum tensile force for an armchair BNNS drops by over 43% when the vacancy defect
concentration along the transverse direction (i.e., perpendicular to direction of loading) is increased to
6. However, the corresponding reduction in the maximum tensile force when the defects are located in
the axial direction is only about 20%. This is an important characteristic which should be taken note of
while synthesizing BNNS for composite loading or high-strength applications. Hence, the vacancy
defects along the transverse direction must be minimized as much as possible to avoid the rapid
deterioration in the mechanical properties of BNNS.
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3.4. Effect of Temperature and Vacancy Defects

The previous studies presented in the introduction indicated that the strength of BNNS is strongly
affected by temperature and the existence of defects. However, the strength of defective BNNS
has not been tested in elevated temperatures, or vice versa, which will provide a comprehensive
understanding of the interaction of these two dominant factors. Figure 6 depicts the variation in tensile
loading characteristics of BNNS with increasing defect concentration at various temperatures. It can be
witnessed that the increase in temperature decreases the maximum tensile force of the BNNS, which
is attributed to the increase in the thermal stress on B–N bonds. However, it is also interesting to
note that introducing the vacancy defects in the BNNS structure seems to mitigate the weakening
effect of BNNS caused due to the rise in temperature (Table 6). For instance, the reduction in the
maximum tensile force of a pristine BNNS when the temperature is increased from 300 to 900 K is
14.25%, while the corresponding drop for a BNNS with six vacancy defects is found to be lowered
to 10.16%. The loss of B–N bonds formed in BNNS due to the presence of vacancy defects enhances
the mobility of the atoms at higher temperature which results in the lowering of associated thermal
stress in the BNNS structure. This observation is also consistent with the mechanics of the graphene
sheet [51] and buckling of CNTs [52] analysed at higher temperatures. Hence, BNNS with a higher
concentration of vacancy defects resists the drop in tensile loading characteristics due to temperature
increases. This could be an important factor which could be exploited while synthesizing BNNS for
high strength applications under elevated temperatures. Another useful feature which can be deduced
from this study is that the drop in loading characteristics of BNNS due to temperature variation is
not as pronounced when compared to that of graphene as reported by authors’ previous study [51].
Hence, this investigation supports the fact that BNNS exhibits better thermal stability and can be used
for fabricating temperature-resistant nanoscale devices and nanocomposites.



Nanomaterials 2018, 8, 546 9 of 14
Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 14 

 

 

Figure 6. Tensile loading characteristics of BNNS at various temperatures with vacancy defects. 

Table 6. Percentage reduction of the maximum tensile force of BNNS with defects when temperature 

is increased from 300 to 900 K. 

Number of Defects Reduction of Maximum Tensile Force (%) 

0 14.25 

2 13.83 

4 11.97 

6 10.16 

4. Determination of Thickness and the Young’s Modulus of BNNS 

Almost all of the previous studies on computational modelling of BNNS have assumed the 

thickness to be 3.4 Å—the inter-layer separation between two graphene sheets. This yields the 

Young’s modulus to be about 0.6–0.9 TPa. The application of the same thickness to estimate the 

mechanical characteristics of BNNS is questionable since the effective thickness of graphene itself 

was computed to be between 0.06 to 0.1 nm [41,53]. 

To overcome this hurdle, the effective thickness of BNNS is determined in this work based on 

the well-established Vodenitcharova-Zhang [40] and Wang-Zhang [41] criteria. In so doing, the axial 

stiffness, K, and bending stiffness, D, are firstly determined without using E and h values. In the 

atomistic simulation of BNNS, the axial stiffness K is defined as [41]: 

2

2

2 3

0 1 2 3

1 aWK
A

W a a a a



  

 
 


     

 (1) 

where Wa is the strain energy of the BNNS structure under axial loading, A is the surface area of the 

BNNS, aj (j = 0,1,2,3,…) is the coefficient of the fitted polynomial of Wa in terms of strain, and ε 

derived from the strain energy-strain plot. 

The bending stiffness, D, of BNNS is determined by the energy required in rolling up the BNNS 

surface to form a BNNT (see Figure 7). D is defined mathematically as [41]: 

Figure 6. Tensile loading characteristics of BNNS at various temperatures with vacancy defects.

Table 6. Percentage reduction of the maximum tensile force of BNNS with defects when temperature is
increased from 300 to 900 K.

Number of Defects Reduction of Maximum Tensile Force (%)

0 14.25
2 13.83
4 11.97
6 10.16

4. Determination of Thickness and the Young’s Modulus of BNNS

Almost all of the previous studies on computational modelling of BNNS have assumed the
thickness to be 3.4 Å—the inter-layer separation between two graphene sheets. This yields the Young’s
modulus to be about 0.6–0.9 TPa. The application of the same thickness to estimate the mechanical
characteristics of BNNS is questionable since the effective thickness of graphene itself was computed
to be between 0.06 to 0.1 nm [41,53].

To overcome this hurdle, the effective thickness of BNNS is determined in this work based on
the well-established Vodenitcharova-Zhang [40] and Wang-Zhang [41] criteria. In so doing, the axial
stiffness, K, and bending stiffness, D, are firstly determined without using E and h values. In the
atomistic simulation of BNNS, the axial stiffness K is defined as [41]:{

K = 1
A · ∂2Wa

∂ε2

W = a0 + a1ε + a2ε2 + a3ε3 + · · ·
(1)

where Wa is the strain energy of the BNNS structure under axial loading, A is the surface area of the
BNNS, aj (j = 0,1,2,3, . . . ) is the coefficient of the fitted polynomial of Wa in terms of strain, and ε

derived from the strain energy-strain plot.
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The bending stiffness, D, of BNNS is determined by the energy required in rolling up the BNNS
surface to form a BNNT (see Figure 7). D is defined mathematically as [41]:{

D = 1
A · ∂2Wb

∂κ2

Wb = b0 + b1κ + b2κ2 + b3κ3 + · · ·
(2)

where Wb is the energy of the BNNS structure during bending process to form a BNNT, bj (j = 0,1,2,3,
. . . ) is the coefficient of the fitted polynomial of Wb in terms of curvature, and κ is derived from the
energy-curvature plot.
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Based on elastic theory, the K and D values are defined in terms of E and h as [41]:

K =
Eh

1 − υ2 ≈ Eh (3)

D =
Eh3

12(1 − υ2)
≈ Eh3

12
(4)

The above equations are then solved to determine the unique values of E and h, which is sufficient
to satisfy the axial stiffness and bending stiffness of BNNS. In addition, it is also necessary for the
resultant thickness to be smaller than that of the atomic diameter, since the cross-section of the sheet
only consists of discrete atoms connected by bonds, as opposed to a continuous wall of atoms.

The variation of thickness with the Young’s modulus is plotted on a single E-h coordinate plane
using Equations (3) and (4), as shown in Figure 8. In the present study, the average K and D values
of BNNS at various aspect ratios were obtained as 285.7 J/m2 and 1.785 eV, respectively. These
values are in good agreement with the K and D values computed from various numerical approaches,
as illustrated in Table 1. From Figure 7, the correct thickness of BNNS is determined by the intersection
of the K and D curves, while also satisfying the Vodenitcharova-Zhang necessary criterion [40]. Hence,
the correct effective thickness of BNNS is h ≈ 0.106 nm and the Young’s modulus ≈ 2.75 TPa.
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The resulting Young’s modulus is higher than that of the previously reported estimates using
computer simulation studies. Hence, the following checks can be conducted to confirm the validity of
the computed Young’s modulus:

(1) The correct wall thickness for graphene was estimated to be about 0.10 nm [41,54]. Since BNNS
is morphologically similar to the graphene sheet, the BNNS thickness of 0.106 nm is closely
comparable to the thickness of the graphene sheet.

(2) For a thickness of 3.4 Å, the Young’s modulus of the BNNS reported by computational studies is
lower than that of graphene, and should be valid regardless of any thickness considered. As the
computed modulus of BNNS (2.75 TPa) is lower than the correct modulus of graphene, which is
reported to be 3.4–3.5 TPa [41,55], the above findings can be validated.

Using the effective thickness of 0.106 nm and the maximum tensile force values reported for the
armchair and zigzag BNNS in Section 3.2, the mechanical strength of the BNNS with varying aspect
ratios are computed and presented in Table 7.

Table 7. Effective mechanical strength of armchair and zigzag BNNS at various aspect ratios.

Armchair BNNS Zigzag BNNS

Aspect Ratio Mechanical Strength (GPa) Aspect Ratio Mechanical Strength (GPa)

1.0 254.31 1.0 302.75
2.0 266.82 2.0 318.51
3.0 259.33 3.0 317.70
4.0 266.21 4.0 306.67

5. Conclusions

Mechanical loading characteristics of BNNS under tensile loading conditions have been
comprehensively analysed in this work. A detailed literature review has been conducted to consolidate
the effect of various factors which can influence the quantification of the mechanical properties of
BNNS. Based on the literature consolidation, it is identified that the influence of geometry, defect
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position, and the combination of defects and temperature on the property characterization of BNNS
must be investigated. The variation in the system geometry was standardized across BNNS by
maintaining almost a similar number of atoms in the sheet. Through this, it was found that a smaller
aspect ratio of BNNS exhibits better tensile loading characteristics. Furthermore, while increasing the
defect concentration, itself, can deteriorate the mechanical strength of BNNS, the extent of the reduction
was found to have a strong dependency on the position or placement of the defects. The study also
revealed interesting phenomena that these vacancy defects can control the decline in tensile loading
characteristics of BNNS due to elevated temperatures. Hence, it would be favourable to include
vacancy defects in BNNS for high-temperature applications, albeit placing the defects along the
direction of loading of BNNS. Finally, the effective Young’s modulus of the BNNS is also estimated
by computing the correct wall thickness based on elastic theory equations. It is anticipated that the
comprehensive analysis presented in this work will provide valuable information for the fabrication of
BNNS-based NEMS, nanoscale devices, and nanocomposites.
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