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Abstract: Herein, we demonstrate the fabrication of a three-dimensional (3D) polypyrrole-coated-
porous graphene (PPy/PG) composite through in-situ polymerization of pyrrole monomer on PG
surface. The PPy/PG displays a 3D hierarchical porous structure and the resulting PPy/PG hybrid
serves as a conductive trap to lithium polysulfides enhancing the electrochemical performances.
Owing to the superior conductivity and peculiar structure, a high initial discharge capacity of
1020 mAh g−1 and the reversible capacity of 802 mAh g−1 over 200 cycles are obtained for the
S/PPy/PG cathode at 0.1 C, remaining the remarkable cyclic stability. In addition, the S/PPy/PG
cathodes demonstrate an excellent rate performance exhibiting 477 mAh g−1 at 2 C.

Keywords: lithium/sulfur battery; hierarchical 3D porous structure; sulfur/polypyrrole/porous
graphene composite

1. Introduction

Recently, lithium-ion batteries (LIBs) are being widely used in portable electronic devices and
considered for future hybrid electric vehicles due to their high energy density and excellent cyclic
performance. However, traditional LIBs with transition metal oxides cathodes and graphite-based
anodes cannot meet the demand of the market due to the limited capacity of electrode materials for LIBs.
Therefore, a considerable research effort has been focused on developing novel electrode materials
with high theoretical specific capacity that can maximize the energy density of LIBs [1,2]. Furthermore,
lithium/sulfur (Li/S) batteries exhibit significant advantages, such as the natural abundance and
eco-friendly nature of sulfur, and high theoretical specific capacity of 1672 mAh g−1. The energy
density of 2600 Wh kg−1 for Li/S batteries is five times larger than the traditional LIBs [3,4].

Despite these advantages, a number of challenges hinder the successful realization of Li/S
batteries. Firstly, the electrically insulated sulfur and the deposition of final discharge product
Li2S result in inefficient cathode material utilization and poor rate capability. Secondly, the high
solubility and the shuttle effect of polysulfide intermediates lead to an irreversible capacity loss
during charge/discharge cycling. Thirdly, the volumetric changes of the sulfur cathode during the
charge/discharge process disrupt the integrity of composite electrode and result in loss of electrical
contact [5]. These issues limit the practical utilization of sulfur as an alternative cathode material.
Particularly, the volumetric changes, associated with sulfur, cause the shuttle effect and lead to the
poor cyclic performance of Li/S batteries [6–8].

In order to alleviate the aforementioned issues, various strategies have been proposed.
The physical or chemical encapsulation of sulfur into a porous and conductive material is a widely
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employed approach to circumvent the volumetric changes and enhance the electrical conductivity of
composite electrode [9]. Graphene is considered as an ideal sulfur host due to its chemical stability, large
surface area, superior electrical conductivity and desirable mechanical properties [10]. Various research
groups have shown promising results of sulfur/graphene composite cathodes for lithium/sulfur,
however, the cyclic stability is not up to the mark yet. The main problem with graphene/sulfur
composites lies with the weak interactions related to physical absorption. Hence, hybrid host structures,
such as carbon/polymer composites [11] and carbon/metal oxide composites [12], are designed to
enhance the physical interactions between sulfur and host material.

Recently, conducting polymers, such as polypyrrole (PPy), polyacrylonitrile and polythiophene,
have garnered significant research attention due to their excellent electrochemical stability and ability
to form favorable composite morphologies [13–15]. Moreover, owing to the simple synthesis process
and the high absorption ability, the PPy is considered as a promising matrix to host sulfur for cathode
applications [16].

Herein, we have successfully developed a facile and efficient template-assisted route to synthesize
a novel three-dimensional (3D) hierarchical sulfur/polypyrrole/porous graphene (S/PPy/PG)
composite, which deliver the excellent electrochemical performances as cathode for Li/S batteries.
The study provides a mechanistic insight and opens up avenues for further research in Li/S batteries.

2. Materials and Methods

2.1. Material Synthesis

Graphene was obtained by the modified Hummers method [17]. Porous graphene (PG) was
synthesized via a simple hydrothermal method and template etching process, which used commercial
silica particles (diameter of about 300 nm) as a hard template. To fabricate PG, 0.5 g of silica particles
was immersed in 2.0 g of a homogeneous ethanol solution containing 0.5 g of resol and 0.5 g of triblock
copolymer EO20PO70EO20 (P123) for 1 h. The impregnated composites were removed from the solution
and kept at room temperature for 6 h, followed by heating at 100 ◦C for 24 h. The samples were then
calcined in N2 at 350 ◦C for 2 h at a heating rate of 1 ◦C min−1 to remove the soft template, and heated
further to 900 ◦C at a rate of 5 ◦C min−1, which was followed by a 2 h soaking for further carbonation.
Finally, PG was obtained after the silica particles were removed by washing with HF solution (5 wt. %,
24 h). With FeCl3 as an oxidant, the polypyrrole was prepared by using the chemical oxidation method.
The method by in-situ polymerization of pyrrole in the presence of porous graphene can be used to
prepare the polypyrrole-coated porous graphene (PPy/PG) composite [18]. Figure 1 illustrates the
synthesis processs of S/PPy/PG composite schematically.Nanomaterials 2018, 8, x FOR PEER REVIEW  3 of 10 
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In a typical reaction, 0.1 g PG was added into a 45 mL mixture with methanol and acetonitrile
(1:1 vol) for sonicating for 3 h. After adding 0.3 g pyrrole, the mixture was stirred for 1 h. Subsequently,
we have added 20 mL of 0.5 mol L−1 FeCl3 aqueous solution and the solution sonicated for 3 h.
The PPy/PG was obtained by centrifuging at 3000 rpm for 0.5 h. The product was cleaned with
deionized water (DI) water and methanol, followed by vacuum drying at 80 ◦C for 24 h.

To obtain S/PPy/PG composites, 0.3 g PPy/PG was added into 6 g nano-sulfur aqueous
suspension (US Nanomaterials, 10 wt. %) in agate milling bowl (50 mL) and mixed well using
ball-milling at 800 rpm for 5 h. The ball-milling was performed in a planetary ball mill (QM-3SP04,
Nanjing, China) under ambient conditions. Then, the ball-milled suspension was dried at 75 ◦C for
24 h to remove the residual solvent. Finally, the obtained mixture was heat-treated at 155 ◦C for 2 h
under Ar flow to sulfur be loaded in the PPy/PG composites to form S/PPy/PG.

2.2. Material Characterization

The sample was investigated by using Fourier transform infrared spectroscopy (FTIR, TENSOR
27, Bruker Co., Billerica, MA, USA). The field-emission scanning electron microscopy (FE-SEM,
S-4800, Hitachi Ltd., Tokyo, Japan) could be used to characterize surface morphology and chemical
composition, equipped with an energy dispersive spectrometer (EDS). The transmission electron
microscopy (TEM, JEM-2100F, JEOL, Akishima-shi, Tokyo, Japan) could analysis the high-resolution
surface structure. The crystalline phases were measured by X-ray diffraction (XRD) analysis (D8 Focus,
Bruker, Karlsruhe, Germany). The X-ray photoelectron spectroscopy (XPS, K-Alpha, Thermo Scientific,
Waltham, MA, USA) could analysis surface composition. The thermogravimetric analysis (TGA,
SDT Q600, TA Instruments-Waters LLC, New Castle, DE, USA) was carried out to assess the weight
percentage of components under N2 atmosphere in the range of 25–800 ◦C.

2.3. Electrochemical Characterization

The electrochemical performances of the S/PPy/PG cathodes for Li/S batteries were carried out.
The electrodes were obtained by mixing the S/PPy/PG composite (80 wt. %), polyvinylidene fluoride
(PVDF) binder (10 wt. %) and Ketjen Black (10 wt. %) via using 1-methyl-2-pyrrolidinone (NMP).
The homogeneously slurry was pasted onto the carbon-coated aluminum foil and then dried at 60 ◦C
for 12 h. The sulfur loading of ~2 mg cm−2 was achieved. The prepared electrode served as a cathode,
the pure lithium metal served as the anode and the microporous polypropylene served as a separator.
The galvanostatic charge-discharge testing was carried out to assess the Li-storage capacity and cyclic
performance of the S/PPy/PG composite. The charge/discharge curves were recorded between 1.5 V
and 3.0 V vs. Li/Li+. The cyclic voltammetry (CV) was measured with an electrochemical workstation
(VersaSTAT 4, Princeton Applied Research, Oak Ridge, TN, USA) at scan rate of 0.1 mV s−1.

3. Results and Discussion

Figure 2a delivers the XRD patterns of PG sample has shown typical graphene peaks at 24◦

and 43◦, corresponding to the (002) and (100) planes, respectively [19]. After in-situ polymerization
of pyrrole monomer on PG surface and carbonization process, the position of these peaks did not
exhibit a significant change, which indicates that the PPy has been uniformly distributed on PG surface.
After further sulfur loading, the XRD patterns of S/PPy/PG composite exhibited typical sulfur peaks,
indicating that most of the sulfur has been diffused into the cavities of PPy/PG and homogeneously
dispersed in fabricated composite [20].

The XPS analysis of S/PPy/PG composites was carried out to confirm the elemental composition
and results are shown in Figure 2b–d. In high-resolution C 1s XPS spectra (Figure 2b), the distinct
peaks of C–C, C–S, C–N, C–O and C=O are shown. The C–C peak at around 284.2 eV corresponds to
the carbon bond in PPy, and the C–C peak located at 284.7 eV confirms the presence of carbon bond in
PPy and PG. In addition, the weak intensity ratio of C–O/C–C peaks demonstrates the reduction effect
in PG samples [21]. The high-resolution N 1s spectrum (Figure 2c) reveals the pyridinic-N (399.7 eV)
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and pyrrolic-N (400.4 eV), respectively [22]. In Figure 2d, the peaks at 164.1 and 165.3 eV represent the
S–O bonds, indicating a interaction between sulfur and PG in the S/PPy/PG composite. As a result,
the nitrogen of PPy, which is coated on the PG surface, and the oxygen-containing functional groups of
PG effectively riveted the sulfur onto the surface of S/PPy/PG. Owing to this beneficial phenomenon,
the electrochemical performance of S/PPy/PG composite electrodes has been enhanced.
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from core level of (b) C 1s, (c) N 1s and (d) S 2p from S/PPy/PG composite.

Figure 3 presents the FTIR spectra of PPy/PG and S/PPy/PG composites. It can be clearly
observed that the characteristic bands of the hybrid composites are corresponding to the published
literature. The absorption bands, corresponding to O–H stretching at 3500 cm−1 and symmetric
and asymmetric stretching of C–H at 2920 and 2901 cm−1, respectively, confirm the presence of PG
in PPy/PG and S/PPy/PG composites. The presence of graphene was observed by C–C skeleton
vibration of carbon ring, which has shown a characteristic band at 1562 cm−1. The characteristic pyrrole
ring vibrations were observed at 1548 cm−1 and 1460 cm−1. The peaks located at 1092 cm−1 and
1308 cm−1 correspond to =C–H in-plane vibrations and the peak at 1162 cm−1 refers to the characteristic
C–N stretching vibrations [23]. In addition, PPy/PG and S/PPy/PG composites have shown that
sulfur did not react with PPy and PG during the loading process. The decreased bands intensity in
S/PPy/PG composite can be ascribed to the decrease in PPy content. These results confirm that the
PPy/PG hybrid architectures have been successfully prepared via in-situ chemical polymerization.

As shown in Figure 4a–c, PG exhibits a 3D hierarchical porous structure, which processes a pore
diameter of about 300 nm. The adsorption of pyrrole monomers on PG surface resulted from π-π
interaction, hydrogen bonding and Van der Waals interactions, which served as an anchor for further
polymerization. After sulfur loading, the morphology of PPy/PG did not show a significant change,
indicating that a large amount of sulfur has been loaded between the pores of the PPy/PG and a smaller
amount has been attached to the surface. The elemental mapping (Figure 4d) confirms the highly
uniform dispersion of sulfur, PG and PPy in the S/PPy/PG composites. As shown in the TEM images
(Figure 4e,f), the structure and morphology of PPy/PG composites remained same, which indicates
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that PPy has been formed and fixed on PG surface after polymerization. As sulfur is heavier than
graphene and PPy, the darker region in TEM image can be ascribed to sulfur, as shown in Figure 4g.
Due to the unique hybrid structure of a highly porous composite, which can provide a large interfacial
area between electrode and electrolyte to buffer volumetric changes, the Li/S batteries with S/PPy/PG
composite cathodes have exhibited a remarkable rate capacity and excellent cycling stability.
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(f) PPy/PG and (g) S/PPy/PG composite.
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The content of sulfur in the S/PPy/PG composite was estimated by TGA in Figure 5, which had
a rapid weight loss during 25–300 ◦C with a remaining mass of 37.84%, which can be attributed to
the loss of S and thermal decomposition of PPy. The weight loss of PPy was 7.66% in the range of
25–300 ◦C. The sulfur content of S/PPy/PG composite (X) was calculated from the given formula:

62.16% = X% + (100% − X%) × 7.66%

The sulfur loading was found to be 59%.
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Figure 5. TGA curves of sulfur, PPy/PG and S/PPy/PG composite.

The initial three CV curves for the S/PPy/PG electrode are shown in Figure 6. During the cathodic
sweep, two typical peaks are located at 2.25 and 2.0 V, corresponding to the transformation of sulfur
to polysulfides (Li2Sn, 4 ≤ n ≤ 8) and finally to Li2S2 and Li2S, respectively [24]. In the anodic scan,
one major peak was observed at about 2.5 V, revealing the oxidation of sulfides to sulfur [25]. We have
not observed any peak shift or the emergence of new peaks during further cycling, suggesting excellent
electrochemical stability due to the hybrid porous structure of electrode [26].
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Figure 7 shows the galvanostatic charge-discharge curves of the S/PPy/PG composites at 0.1 C.
Two reduction plateaus, consistent with CV curves, were observed in the discharge process. The voltage
plateau at 2.3 and 2.0 V are corresponded to the formation of soluble polysulfides and reduction of
soluble polysulfides to Li2S2 or Li2S, respectively [27]. In addition, the second flat plateau suggests a
uniform formation of Li2S [28]. In the 50th, 100th, 150th and 200th cycles, the discharge process exhibits
the similar voltage plateaus, which indicates the excellent stability of the fabricated composites.
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Furthermore, the S/PPy/PG electrodes have demonstrated excellent cycling stability at 0.1 C, and
rate performance. Figure 8 presents the cyclic stability of S/PPy/PG electrodes at 0.1 C. The initial
specific discharge capacity of 1020 mAh g−1 and the capacity retention of 78.6% after 200 cycles
are obtained for the S/PPy/PG composite, which corresponds to a low fade rate of 0.1% per cycle.
In addition, the coulombic efficiency of S/PPy/PG electrode remained ~100% during charge/discharge
cycling, which indicates that the hybrid core-shell and 3D hierarchical porous structure of S/PPy/PG
suppresses the shuttle effect.

Nanomaterials 2018, 8, x FOR PEER REVIEW  7 of 10 

 

Figure 7 shows the galvanostatic charge-discharge curves of the S/PPy/PG composites at 0.1 C. 
Two reduction plateaus, consistent with CV curves, were observed in the discharge process. The 
voltage plateau at 2.3 and 2.0 V are corresponded to the formation of soluble polysulfides and 
reduction of soluble polysulfides to Li2S2 or Li2S, respectively [27]. In addition, the second flat 
plateau suggests a uniform formation of Li2S [28]. In the 50th, 100th, 150th and 200th cycles, the 
discharge process exhibits the similar voltage plateaus, which indicates the excellent stability of the 
fabricated composites. 

0 500 1000 1500

2

3

 1st     cycle
 50th   cycle
 100th cycle
 150th cycle
 200th cycle

Capacity/ mAh g-1

V
ol

ta
ge

/ V

 

Figure 7. Charge-discharge profiles of S/PPy/PG composite electrode for the 1st, 50th, 100th, 150th 
and 200th cycles at 0.1 C. 

Furthermore, the S/PPy/PG electrodes have demonstrated excellent cycling stability at 0.1 C, 
and rate performance. Figure 8 presents the cyclic stability of S/PPy/PG electrodes at 0.1 C. The 
initial specific discharge capacity of 1020 mAh g−1 and the capacity retention of 78.6% after 200 cycles 
are obtained for the S/PPy/PG composite, which corresponds to a low fade rate of 0.1% per cycle. In 
addition, the coulombic efficiency of S/PPy/PG electrode remained ~100% during charge/discharge 
cycling, which indicates that the hybrid core-shell and 3D hierarchical porous structure of S/PPy/PG 
suppresses the shuttle effect. 

0 100 2000

500

1000

0

20

40

60

80

100

D
is

ch
ar

ge
 c

ap
ac

ity
/ m

A
h 

g-1

Cycle number

C
ou

lo
m

bi
c 

ef
fic

ie
nc

y/
 %

 
Figure 8. The cyclic performance of S/PPy/PG composite electrode at 0.1 C. 

Figure 9 shows the first ten charge/discharge cycles were carried out at 0.1 C, followed by a 
stepwise increase towards the higher current densities. The S/PPy/PG composite electrode delivered 
the specific capacity of 927, 805, 661, 566 and 477 mAh g−1 at 0.1, 0.2, 0.5, 1 and 2 C, respectively. Once 
the current density was returned to the lower value of 0.1 C, the discharge capacity of 816 mAh g−1 is 

Figure 8. The cyclic performance of S/PPy/PG composite electrode at 0.1 C.

Figure 9 shows the first ten charge/discharge cycles were carried out at 0.1 C, followed by a
stepwise increase towards the higher current densities. The S/PPy/PG composite electrode delivered
the specific capacity of 927, 805, 661, 566 and 477 mAh g−1 at 0.1, 0.2, 0.5, 1 and 2 C, respectively. Once
the current density was returned to the lower value of 0.1 C, the discharge capacity of 816 mAh g−1
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is recovered, presenting the excellent rate performance. Owing to the hierarchical mesoporous and
macroporous structure and enhanced conductivity of S/PPy/PG cathode, the higher capacity, excellent
cyclic performance and superior rate capability were realized.
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4. Conclusions

In summary, we have successfully obtained sulfur impregnated polypyrrole-coated porous
graphene (S/PPy/PG) composite, with a 3D hierarchical porous structure, which has demonstrated
superior cycling stability and rate performance. The PG sample was synthesized by using
template-assisted hydrothermal process and in-situ chemical polymerization of pyrrole monomer was
carried out, which resulted in PPy-deposited PG surfaces. Furthermore, the S/PPy/PG composite
cathode has shown an excellent cyclic stability, corresponding to a reversible capacity of 802 mAh g−1

after 200 cycles. The study provides a novel route to synthesize 3D hierarchical porous network
structure and opens up avenues for further research in the area of next-generation Li/S batteries.
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