

1

Supplementary material for

2 Two Dimensional β-InSe with Layer-Dependent

³ **Properties: Band Alignment, Work Function and**

4 **Optical Properties**

David K. Sang ^{1,2}, Huide Wang ¹, Meng Qiu ¹, Rui Cao ¹, Zhinan Guo ^{1,*}, Jinlai Zhao ^{1,2}, Yu Li ^{2,*},
Quanlan Xiao ¹, Dianyuan Fan ¹ and Han Zhang ^{1,*}

¹ Shenzhen Key Laboratory of Two Dimensional Materials and Devices, Shenzhen Engineering Laboratory
 of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for

9 Optoelectronics Science and Technology, College of Optoelectronic Engineering, Shenzhen University,

- 10 Shenzhen 518060, China; dks@szu.edu.cn (D.K.S.); wanghuide@szu.edu.cn (H.W.); qiumeng@szu.edu.cn
- 11 (M.Q.); caorui@szu.edu.cn (R.C.); zhaojl@szu.edu.cn (J.Z.); xiaoql@szu.edu.cn (Q.X.); fandy@cae.cn (D.F.)
- ² College of Materials Science and Engineering, Shenzhen University, Shenzhen Key Laboratory of Special
 Functional Materials, Shenzhen 518060, China
- 14 * Correspondence: guozhinan@szu.edu.cn (Z.G.); liyu@szu.edu.cn (Y.L.); hzhang@szu.edu.cn (H.Z.)
- 15 Received: 23 November 2018; Accepted: 27 December 2018; Published: date

16

Figure S1: Electronic band structures of β-InSe monolayer (1L), few-layer (2L to 9L) and bulk β-InSe
extracted from GGA-PBE functional calculations. The green dashed line is Fermi energy level set to
0.0 eV.

22

23

Figure S2: Calculated total density of states (TDOS) and partial density of states (PDOS) of β -InSe monolayer (1L), and few layer (2L to 9L) and bulk β -InSe based on GGA-PBE functional. The green dashed line is Fermi energy level set to 0.0 eV.

Table S1: Tabulation of band gap energy values extracted from different functional calculations of β InSe monolayer (1L), few-layer (3L and 5L) and bulk β-InSe.

Number of layer (L)	GG-PBE (eV)	optB86b-vdW (eV)	optPBE-vdW (eV)	HSE06 (eV)
	2.02	(01)	(01)	2.04
1	2.02	1.97	1.98	2.84
3	1.16	1.05	1.84	1.98
5	0.950	0.894	0.987	1.84
Bulk β-InSe	0.674	0.685	0.705	1.39

26 27

Table S2: Tabulation of band gap energy values extracted from DFT calculations of β -InSe monolayer (1L), few-layer (2L to 9L) and bulk β -InSe based on GGA-PBE.

Number of layer (L)	Band gap values (eV)	Number of layer (L)	Band gap values (eV)
1	2.02	6	0.897
2	1.40	7	0.861
3	1.16	8	0.840
4	1.03	9	0.817
5	0.950	Bulk β-InSe	0.674

2 of 5

29Figure S3: (a) GGA-PBE band gap energies of few-layer of β-InSe as a function of number of layer, (b)30electronic band structure of monolayer β-InSe extracted from GGA-PBE calculations, band dispersion31line with red is for band with SOC ($E_g = 1.40 \text{ eV}$) and with black is for band without SOC ($E_g = 1.42$ 32eV). The green dashed line is Fermi energy level set to 0.0 eV.

Table S3: Tabulation of work function values of β-InSe monolayer (1L), few-layer (2L to 9L) and bulk
 β-InSe.

Number of layer (L)	Work function (eV)	Number of layer (L)	Work function (eV)
1	5.22	6	5.00
2	5.05	7	4.99
3	5.02	8	4.99
4	5.01	9	4.98
5	5.00	Bulk β-InSe	4.77

37

38

Figure S4: (a) Calculated phonon band dispersion structure of β -InSe a long high-symmetry direction Γ -Z-M-A- Γ (b) Total potential energy fluctuation of β -InSe monolayer from 500 to 4000 fs during AIMD simulations at the temperature of 300K.The inset show the snapshot at 1 ps

Figure S5: Calculated real part of the dielectric function along x and z direction for β -InSe monolayer (1L), few-layer (2L to 9L) and bulk β -InSe.

Figure S6: Calculated imaginary part of the dielectric function along x and z directions for β -InSe monolayer (1L), few-layer (2L to 9L) and bulk β -InSe.

46 Figure S7: Calculated refractive index (n) along x and z directions for β-InSe monolayer (1L), few47 layer (5L) and bulk β-InSe.