Supplementary Materials

Impact of Quantum Dot Surface on Complex Formation with Chlorin e_{6} and Photodynamic Therapy

Artiom Skripka ${ }^{1}$, Dominyka Dapkute ${ }^{1,2}$, Jurga Valanciunaite ${ }^{1}$, Vitalijus Karabanovas ${ }^{1,3}$ and Ricardas Rotomskis ${ }^{1,4 *}$
1 Biomedical Physics Laboratory, National Cancer Institute, P. Baublio st 3b, LT-08406, Vilnius, Lithuania
${ }^{2}$ Life Science Center, Vilnius University, Sauletekio ave. 7, LT-10223 Vilnius, Lithuania; artiom.skripka@emt.inrs.ca (A.S.); dominyka.dapkute@nvi.lt (D.D.); Jurgaval7@gmail.com (J.V.); Vitalijus.Karabanovas@nvi.lt (V.K.)
${ }^{3}$ Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10221, Vilnius, Lithuania
4 Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio ave. 9, LT10222, Vilnius, Lithuania
* Correspondence: ricardas.rotomskis@nvi.lt; Tel.: +370-5-219-0908

Spectral properties of QDs

Figure S1. Normalized absorption and emission spectra of QDs functionalized with either phospholipids (L-QDs) (A) or amphiphilic polymer (P-QDs) (B) and bearing amine or carboxyl surface charge.

Fluorescence excitation of Ce_{6}

Figure S2. Normalized fluorescence excitation spectrum of Ce_{6} in phosphate buffer ($\mathrm{pH}=7$), measured at emission wavelength of 660 nm .

Complex equilibration dynamics

Figure S3. Temporal change of the QD and $\mathrm{Ce}_{6} \mathrm{PL}$ intensity in the QD-Ce6 complex after its initial formation. (A) - Represents the normalized PL intensity changes in L-QD-Ce6 complex composed out of amine/carboxyl bearing L-QDs; (B) - in case of amine/carboxyl bearing P-QDs.

Influence of n and $\boldsymbol{\kappa}^{2}$ on R_{0} and r

C

Figure S4. Change of the Förster distance R_{0} (top) and the center-to-center distance between QDs and $\mathrm{Ce}_{6} r$ (bottom) as a function of the refractive index of the medium (\mathbf{A}; when $\kappa^{2}=2 / 3$) or orientation factor $\kappa^{2}(\mathbf{B}$; when $n=1.33)$. Center-to-center distances between the different QDs and Ce_{6} were averaged taking values for different amounts (m) of Ce_{6}. Errors of r are represented by the shaded areas. (C) - schematic representation of the Ce_{6} in the amphiphilic coating of QDs and the possible center-to-center separation between the two.

