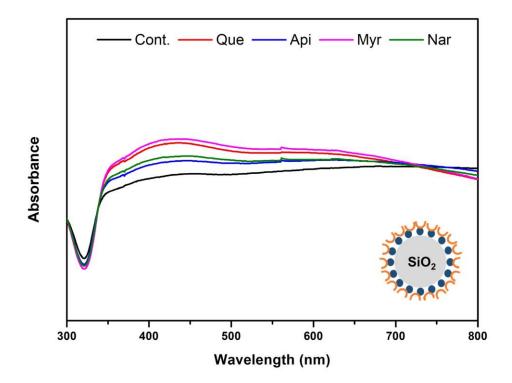

Mono-6-Deoxy-6-Aminopropylamino-β-Cyclodextrin on Ag-Embedded SiO₂ Nanoparticle as a Selectively Capturing Ligand to Flavonoids


Eunil Hahm ¹, Eun Ji Kang ¹, Xuan-Hung Pham ¹, Daham Jeong ¹, Dae Hong Jeong ², Seunho Jung ¹ and Bong-Hyun Jun ^{1,*}

- ¹ Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- ² Department of Chemistry Education and Center for Educational Research, Seoul National University, Seoul 08826, Korea
- * Correspondence: bjun@konkuk.ac.kr; Tel.: +82-2-450-0521

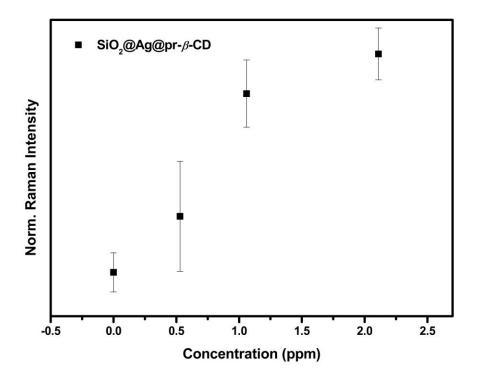

Received: 11 August 2019; Accepted: 17 September 2019; Published: date

Figure S1. ATR-FTIR spectra of SiO₂@Ag, SiO₂@Ag@pr- β -CD. These materials were measured in a solid state.

Figure S2. UV-visible absorption spectra of SiO₂@Ag@pr-β-CD-added flavonoids - quercetin (Que), myricetin (Myr), apigenin (Api) and naringenin (Nar).

Figure S3. Normalized Raman intensity of SiO₂@Ag@pr- β -CD according to the concentration of quercetin (Que) at 636 cm⁻¹.