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Abstract: Over the past decade, lead halide perovskites have emerged as one of the leading
photovoltaic materials due to their long carrier lifetimes, high absorption coefficients, high tolerance
to defects, and facile processing methods. With a bandgap of ~1.6 eV, lead halide perovskite solar cells
have achieved power conversion efficiencies in excess of 25%. Despite this, poor material stability along
with lead contamination remains a significant barrier to commercialization. Recently, low-dimensional
perovskites, where at least one of the structural dimensions is measured on the nanoscale, have
demonstrated significantly higher stabilities, and although their power conversion efficiencies are
slightly lower, these materials also open up the possibility of quantum-confinement effects such as
carrier multiplication. Furthermore, both bulk perovskites and low-dimensional perovskites have
been demonstrated to form hybrids with silicon nanocrystals, where numerous device architectures
can be exploited to improve efficiency. In this review, we provide an overview of perovskite solar
cells, and report the current progress in nanoscale perovskites, such as low-dimensional perovskites,
perovskite quantum dots, and perovskite-nanocrystal hybrid solar cells.

Keywords: solar cells; perovskites; perovskite nanocrystals; perovskite quantum dots;
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1. Introduction

In the search of high-efficiency, low-cost solar cells, a multitude of new materials and architectures
are currently being explored. Over the past decade, organometal halide perovskites (OHPs) have
emerged as a highly promising photovoltaic material and have been demonstrated as the active layer in
perovskite solar cells (PSCs) with efficiencies over 25% for laboratory-based devices (~0.1 cm2) [1] and
around 10–15% in modules [2] and are recently being employed in high-efficiency tandem devices [3].
The performance of PSCs has seen a meteoric rise over the past decade and they are already comparable
with or superior to well-established photovoltaic technologies [1]. OHPs are attractive particularly
due to their ease of processing [4], large absorption coefficients [5], long carrier diffusion lengths [6],
low exciton binding energies [7], and low non-radiative recombination rates [8]. These properties
also make OHPs an attractive material for various other optoelectronic devices, such as light emitting
diodes [9], lasers [10,11], and photodetectors [12].
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OHPs have a perovskite crystal structure with the general stoichiometry ABX3 as shown in
Figure 1. The A-site is occupied by a monovalent cation e.g., methylammonium (MA, CH3NH3

+),
formamidinium (FA, CH3(NH2)2

+), Cs+ etc. The B-site is usually occupied by a Pb2+ divalent metal
cation and can be substituted by a similarly-sized divalent cation such as Sn2+. The X-site is usually
occupied by a halide anion e.g., I−, Cl−, Br−. OHPs with mixed cations and/or anions are now the
standard for high efficiency cells, particularly due to improved structural stability [13–15]. Their high
compositional tunability, whereby the bandgap can be easily modified through ion substitution [16]
and low-cost facile deposition procedures [17] makes OHPs excellent candidates for tandem solar
cells, where two materials of different bandgaps are employed in conjunction to absorb different
parts of the solar spectrum. OHPs can be employed either as the top cell in a tandem device (with
e.g., silicon, cadmium telluride, copper indium gallium diselenide etc. bottom cell) or in a stacked
perovskite–perovskite tandem device. The successful fabrication of tandem cells with OHPs has the
potential to achieve efficiencies in excess of 40% [3].
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While OHPs have demonstrated remarkable efficiencies in laboratory solar cells, there remains
significant challenges regarding long-term suitability and feasibility of commercialization [18]. OHPs are
extremely susceptible to moisture-induced degradation, and therefore devices must be fabricated in
controlled nitrogen atmospheres to avoid trapped moisture in the active layer. Furthermore, devices
must be sufficiently encapsulated to prevent external moisture ingress, and the fragility of OHPs
along with weak inter-layer adhesion may demand rigid glass substrates to avoid delamination or
fractures in the OHP. Even so, heat and light cycling can still induce degradation in encapsulated
devices due to thermal mismatch [19]. The use of encapsulants, which can be expensive, along
with rigid glass supports, makes OHPs less attractive due to increased costs [3]. It is therefore
highly desirable to develop perovskite materials which are stable and tolerant to moisture and other
environmental stresses.

Forming nanostructured OHPs (also referred to as low-dimensional OHPs) can be a potential
route towards increasing the stability. So far, various types of low-dimensional OHPs have been
demonstrated in solar cells, and typically show far superior stability to bulk OHPs [20–22]. This is
achieved particularly due to higher formation energies of the low-dimensional perovskite structure
and the possibility of encapsulating low-dimensional OHPs in long-chain polymers, essentially
providing a protective barrier to moisture [22]. However, carrier transport tends to be restricted in
nanostructured perovskites due to the presence of potential barriers within the nanostructured OHP,
while quantum confinement also tends to widen the bandgap towards values typically in excess of
2 eV. This therefore comes at a cost to the performance, with the best nanostructured OHPs performing
between 10–18% [20–24].

Considering the recent advances in nanostructured perovskites, here we will provide an insight
into the important developments and progress in photovoltaics. First, an introduction to the use of
bulk OHPs in solar cells will be provided while discussing the challenges and issues facing these
materials in order to provide a context for the recent direction towards nanostructured perovskites.
This review will then provide a perspective into nanostructured perovskite solar cells as a possible
route towards overcoming the issues pertaining to bulk OHPs. Furthermore, hybrid devices formed
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with OHPs and nanocrystals (NCs) will be discussed, along with high-stability metal oxide perovskite
nanocrystals. We hope this will provide the reader with a basis for understanding the current status of
PSCs and the potential opportunities of stable, low-dimensional perovskites.

2. Overview of Bulk Perovskite Solar Cells

PSCs were initially inspired by the dye-sensitized solar cell (DSSC), where simply replacing the
dye in a DSSC with an OHP immediately yielded efficiencies of ~3% [25]. The OHPs used were either
MAPbI3 or MAPbBr3, where MA is the small organic cation methylammonium (CH3NH3

+). Since the
liquid electrolyte, which is used in DSSCs as a redox mediator, dissolved the OHP, these devices had
very short lifetimes on the order of seconds. The rapid dissolution of the OHP was overcome by
replacing the liquid electrolyte with a polymer which did not dissolve the OHP. Subsequently, devices
were reported using the polymer spiro-MeOTAD for hole transport, quickly achieving efficiencies of
~10% with improved device lifetime [26,27]. It was demonstrated that electron and hole transport
occurs in the OHP, indicating that free-carriers are generated in the OHP with long diffusion lengths
and lifetimes, contrary to suspicion that photocarriers would be excitonic as for organic solar cells, and
therefore the sensitized architecture was in fact not necessary [26].

The main PSC device architectures are shown in Figure 2. The OHP is sandwiched between two
selective contacts, an electron transport layer (ETL) such as TiO2, and a hole transport layer (HTL)
such as spiro-OMeTAD. Metallic contacts are formed on either side of the transport layers: a window
contact is formed using a transparent conducting oxide (TCO) such as indium-doped tin oxide (ITO),
and a back contact is formed using either gold, silver, aluminum etc. The first architecture employed in
the research timeline was the sensitized architecture using a thick mesoporous layer of TiO2 (Figure 2a).
This was quickly replaced with bi-layer devices, where the mesoporous-TiO2 was reduced in thickness
and a thicker OHP layer was deposited to allow for greater absorption of light and longer crystalline
order with larger grain sizes (Figure 2b). A planar device architecture can also be used, with either n-i-p
configuration (Figure 2c) or p-i-n configuration (Figure 2d). The planar device eliminates the necessity
for the mesoporous TiO2 layer, further reducing fabrication costs and complexity. Planar devices show
greater potential for low-cost roll-to-roll printing of PSCs at low temperatures due to the elimination of
mesoporous-TiO2 which must typically be annealed at high temperatures during device fabrication
(~500 ◦C) for high-efficiency PCSs, and is therefore unattractive for large-scale production while
also eliminating the possibility of fabricating devices on flexible plastic substrates. Furthermore, the
high-temperature annealing of TiO2 is not suitable for the fabrication of tandem devices with silicon or
perovskite bottom cells since such high-temperature annealing process will damage the silicon bottom
cell [3]. Planar devices using an SnO2 electron transport layer can be fabricated via low-temperature
methods and demonstrate superior stability to mesoporous-TiO2 devices, however the best efficiency
of 21.6% is somewhat lower than mesoporous-TiO2 devices (25.2%) [1,28]. Since PSCs employing
mesoporous-TiO2 transport layers have shown greater efficiencies than planar devices thus far [29],
ideally low-temperature fabrication techniques should be developed for mesoporous-TiO2 transport
layers to enable their incorporation into tandem devices.
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2.1. Stability of Perovskite Solar Cells

While exceptional efficiencies have been demonstrated with Pb-based perovskites [13–15],
significant challenges exist such as poor stability, toxicity, and rate-dependent current-voltage hysteresis.
Stability is an important consideration when assessing commercialization viability of new materials
given that silicon solar cells can easily operate for >25 years, even when exposed to a broad range of
temperatures and intense solar irradiance. OHPs tend to degrade rapidly in open air conditions and
must be fabricated in controlled atmospheres to avoid moisture contamination. The rapid degradation
of MAPbI3 in open-air conditions is shown in Figure 3, where the majority of the MAPbI3 layer
degraded to PbI2 within 13 days [30]. Although the exact mechanism of degradation remains unclear;
it is generally understood that an intermediate phase is first formed via hydration of the OHP [31,32].
Considering the decomposition of MAPbI3, the hydration of MAPbI3 leads to its conversion to
MA4PbI6·2H2O and PbI2, followed by phase separation and the subsequent loss of MA, with the final
products being CH3NH3I, PbI2, and H2O [31]. The degradation has been shown first to occur at the
grain boundaries and is assisted by the presence of trapped charges which usually exist at defect sites,
surfaces, and grain boundaries [33]. Ions can easily migrate within OHPs, causing charge accumulation,
phase segregation, lattice distortions, and strain in the perovskite structure [34–38]. The degradation
of OHPs is enhanced under illumination, and degradation can be accelerated even under moderate
temperatures of ~60 ◦C [39,40]. Furthermore, I2, which is generated within the OHP due to exposure
to moisture, can easily migrate and leads to the self-sustaining and irreversible degradation of the
OHP [41]. The degradation of OHPs leads to the release of the gaseous products CH3NH2, HX, CH3X,
and NH3 (where X is a halide), and the release of these gases can be observed at temperatures below
70 ◦C [42].
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Due to the high susceptibility of OHPs to degrade when exposed to moisture, it is therefore
necessary to carefully control the atmosphere during fabrication. Entire device encapsulation is
necessary to prevent exposure to moisture and mechanical fractures. For encapsulated devices, the
formation of bubbles has been observed in the encapsulant layer due to the release of gaseous species.
Encapsulation prevents gaseous products from escaping, creating a thermodynamically enclosed
system which is expected to reduce the rate of degradation [42]. Encapsulation is therefore essential
for several reasons: to prevent the ingress of moisture; to prevent the release of gases; and to prevent
the release of toxic materials to the environment. However, due to the thermal expansion coefficient
mismatch between the various layers, including the encapsulant, temperature cycling of the PSC
(i.e., day and night temperature variations) can lead to significant delamination and device failure.
Careful selection of the encapsulant and various device layers is therefore necessary to minimize
delamination caused by temperature cycling. This eliminates the possibility of flexible, low-weight
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modules, and the low stability and Pb-contamination necessitates careful recycling of PSCs. In spite of
these measures, the question of whether the lifetime of OHPs can match silicon PV remains dubious.

2.2. Toxicity of Perovskite Solar Cells

Pb-containing OHPs’ decomposition results in the formation of Pb-halide compounds, metallic
Pb, and various carbonated molecules [43]. Although PSCs contain small amounts of Pb (~0.4 g/m2

for a 400 µm-thick OHP layer) [44], the harmful Pb-halides generated via degradation are highly
water-soluble and therefore pose a significant risk to the environment [45]. The contamination of Pb
can be addressed either by replacing Pb with other non-toxic elements or by stabilizing the structure
of the perovskite so as to avoid the formation of PbI2. Unfortunately, computational studies have
suggested that there is no viable alternative to Pb in PSCs to achieve the similarly high efficiencies
which are in excess of 20% [46]. The high efficiencies of OHPs is attributed to the favorable Pb2+ orbital
hybridization with I- and Br- halide ions which results in high absorption coefficients and long carrier
diffusion lengths [47]. Sn is a potential alternative to Pb, and whilst still toxic to animals and humans,
it is less harmful than Pb. [43] Sn-OHPs have been produced by the direct replacement of Pb with Sn,
but the best efficiency achieved to date is 7.14% [23]. In addition, the stability of Sn-based devices is
usually worse than Pb-OHPs due to the tendency of tin to easily oxidize from Sn2+ to Sn4+. This can
be mitigated to some extent by the addition of SnF2 and ethylenediammonium during fabrication to
inhibit the formation of Sn4+ [23,48]. While pure Sn-OHPs are unstable, the oxidation of Sn2+ becomes
less energetically favorable when less than 50% of the B-site in the perovskite structure is occupied by
Sn2+ (i.e., MAPb≥0.5Sn≤0.5I3) and the stability is significantly improved [49]. Notably, Zn, which is a 2+

ion with a slightly smaller ionic radius than Pb, has also been investigated for the partial replacement of
Pb and has demonstrated an improvement in the power conversion efficiency (PCE) for small amounts
of Zn (~1% to 5%). The introduction of Zn into MAPbI3 leads to the formation of larger grains which
are more homogeneous, and layers which are more compact and with fewer pinholes. This is achieved
through a lattice contraction induced by the smaller Zn ion, along with stronger coordination with the
organic cation, leading to a reduction in the amount of point defects [50–53]. However, this work only
serves to reduce Pb contamination without eliminating it entirely, and the contamination of toxic Pb
and Sn remains and degradation is still observed [49].

2.3. Hysteresis in PSCs

A common issue exhibited by nearly all PSCs is a hysteresis present during solar cell
characterization. Hysteresis, defined as the dependence of the state of a system on its history,
is frequently observed during current density-voltage (J-V) measurements, where a change in the
voltage scan direction between forward and backward results in a differing J-V response, as shown in
Figure 4a. A device without J-V hysteresis is shown in Figure 4b. The observed hysteresis is largely
attributed to ion mobility within the OHP [54–56], whilst other mechanisms have also been proposed,
see reference [57]. Hysteresis is problematic as it primarily introduces difficulties in accurately
measuring device performance, but can also be indicative of stability issues [41,58]. Recent work [13,15]
has shown that high-efficiency mesoscopic devices possess low hysteresis in the forward and backward
J-V scans with the same scan rates from 10 mV/s to 50 mV/s; however, hysteresis is still well observed
particularly for fast scans [56,59,60]. Selecting appropriate contacts and forming high-quality OHP
layers appears to negate most of the hysteresis observed during standard performance measurements
with slow scan speeds; however, the J-V character for fast scans is often unreported and ionic motion
and charge accumulation are still likely to be present in the perovskite layer. Furthermore, hysteresis
is often intensified as devices are scaled to active areas over 1 cm2, particularly due to issues with
controlling morphology when depositing OHPs over larger areas [61]. The hysteresis observed in
OHPs depends on various measurement conditions during the J-V characterization, in particular:
the voltage scan rate and scan range [56,62]; the delay time between applying the bias voltage and
measuring the current [63]; and the poling voltage prior to measurement [57]. Hysteresis has also
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been shown to vary with the grain size of the perovskite [57,64], the A-site cation [65], and device
architecture [62,63].
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permission from American Chemical Society, 2015. (e,f) Current decay after removing device from
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ref. [68], with permission from American Chemical Society, 2015.

The hysteresis is well-described by Figure 4c,d whereby the voltage is scanned forward and
backward in a stepwise fashion with different delay times between the steps: 1 s in Figure 4c and 0.1 s
in Figure 4d [67]. It is clear that at least two processes are involved: one is an ultrafast process which
leads to an almost instantaneous (microsecond) change in photocurrent, followed by a slower response
on the timescale of milliseconds to seconds. There is a large difference in the forward and reverse
J-V scans observed for a 0.1 s voltage step time: this arises because when the step speed is too fast,
the photocurrent is not able to stabilize and there is a remnant charge stored in the device. This was
further investigated and it was shown that there are at least two ways in which charge is stored
in OHPs (Figure 4e,f) [68]. After removing an OHP device from illumination, the photogenerated
current decayed from 180 mA/cm2 to less than 50 µA/cm2 within 50 µs (Figure 4e). This was followed
by a second, longer decay event which occurred over the next ~3 s (Figure 4f). Although the peak
current in the second decay event (~50 µA/cm2) accounted for less than 1% of the initial photocurrent
(~180 mA/cm2), the lifetime of the second current was far longer and therefore the total charge
associated with this slower decay was calculated to be ~50 times larger than the charge associated with
the initial microsecond-discharge event. Therefore, at least two types of capacitive electronic charges
were confirmed in OHPs: the first one is small (~0.2 µC cm−2) and likely due to charge trapping;
and the second one is much larger (~40 µC cm−2), which could be the result of mobile ions or dipole
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realignment [68]. Furthermore, it is also known that large differences in the carrier mobility of the
electron and hole transport layers can lead to charge accumulation resulting in hysteresis [68].

Understanding the origin and mechanism of hysteresis could lead to the improvement of the
performance and stability of PSCs. The main mechanisms which have been proposed to contribute to
the effect are: ion migration [56,67,69], charge trapping and accumulation [70,71], and polarization of
dipoles [57,62,72]. These mechanisms are represented in Figure 5 and are described briefly in order of
the legend:

1. Charge traps: Charges can become trapped at defects on surfaces or at grain boundaries and
induce recombination, reducing the photocurrent.

2. Ferroelectric dipoles: Some reports have indicated that OHPs such as MAPbI3 are ferroelectric,
and the polarization of domains would modify carrier transport through the perovskite, resulting
in the observed hysteresis [62,73–75].

3. Electrons and holes: Similar to charge trapping, electrons and holes can accumulate in transport
layers due to defects or imbalances in the carrier mobilities of the electron and hole transport layers.

4. Ion migration: Iodide ions and methylammonium ions can migrate to interfaces under applied
bias and alter the internal field reducing the efficiency of carrier separation.

5. Interfacial electrode polarization: A capacitive polarization may arise due to the accumulation of
charges or ions at interfaces and cause an energy barrier to carrier extraction.
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These processes may occur simultaneously, and each process will have a different impact on the
hysteresis depending on various parameters such as the device structure, interfacial quality, and the
properties of the perovskite layer (grain size, defect density, composition etc.), amongst others.

3. Nanostructured Perovskite Absorbers

3.1. Introduction

Non-toxic and/or stable materials with similar properties to bulk Pb-OHPs are a high priority
and are currently being explored, such as the replacement of Pb with Sn or Bi [23,77], lead-free
halide double perovskites [78], and low-dimensional materials [22]. The efficiencies of these solar
cells are often far lower than bulk Pb-OHPs and a large amount of development is still required.
Nanostructured perovskites include perovskite quantum dots, nanoparticles, nanosheets, nanorods,
and perovskites with nanoscale internal ordering. These materials are often termed low-dimensional
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perovskites (LDPs) and can generally be envisioned by reducing the bulk perovskite structure to the
nanoscale in at least one structural dimension.

Figure 6 shows schematically how a bulk perovskite with ABX3 structure transforms from a
three-dimensional perovskite (3DP) to an LDP. In 3DPs, i.e., the typical bulk perovskites used in
record-efficiency devices, each BX6

4− octahedra is connected along all three axes and is anisotropic. It is
rather important that this octahedral structure is mostly preserved since the orbital hybridization of B and
X sites is responsible for many of the favorable optoelectronic properties of OHPs. For two-dimensional
perovskites (2DPs), e.g., nanoplatelets and nanosheets, the BX6

4− octahedra is connected along two
axes and consists of 2D slabs of octahedra with the organic cation occupying the A-site in the voids
between slabs. Surrounding the nanosheets are organic ‘barrier’ molecules which prevent the sheets
from crystallizing into a larger 3D structure whilst also providing encapsulation and protection
against degradation. For one-dimensional perovskites (1DPs), e.g., nanowires and nanorods, the
BX6

4− octahedral network extends along only one axis and is encapsulated with organic barrier
molecules. For 1DPs and 2DPs, various organic barriers can be selected, and a wide range of choices
exist. Hydrophobic organic barriers can be selected which protect the structure against moisture.
For zero-dimensional perovskites (0DPs), the BX6

4− octahedra is disconnected in all directions and
consists of isolated octahedral clusters stabilized by a cationic sublattice. A distinction is often made
between 0DPs and quantum dots (QDs), where for a perovskite QD (PQD), the BX6

4− octahedra
remains connected in all three axes and the radius of the particle is below the Bohr exciton radius,
whereas for a 0DP each octahedra is completely disconnected from adjacent octahedra, as shown in
Figure 6.
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Low-dimensional materials can also be produced which are not strictly perovskites yet follow a
similar set of design rules; being based on a large heavy metal ion bonded ionically with halide ions,
and stabilized by a sublattice of 1+ cations: For example, B-site 3+ cations such as Bi3+ form B2X9

3−

bioctahedra instead of a BX6
4− octahedra for 2+ cations, forming the 0DP material (CH3NH3)3Bi2I9.

These materials, which can be produced very similarly to standard perovskites (i.e., from solution)
whilst also possessing similar properties, are discussed later. The perovskite term is used loosely to
describe these materials, as in some cases the perovskite structure is disturbed.

LDPs exhibit quantum confinement effects which are particularly noticeable through a widening
of the bandgap [22]. Although 3DPs already have a bandgap close to the optimum value of ~1.4 eV for
a single junction solar cell, a wider bandgap is advantageous for forming tandem devices or for indoor
photovoltaics [80]. Furthermore, quantum confinement effects introduce the possibility to reduce losses
via carrier multiplication which has already been demonstrated in CsPbI3 quantum dots [81] and in
the 0DP material (CH3NH3)3Bi2I9 [82]. The effective use of carrier multiplication in a single-junction
solar cell can potentially increase efficiency to ~44% [83], far beyond the Shockley-Queisser (SQ)
efficiency limit for a single junction cell of ~33% [84]. In addition, both 3DPs and LDPs are capable of
incorporating a low concentration of inorganic nanocrystals into their lattice to form internal energy
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band alignments which can be used to increase carrier collection and absorption. These hybrid devices
can potentially harvest a wide range of the solar spectrum through quantum confinement effects
without significantly altering the device architecture, and will be discussed later [85,86].

LDPs often exhibit excitonic behavior as carriers become localized. Since LDPs are often stabilized
with organic barriers or a cationic sub-lattice which behaves as an insulating spacer layer, this results
in a potential barrier surrounding the individual sheets, rods, or clusters. Carriers therefore become
localized on the sheets, rods, or clusters, which often inhibits carrier extraction. The strength of the
exciton binding energy is strongly dependent on the dimensionality, with 0DPs usually exhibiting the
highest exciton binding energies [87,88].

3.2. One- and Two-Dimensional Perovskites

Along with PQDs, perovskite nanosheets and nanorods are the most successful types of LDPs
demonstrating the highest efficiencies in photovoltaic devices. The main advantage of reduced
dimensionality is that the OHP can be encapsulated with a more stable long chain organic molecule
which reduces the rate of degradation. In reference [22] it was shown via simulations that the stability
of MAPbI3 perovskites can be improved by producing a 2D perovskite encapsulated by larger cations.
Further to the benefit of the protective ligands, the 2D perovskite structure has a higher formation
energy, which therefore yields a more stable perovskite material. A single 2D slab of the perovskite
structure, i.e., a monolayer, encapsulated with organic barrier, is termed n = 1, as shown in Figure 7.
The bandgap is strongly dependent on the number of perovskite slabs (n); as n increases, the bandgap
narrows and the strength of quantum confinement reduces, and the dimensionality tends towards
a quasi-2D structure (n > ~10), while for very large values of n the perovskite tends towards a
3D structure.
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Society, 2016

There are a very large number of organic molecules which can potentially be used as the barrier
layer, however thus far only a limited number of molecules have been investigated, e.g.: phenylethyl
ammonium (C8H9NH3, PEA) [22], benzyl ammonium (C6H5CH2NH3, BA) [89], 2-iodoethylammonium
(IC2H4NH3) [90], polyethylenimine ((C2H5N)n, PEI) [91], 2-thiophenemethylammonium (C5H7NS,
ThMA) [92], and 3-bromobenzylammonium iodide (BrC6H4CH2NH2.HI, 3BBA) [24]. The absorption
spectra of 2DPs is weakly associated with the selection of the barrier molecule; optical properties are
far more dependent on the n value [93]. As n tends towards lower values, the stability of the 2DP
increases [22], yet the device performance tends to decrease dramatically due to the widening of the
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band gap and the higher proportion of insulating barrier molecules which have a detrimental effect on
carrier transport. Whilst the high in-plane mobility of bulk OHPs is retained along the nanosheets and
nanorods, the transport between nanosheets/rods is restricted due to the potential barrier created by
the insulating organic barriers which reduces the overall carrier mobility [88]. However, this can be
mitigated somewhat by using shorter barrier molecules [94].

In reference [22], the MAPbI3 perovskite was reduced to a 2DP and a quasi-2DP structure using
PEA barriers with varying n values. A quasi-2DP with n = 40 was capable of achieving ~15% efficiency,
however the stability of quasi-2DPs is still rather poor. Reducing the n value to 6 provided high
stability, yet the efficiency fell towards ~5%. It is likely that the low efficiency was due to the disordered
nature of the sheets which are not aligned perpendicular to the contacts, inhibiting charge transfer.
This is shown schematically in Figure 8a. When nanosheets are oriented horizontally, i.e., parallel
to the contacts, the charge carrier transfer is restricted in the vertical direction, and charge carrier
extraction in inhibited because the long organic barriers separating the LDP sheets inhibit transfer
between the layers.
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parallel with the contacts resulting in low carrier mobility between the contacts and (b) sheets align
perpendicular to the contacts resulting in favorable out-of-plane mobility between contacts.

Higher efficiencies can be achieved by vertically orientating the inorganic sheets, as shown
schematically in Figure 8b, whereby charge transport is less restricted. If the nanosheets/rods are
orientated vertically, i.e., perpendicular to the contacts (out-of-plane), charge transport is predominantly
along the perovskite structure and carrier extraction is therefore far more efficient since carriers must
overcome fewer potential barriers. This was initially demonstrated in BA-capped 2DPs with n = 3
and the efficiency was increased to over 12% using a hot casting deposition technique to achieve
out-of-plane alignment of the 2D sheets [23]. However, these devices still showed rather poor stability
when exposed to 65% relative humidity without encapsulation, while fully encapsulated devices
demonstrated impressive stability. This has also been demonstrated in perovskite nanorods, with
an increase in efficiency from 1.74% to over 15% following out-of-plane alignment [92]. This was
achieved by using a methylammonium chloride (MACl) assisted film formation technique which
resulted in vertically aligned perovskite nanorods, demonstrating far improved stability over 3D
perovskite. Disordered (unaligned) 2DPs usually show significant hysteresis [95], which is likely due
to a bias-voltage induced charging effect caused by the insulating organic molecules and poor charge
transport when the 2DP sheets are not vertically aligned. However, the hysteresis is mostly eliminated
when the nanosheets are aligned out-of-plane with respect to the contacts since charge transport is less
restricted [23].

A problem which must be overcome in 2DPs is a stacking misalignment of the 2DP grains which
reduces carrier mobility. It was shown that even when 2DPs are aligned with favorable out-of-plane
alignment, stacking misalignments between grains restricts charge transfer between vertically aligned
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sheets [83]. In order to improve device performance, it is important to minimize stacking misalignment
between grains. In addition, it was recently demonstrated that it is essential to use LDPs with at
least n > 2, as it has been shown that exciton dissociation occurs within the nanosheets of 2DPs due
to the presence of lower energy states at the edges of the nanosheets which exit only for nanosheets
with n > 2 [96]. While these edge states are present for 2DPs with n > 2, for n ≤ 2, edge-state exciton
dissociation was not observed, and the device performance was significantly lower. These lower energy
states exist at the edge of 2DPs and provide a favorable energy pathway for excitons to dissociate
into free-carriers with longer lifetimes, which was demonstrated to significantly improve device
performance. This work demonstrated that it is imperative to synthesize 2DPs with at least n = 3 in
order to benefit from the favorable exciton dissociation mechanism, even though thinner nanosheets
(n ≤ 2) can provide higher stability.

Recent work demonstrated that mixed n value 2D perovskites can achieve both favorable carrier
transport and band alignment introduced via a unique nanostructuring of the 2D perovskite film,
achieving a PCE of 18.2% [24]. The introduction of the barrier molecule 3-bromobenzylammonium
iodide (3BBA) leads to the oriented growth of small n value 2D perovskites perpendicular to the
substrate (n ≈ 1–4), followed by the crystallization of large n value quasi-2D perovskites in the bulk of
the film, shown schematically in Figure 9a and the overall device structure in Figure 9b. This structure
also introduces a favorable band alignment as shown in Figure 9c whereby the larger bandgap of the
mixed low n value 2DPs provides a potential energy gradient driving carriers to the desirable extraction
contacts. This demonstrates the remarkable tunability that can be achieved through nanostructuring
perovskites to achieve favorable energy band alignment. The devices also showed impressive stability:
Unencapsulated devices stored in a dark oven between measurements under ≈40% relative humidity
retained 80% of the original PCE after 2400 h. The device could also be submerged underwater for 60 s
without any immediate negative effect on the efficiency. It was stipulated that the hydrophobicity due
to the presence of iodine in 3BBA results in the enhanced moisture durability of these 2DPs.In general,
2DPs have not been optimized yet via cation engineering to the same extent as 3DPs, which has led to
the high performance and improved stability of 3DPs today [13]. Recently, 5% Cs+ doping in a 2DP
demonstrated an efficiency increase from 12.3% to 13.7%, which was attributed to improved crystal
quality and low trap defects, increased grain size, and improved carrier transport [97]. Since most
2DPs with low n values show wide bandgaps, it is important to engineer 2DPs which absorb in the
visible spectrum. Material engineering and optimization as such demonstrates that there is still great
potential for work on improving the 2DPs’ material properties.

Finally, 2DPs may also find use in improving the stability of 3DPs by acting as a protective
capping layer. A 2DP was demonstrated as the capping layer in a 3DP solar cell and displayed
over 19% efficiency, along with improved stability over the 3DP alone [98]. Further work in this
area showed that the deposition of a hydrophobic 2D perovskite on top of a 3D perovskite not only
protects against moisture, but also improves carrier extraction. The formation of the 2D perovskite
on the surface of the 3D perovskite consumes detrimental and undesirable non-perovskite phases
present at the surface of the 3D perovskite and resulted in faster injection of holes into the HTL [99].
More recently, an ammonium salt post-treatment of a 3D OHP film increased the PCE from 20.5%
to 22.3% via the formation of a 1DP passivation layer [100]. Devices retained 95% of the initial PCE
after continuous illumination for 550 h. This area of work presents a route towards avoiding the
necessity for encapsulants in PSCs, therefore reducing costs and avoiding issues pertaining to thermal
expansion mismatch.

3.3. Zero-Dimensional Perovskites

Pb-based 0DPs have been previously studied but so far seem unsuitable for photovoltaics [101,102].
For example, when the typical perovskite MAPbI3 is transformed into a 0DP with the chemical formula
(CH3NH3)4PbI6, the structure is extremely unstable [101]. Alternatively, more stable inorganic Pb-based
0DPs can be produced such as Cs4PbBr6, however, the bandgap is very large: Pb- based 0DPs tend to
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have very large bandgaps which are unsuitable for photovoltaics, typically in the UV-range, irrespective
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Alternatively, Bi-based 0DPs have bandgaps closer to 2 eV and have been demonstrated as the
absorber in photovoltaic cells [86,103–105]. Bi, which is adjacent to Pb in the periodic table, has a similar
atomic radius to Pb yet with one additional valence electron yielding 3+ instead of 2+, resulting in a
B2X9

3− bioctahedral structure rather than the BX6
4− octahedral structure. These perovskite structures

have the formula A3B2X9, but can also be expressed as AB2/3X3, i.e., a metal-deficient perovskite.
Figure 10 shows the structure of a 0DP with the chemical formula (CH3NH3)3Bi2I9, where Bi2I9

3−

clusters are separated by a CH3NH3
+ cationic lattice. Here, CH3NH3

+ can be replaced with a range
of organic and inorganic cations. Whilst these materials are often referred to as ‘perovskites’, their
crystallographic structure is slightly different to the perovskite structure, whereby the BX6

4- octahedra
is instead replaced with a B2X9

3− bioctahedra.
Bi-0DPs have been studied and the best devices have achieved efficiencies of 1.64% [105].

These materials, with bandgaps of ~2 eV, generally exhibit high exciton binding energies (~300 meV)
and high effective masses for carriers [88]. Because of the excitonic nature of these materials with
quantum confinement effects, 0DPs have been shown to exhibit carrier multiplication [82]. However,
due to the high exciton binding energy, the rates of electron-hole recombination is high which limits
device performance. 0DPs also exhibit anisotropic carrier mobilities if the cluster is non-symmetrical
and/or if the spacing between clusters varies between planes [88]. It is therefore necessary to try to
overcome the high exciton binding energy and carrier transport issues by a range of possible methods,



Nanomaterials 2019, 9, 1481 13 of 28

such as modifying the cationic sub-lattice, using semiconducting polymers which enhance carrier
mobility between the clusters, or by forming hybrids with inorganic nanocrystals which assist in
exciton dissociation.
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(CH3NH3)3Bi2I9 solar cells can be processed and stored entirely in ambient conditions and have
demonstrated far superior stability to 3DPs, likely due to the formation of a native surface layer of
Bi2O3/BiOI which provides self-encapsulation of the perovskite [30]. This layer does not inhibit carrier
extraction, and is also likely responsible for the negligible hysteresis observed in these devices [86].
If 0DPs were employed as the wide-bandgap top cell in a tandem solar cell, their high stability can
provide encapsulation for the less-stable OHP bottom cell to prevent moisture ingress. Furthermore,
the absorption can be modified by incorporating optically active organic molecules or forming hybrids
with nanocrystals with suitable band alignment [86], and the large bandgap of 2 eV can be reduced to
values as low as 1.45 eV through doping and/or changing the A-site cation [106–108].

Sb-based 0DPs have also been demonstrated with the formula (CH3NH3)3Sb2I9 and have so far
achieved higher efficiencies than Bi-0DPs, with the best devices so far achieving 2.77% efficiency [109].
The higher efficiencies of these devices is likely due to the intrinsically lower exciton binding energy of
Sb-0DPs [110]. Since the bandgap of Sb-0DPs is still quite large (~1.9 eV), researchers have attempted
to lower the bandgap through Sn-doping, and successfully reduced the bandgap to 1.53 eV with 40%
replacement of Sb with Sn to form (CH3NH3)3Sb0.6Sn0.4I9. Doping with Sn increased the efficiency of
the devices from 0.57% (without Sn, bandgap = 2.0 eV) to 2.7% (40% Sn, bandgap = 1.53 eV). Since the
starting efficiency of the undoped Sb-0DP reference device was quite low (0.57%) compared to the
highest reported in the literature (~2.77%), it is likely that through device optimization of the Sn-doped
Sb-0DP will quickly lead to higher efficiencies in the near future, likely exceeding 5%. These Sn-doped
Sb-0DPs demonstrated impressive stability with no change in the XRD spectra after 15 days of exposure
to ambient conditions. Although inorganic 0DPs have also been produced with the formula Cs3Sb2I9

and Cs3Bi2I9, these devices tend to show very low efficiencies below 0.1% [111,112], likely due to
their large bandgaps and high exciton binding energy, and have therefore not been pursued to the
same extent.

3.4. Perovskite Quantum Dot Solar Cells

High exciton binding energies and inefficient charge transfer are significant issues associated with
LDPs which limit carrier extraction, therefore inhibiting device performance. This can potentially be
overcome in PQDs through close-packing with electronic coupling between QDs. Colloidal PQDs can
be readily synthesized from solution using organic capping molecules, such as oleic acid, oleylamine,
octadecene, etc. which prevent the perovskite from forming into a larger crystal [113]. These long chain
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molecules must be removed during device fabrication for efficient solar cell performance. However,
PQDs with organic A-site cations are often highly unstable, and it is therefore not possible to remove
these barrier molecules as they are essential for preventing rapid degradation. As discussed previously,
the issue of long chain organic barrier molecules in perovskite nanorods and nanosheets can be
overcome by aligning the sheets and rods perpendicular to the contacts, minimizing the number of
potential barriers that must be overcome by charge carriers. However, due to the spherical shape of
QDs, this type of favorable alignment is not possible, and researchers must therefore look towards
inorganic PQDs which do not require encapsulation in protective organic barriers or use a different
architecture [85,114].

All-inorganic perovskites can be formed by replacing the A-site with an inorganic cation, such as
Cs+, e.g., CsPbI3. Inorganic PQDs such as CsPbI3 are the most favorable perovskite material since the
bandgap of bulk CsPbI3 is the smallest of the inorganic perovskites (1.73 eV for the cubic phase) [115].
However, accessing the desired cubic phase of CsPbI3 is challenging: For bulk CsPbI3, the orthorhombic
phase is thermodynamically preferred at room temperature, but the large bandgap of 2.82 eV renders
orthorhombic CsPbI3 unsuitable for photovoltaics [115]. The cubic phase exhibits a more favorable
bandgap of 1.73 eV; however, this phase is unstable at room temperature. Forming CsPbI3 quantum
dots enabled researchers to achieve the cubic phase at room temperature, as the contribution of the
surface energy for CsPbI3 quantum dots was shown to retain the favorable cubic perovskite phase [114].

CsPbI3 PQD solar cells were fabricated with 10.77% efficiency [114]. These devices could be
fabricated at ambient conditions and showed impressive stability when stored in a desiccator, with no
decrease in performance after 60 days. However, when stored in relative humidity of 40–60% there was
a significant decrease in the device performance after just 2 days, although QD devices demonstrated
improved stability over bulk CsPbI3. Furthermore, CsPbI3 QD devices showed significant hysteresis,
likely due to difficulties associated with charge transfer between quantum dots, ion migration, and
charge trapping at QD surfaces.

These devices were later improved by a post treatment of the CsPbI3 QDs, and increased the
efficiency to 13.43%, as shown in Figure 11 [21]. This was achieved through efficient QD coupling
via a post-treatment of the film, allowing improved change transfer between the QDs in the film.
The post-treatment involved soaking the CsPbI3 QD thin film in a formamidinium iodide in ethyl
acetate solution for 10 s. The post-treatment creates a coating on the CsPbI3 QDs and does not alter
their nanocrystalline character. It was confirmed that the post-treatment improved the carrier mobility
from 0.23 to 0.50 cm2 V−1 s−1. However, the poor stability of CsPbI3 at ambient conditions has not yet
been addressed, and it is likely that these materials will require encapsulation. Alternatively, a Cs- salt
post-treatment was reported achieving PCE of 14.1% [116]. The Cs-salt treatment is performed after
the removal of ligands from the CsPbI3 QDs. When the ligands are removed, Cs vacancies are left
behind on the CsPbI3 QDs. These vacancies are filled by Cs via a Cs-salt post treatment, resulting in
improved free carrier mobility, lifetime, and diffusion length, as well as greater stability over untreated
CsPbI3 QDs.

One of the advantages of CsPbI3 QDs is the possibility of carrier multiplication, which has already
been demonstrated in CsPbI3 QDs with a high carrier multiplication quantum yield of 98% [81].
While the bandgap for quantum confined materials scales as Eg ~ 1

r where r is the radius, the rate
of Auger recombination scales as 1

r6 and therefore forming smaller QDs is more favorable for carrier
multiplication. The average radius of the QDs in this work was 5.75 nm and the exciton Bohr radius
for CsPbI3 QDs is 6 nm. The QDs are therefore in the weak quantum confinement regime, yet still
exhibited highly efficient carrier multiplication indicating that strong quantum confinement is not
necessary in these materials for carrier multiplication [81].



Nanomaterials 2019, 9, 1481 15 of 28
Nanomaterials 2019, 9, x FOR PEER REVIEW 15 of 28 

 

 
Figure 11. CsPbI3 quantum dot solar cells. (a) Schematic of the device structure, (b) cross-sectional 
scanning electron microscopy image, (c) current density-voltage scans under solar simulated light, 
(d) stabilized current at a constant voltage of 0.95 V, and (e) external quantum efficiency. Reproduced 
from ref. [21], with permission from AAAS, 2017. 

The band energy structure of the active layer can be tuned to achieve improved carrier extraction 
by using PQDs with varying condition band, valence band, and Fermi level positions. The sequential 
deposition of PQDs with varying band energy positions has been shown to improve carrier extraction 
[117] and is reproduced in Figure 12. A schematic of the sequential deposition of PQDs is shown in 
Figure 12a and the band energy positions of the PQDs studied in this work are shown in Figure 12b. 
PQDs were synthesized in the series CsxFA1-xPbI3 and PQD heterojunction devices were fabricated 
with the structure ITO/TiO2/PQDs I/PQDs II/spiro-MeOTAD/MoOx/Al. The best device performance 
was obtained using either Cs0.5FA0.5PbI3 or Cs0.25FA0.75PbI3 as the bottom layer and CsPbI3 on the top. 
Devices based on a Cs0.25FA0.75PbI3:CsPbI3 heterojunction were investigated further for optimization. 
Figure 12c shows the SEM cross section of the device and Figure 12d shows the effect of varying the 
thickness ratio of Cs0.25FA0.75PbI3:CsPbI3 on the EQE spectra. A ratio of 1:3 (Cs0.25FA0.75PbI3:CsPbI3) 
retained most of the short wavelength EQE contribution from CsPbI3 whilst also red-shifting the EQE 
onset slightly. Higher proportions of Cs0.25FA0.75PbI3 lead to a fall in EQE at shorter wavelengths, 
despite red-shifting the EQE onset more. Figure 12e shows that varying the bottom layer composition, 
i.e., by fabricating devices with the structure ITO/TiO2/CsxFA1-xPbI3/CsPbI3/spiro-MeOTAD/MoOx/Al 
for x = 0.25, 0.5 and 0.75 leads to a similar red-shift in the EQE as the bandgap of the CsxFA1-xPbI3 
PQDs is decreased. The J-V characteristics are shown in Figure 12f, and ratios of 1:3 and 2:2 achieve 
the highest PCEs, however due to the large hysteresis present in these devices, the SPO was also 
presented and revealed that devices with a 1:3 ratio of Cs0.25FA0.75PbI3:CsPbI3 achieved the highest 
SPO at 15.52%. Finally, bulk heterojunction architecture devices were also fabricated by mixing the 
PQDs. These devices did not exhibit the same enhanced performance confirming that a bi-layer 
heterojunction of PQDs is essential for achieving improved carrier collection. 

A summary has been provided in Table 1 comparing a selection of the most notable results since 
2018 for 0D, 1D, 2D and QD perovskites, as well as also including some of the notable heterojunctions 
formed between 3D perovskites and LDPs. This table also provides a summary of the stability of the 
solar cell devices, noting the storage conditions and the solar cell J-V measurement type (i.e. 
continuous or intermittent, where continuous measurements typically involve the device remaining 
under constant solar simulated light, whilst for intermittent measurements the device is removed 
from illumination and stored in specified storage conditions between measurements). 

 

Figure 11. CsPbI3 quantum dot solar cells. (A) Schematic of the device structure, (B) cross-sectional
scanning electron microscopy image, (C) current density-voltage scans under solar simulated
light, (D) stabilized current at a constant voltage of 0.95 V, and (E) external quantum efficiency.
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The band energy structure of the active layer can be tuned to achieve improved carrier
extraction by using PQDs with varying condition band, valence band, and Fermi level positions.
The sequential deposition of PQDs with varying band energy positions has been shown to improve
carrier extraction [117] and is reproduced in Figure 12. A schematic of the sequential deposition of
PQDs is shown in Figure 12a and the band energy positions of the PQDs studied in this work are shown
in Figure 12b. PQDs were synthesized in the series CsxFA1-xPbI3 and PQD heterojunction devices
were fabricated with the structure ITO/TiO2/PQDs I/PQDs II/spiro-MeOTAD/MoOx/Al. The best
device performance was obtained using either Cs0.5FA0.5PbI3 or Cs0.25FA0.75PbI3 as the bottom layer
and CsPbI3 on the top. Devices based on a Cs0.25FA0.75PbI3:CsPbI3 heterojunction were investigated
further for optimization. Figure 12c shows the SEM cross section of the device and Figure 12d
shows the effect of varying the thickness ratio of Cs0.25FA0.75PbI3:CsPbI3 on the EQE spectra.
A ratio of 1:3 (Cs0.25FA0.75PbI3:CsPbI3) retained most of the short wavelength EQE contribution
from CsPbI3 whilst also red-shifting the EQE onset slightly. Higher proportions of Cs0.25FA0.75PbI3

lead to a fall in EQE at shorter wavelengths, despite red-shifting the EQE onset more. Figure 12e
shows that varying the bottom layer composition, i.e., by fabricating devices with the structure
ITO/TiO2/CsxFA1-xPbI3/CsPbI3/spiro-MeOTAD/MoOx/Al for x = 0.25, 0.5 and 0.75 leads to a similar
red-shift in the EQE as the bandgap of the CsxFA1-xPbI3 PQDs is decreased. The J-V characteristics
are shown in Figure 12f, and ratios of 1:3 and 2:2 achieve the highest PCEs, however due to the large
hysteresis present in these devices, the SPO was also presented and revealed that devices with a
1:3 ratio of Cs0.25FA0.75PbI3:CsPbI3 achieved the highest SPO at 15.52%. Finally, bulk heterojunction
architecture devices were also fabricated by mixing the PQDs. These devices did not exhibit the same
enhanced performance confirming that a bi-layer heterojunction of PQDs is essential for achieving
improved carrier collection.

A summary has been provided in Table 1 comparing a selection of the most notable results since
2018 for 0D, 1D, 2D and QD perovskites, as well as also including some of the notable heterojunctions
formed between 3D perovskites and LDPs. This table also provides a summary of the stability of the
solar cell devices, noting the storage conditions and the solar cell J-V measurement type (i.e. continuous
or intermittent, where continuous measurements typically involve the device remaining under constant
solar simulated light, whilst for intermittent measurements the device is removed from illumination
and stored in specified storage conditions between measurements).
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Figure 12. Perovskite quantum dot (PQD) solar cells with charge separating heterostructure.
(a) Schematic of the device fabrication via spin coating, (b) energy band structure of the various
PQDs used in the study, (c) cross-sectional scanning electron microscope of a typical device, (d) the
external quantum efficiency (EQE) of solar cells made with various ratios of Cs0.25Fa0.75PbI3 to CsPbI3

quantum dots, (e) EQE at the absorption edge of various quantum dots in the series CsxFA1-xPbI3 as
the bottom layer. (f) current density-voltage (JV) curves for the devices shown in (d) and (g) stabilized
power output (SPO) of the varying compositions shown in (f). Reproduced from ref. [117], with
permission from Springer Nature, 2019.
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Table 1. A selection of notable reports on low-dimensional perovskite solar cells. QDs, PCE, RT, and RH
stand for quantum dots, power conversion efficiency, room temperature, relative humidity, respectively.

Dimensionality Material (n Value) 1 PCE (%) Stability Reference
(Year)

0D (CH3NH3)3Sb2I9 2.77
Retained 80% of initial PCE after 3 h under

constant illumination, ambient
conditions, encapsulated.

[109]
(2018)

0D Cs3Sb2I9 1.21
Retained 95% of initial PCE after 60 days,
intermittent measurements, stored at RT,

50% RH, unencapsulated.

[118]
(2019)

0D Cs3Sb2I9 1.49
Retained >80% of initial PCE after 30 days,

intermittent measurements, storage
conditions unspecified.

[119]
(2018)

1D (ThMA)2(MA)n−1PbnI3n+1
(n = 3) 15.42

Retained 90% of initial PCE after 100 h,
intermittent, stored in N2 in the dark,

unencapsulated.

[92]
(2018)

1D, mixed with 3D
MAPbI3

1,4-benzene
diammonium
(BDA)-PbI4

(n = 1)

14.1
Retained 95% of original PCE after >1000 h,
intermittent measurement, stored in dark at

RT, 85% RH, encapsulated.

[120]
(2019)

1D/3D
heterostructure

ethylammonium
iodide (EAI)-treated

FA0.93Cs0.07PbI3

22.3

Retained 95% of initial PCE after 550 h,
continuous measurement under constant

illumination in N2 atmosphere at RT,
unencapsulated.

[100]
(2019)

2D (FPEA)2MA4Pb5I16
(n = 5) 13.64 Retained 65% of initial PCE after 576 h,

ambient air at 70 ◦C unencapsulated.
[121]

(2019)

2D
(BzDA)A9Pb10
(I0.93Br0.07)31

(n = 10)
15.6

Retained 80% of initial PCE after 84 h,
intermittent measurements, kept in dark at

RT in ambient air, RH = 20–50%
unencapsulated.

[122]
(2019)

Quasi-2D
3-bromobenzylammonium

iodide (BBAI)-
(n = 2)

18.2
Retained 82% of initial PCE after 2400 h,

intermittent measurements, stored in dark
at RT, ~40% RH, unencapsulated.

[24]
(2018)

Quasi-2D
(BE)2 (FA)8Pb9I28

(n value not
reported)

17.4
Retained 80% of initial PCE after 50 h,

stored in the dark at RT, RH = 80%,
unencapsulated.

[123]
(2018)

QDs CsPbI3 14.1
Retained 70% of initial PCE after 50 h,

intermittent measurements, stored in the
dark at RT and 40% RH, unencapsulated.

[116]
(2019)

QDs CsPbI3:Cs0.25FA0.75PbI3 17.4

Retained 80% of initial PCE after 10 h,
intermittent measurements under constant

illumination at 40 ◦C and 25% RH,
encapsulated.

[117]
(2019)

1 n values are only applicable for 1D and 2D materials.

3.5. Perovskite-Nanocrystal Hybrid Devices

The formation of hybrid layers and devices through incorporating nanocrystals into the OHP layer
have also been explored, both in bulk 3DPs [85] and in 0DPs [86]. The introduction of quantum-confined
NCs to bulk 3D OHPs enables the possibility of carrier multiplication. Thus far, SiNCs have been
primarily studied in this context, since most nanocrystals studied for organic-inorganic hybrid
photovoltaics are toxic Pb- or Cd-based [20], and it would be counterintuitive to add a toxic material
to a lead-free perovskite. SiNCs are an environmentally-friendly material which are non-toxic and
can be synthesized through a wide variety of methods [124,125]. The properties of SiNCs can also be
easily modified by surface engineering and the absorption and emission properties can be influenced
by the surface terminations [125–127]. Surface engineering can also improve carrier transport in SiNCs
by passivating surface defects [128]. While SiNCs do present their own challenges, they represent an
important model NC material.
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It was previously demonstrated that the incorporation of silicon nanocrystals (SiNCs) into
the 0DP with the formula (CH3NH3)3Bi2I9 led to an enhancement in the device performance [86].
It was proposed that the SiNCs may act as a dissociation pathway for tightly-bound excitons on the
nanoclusters of Bi2I9

3- bioctahedra. An electronic junction formed between the perovskite material and
the inorganic nanocrystal can provide an energetically favorable pathway for excitons to overcome
the potential barrier created by the cationic sublattice, providing exciton dissociation before the
carrier recombines. Once the exciton is dissociated it becomes a free-carrier which can be extracted.
This is commonly employed in organic–inorganic hybrid solar cells using SiNCs to enhance exciton
dissociation [129]. These types of hybrids may present a route towards significantly improving the
efficiency of LDPs.

Hybrid MAPbI3-SiNC devices also exhibit improved device performance and stability [85].
X-ray photoelectron spectroscopy (XPS) indicated that MAPbI3 bonds with SiNCs via intermediate
oxide bonds with nitrogen in methylammonium (N–O–Si). The oxidation of SiNCs was also observed in
XPS and is likely responsible for the improved stability, whereby SiNCs may act as a ‘sponge’ absorbing
oxidizing species in the MAPbI3 layer resulting in slight oxidation of the SiNCs. Furthermore, hybrid
devices with SiNCs exhibited improved device performance after light soaking for 8 min (Figure 13),
whilst the performance of MAPbI3-only devices decreased. This is commonly observed in MAPbI3

devices and is attributed to light-activated trap states with inhibited photocarrier extraction [130].
The observation of the inverse behavior in hybrid devices suggests that SiNCs may inhibit defect
migration possibly via bonding with the perovskite structure.
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Figure 13. Perovskite-silicon nanocrystal (SiNC) hybrid solar cells show improved device performance
especially after light-soaking. (a) Schematic of device structure, and current-density voltage (JV) curves
for (b) MAPbI3 alone, (c) MAPbI3 with p-type SiNCs, and (d) n-type SiNCs. Reported from ref. [85],
with permission from Elsevier, 2018.

In addition, incorporating nanocrystals into OHPs presents the opportunity to create various
types of favorable band alignment between the OHP and the nanocrystal. Coupling the properties
of nanocrystals with perovskites can lead to improvements in device performance and opens up an
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avenue of possibilities to exceed the SQ-limit. Forming an inverted type-I junction can potentially
improve carrier collection either through optical coupling or electronic coupling. MAPbI3-SiNC hybrid
devices form an inverted type-I band alignment (Figure 14), where wider-bandgap SiNCs were
incorporated into the perovskite layer with electronic and/or optical coupling with the OHP, depending
on whether or not the SiNCs are oxidized [85]. In an electronically coupled inverted type- I junction,
the absorption in the wider-bandgap nanocrystal generates carriers which can be transferred into the
adjacent conduction and valence bands of the smaller bandgap perovskite. In an optically coupled
system, the nanocrystal behaves as a ‘interpenetrated’ down converter for high energy photons,
where radiative carrier recombination via photoluminescence (PL) results in excitations in the narrow
bandgap perovskite. It is therefore important that the peak PL emission is tailored to the bandgap of
the perovskite to maximize the conversion efficiency. In MAPbI3:SiNC hybrid devices, it is expected
that the structure initially forms an electronically coupled junction whereby carriers generated in the
SiNCs can transfer into the OHP. After oxidation, carriers generated in SiNCs are trapped by the oxide
potential barrier and recombine via photoluminescence, thus generating an optically coupled junction.
It was found using Kelvin probe and XPS that the type-I band alignment is preserved even after
the SiNCs became oxidized [85]. These new architectures represent new opportunities for exploring
different combinations of materials with perovskite structures.
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3.6. Perovskite Oxide Nanoparticles

Perovskite oxides (ABO3) are attractive materials for photovoltaics because of the possibility of
low-cost, non-toxic photovoltaics with high stability [131]. However, most semiconducting perovskite
oxides have large bandgaps (~3–5 eV) due to oxygen-metal transitions with large differences in their
electronegativities [132,133], and are therefore generally unsuitable for absorbing light within the solar
spectral range. Attempts to reduce the bandgap of perovskite oxides include doping [134], intrinsic
defects [135], forming oxynitrides [136], solid solutions [137], and cationic ordering [132].

Perovskite oxides and their derivatives (layered perovskite oxides) represent a large family
of materials which exhibit a multitude of properties, and have been investigated for applications
including photovoltaics [138]. Perovskite oxides possess a high-degree of flexibility given that 90% of the
metallic natural elements in the periodic table can adopt a stable perovskite-type oxide structure [139].
There remains a significant opportunity for exploring the use of metal oxides in photovoltaics to achieve
affordable solar cell devices with high efficiency and tunability, whilst easily meeting the often elusive
requirement of high stability. The use of metal oxides with highly-tunable absorption properties via the
introduction of vacancies [135] and doping [140] would allow for the facile fabrication of multi-junction
devices with high stability.
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Ferroelectric perovskite oxides have been demonstrated in photovoltaics [133], however they tend
to possess large bandgaps (~3–5 eV) and low conductivities, and therefore efficiencies are low (~1%).
Plasmonic perovskite oxides have not been explored to the same extent for photovoltaics. Perovskite
oxides can be heavily doped to be plasmonic or can be achieved through structural vacancies to
strongly modify electronic properties [140]. However, one of the issues associated with plasmonic
materials is carrier extraction, and therefore forming extremely thin absorber layers using nano-sized
plasmonic oxides is necessary to rapidly extract carriers before recombining.

The perovskite oxide CaMnO3 is an orthorhombic perovskite, and upon reduction in flowing Ar
gas the structure can be transformed to an oxygen-deficient perovskite with the structure CaMnO2.5.
The structure of CaMnO2.5 is essentially an orthorhombic perovskite with an internal 1D nanostructure
ordering as shown in Figure 15a. The introduction of oxygen vacancies removes one oxygen atom from
each MnO6 octahedra and results in a square pyramid of MnO5. This structural transformation reveals
many interesting properties, such as plasmonic behavior and significantly improved electrocatayltic
and photocatalytic activity [141]. CaMnO2.5 can be described as an orthorhombic perovskite because
the Ca and Mn perovskite sub-lattice is preserved. Since the resulting powder is phase pure, the oxygen
vacancies are expected to be ordered resulting in 1D chains of MnO5 square pyramids [141]. The MnO5

square pyramids are connected along a one- dimensional network extending through the crystal
connected by oxygen atoms, which may be favorable for carrier extraction. This oxygen deficiency
creates an internal molecular level porosity. The one-dimensional network of MnO5 pyramids may
also enhance charge transport and enable efficient carrier separation whereby photoexcited carriers are
transported along segregated Mn–O carrier transport channels. CaMnO2.5 displays broad absorption of
light from the infra-red through to the visible region of the solar spectrum. Nanoparticles of CaMnO2.5

can be easily produced via a sol-gel process followed by reductive annealing, and then deposited as an
ultrathin film either by spray coating or spin coating. The shape and size of the CaMnO2.5 nanoparticles
is shown in Figure 15b. CaMnO2.5 nanoparticles have been successfully used to fabricate a photovoltaic
cell, and the device performance is shown in Figure 15c. While initial device performance was low,
this work serves as a proof of concept and it is likely that the efficiency can be significantly improved,
primarily through optimization of the layer thickness and interfacial engineering to improve coupling
between CaMnO2.5 nanoparticles and transport layers.
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Chemical Society, 2014, (b) optical microscope images of CaMnO2.5 after laser fragmentation, the inset
shows a high-magnification optical microscope image, and (c) current density-voltage characteristic of
a CaMnO2.5 solar cell under solar simulated light.

4. Conclusions and Outlook

This review article has provided a summary of 3D bulk OHPs and an overview of the recent
direction and progress towards LDPs. To date, 1DPs and 2DPs have shown the highest efficiencies,
yet it is unclear whether these materials will suffer the same long-term stability issues as bulk OHPs.
Nanosheets with n ≤ 2 tend to show impressive stabilities but suffer from low performance issues,
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particularly due to their very large bandgaps. It is still unclear whether 2DPs and 1DPs with n > 2 can
demonstrate the long-term stability required for commercialization. Furthermore, the issue of stacking
faults between grains, which inhibits charge transfer through the layer, must be overcome to increase
the efficiency towards 20%. Exploring conductive organic barriers could be a possible route towards
overcoming carrier transport issues.

0DPs tend to be highly stable, however their efficiencies are often very low due to issues associated
with carrier extraction, where excitons tend to be strongly localized on BX6

4− or B2X9
3− clusters.

Methods to enhance exciton dissociation and carrier transport need to be further explored if these
materials are to demonstrate noteworthy efficiencies in photovoltaics, particularly through forming
hybrids with nanocrystals to promote exciton dissociation, and by exploring various ion substitutions
at the A-site to lower the exciton binding energy. Provided that these challenges can be overcome,
0DPs with large bandgaps can be incorporated as a top cell in a tandem solar cell. For use in single
junction cells, it is important to explore doping along with varying the A-site ion with the aim of
discovering 0DPs with smaller bandgaps, which are currently often >2 eV.

PQDs have shown impressive performance so far, yet the choice of materials is rather limited due
to the poor stability of organometal PQDs, which are unstable unless capped with long chain organic
barriers which inhibit carrier transport. Inorganic CsPbI3 QDs do not require capping molecules and
have demonstrated improved short-term stability along with impressive solar cell efficiencies over
13%. Despite this, CsPbI3 QDs are highly unstable in ambient conditions and encapsulation of the
entire solar cell device is essential. As research in this field is still in its infancy, there are limited studies
on the stability of CsPbI3 QDs and the extent to which the stability can be improved remains unclear.
It is therefore currently difficult to predict the potential for CsPbI3 QDs in photovoltaics.

Hybrid devices can be formed by adding NCs to bulk 3DPs or 0DPs. These hybrid device
architectures have been explored using SiNCs, demonstrating an improvement in the device
performance due to the possibility of a type-I band alignment which can be optically and/or electronically
coupled to improve carrier collection. Furthermore, adding SiNCs indicates a route towards extending
the device lifetime, whereby SiNCs are oxidized by the residual moisture in the layer rather than
degrading the OHP. This was shown to preserve the favorable type-I band alignment without affecting
the device performance.

Due to the significant stability issues suffered by OHPs, occurring both in bulk and low-
dimensional forms, we have also briefly introduced the field of perovskite oxide nanomaterials,
studying the oxygen-deficient perovskite CaMnO2.5. This material, which absorbs a broad range
of light in the solar spectrum from infrared to ultra-violet, has a one-dimensional internal structure
which may promote carrier transport. Although the efficiency of the solar cell device is low, there
remains significant opportunities for tuning the properties, optimizing devices, and exploring doping
to improve device performance.

Finally, while the efficiencies of LDPs are still often far lower than bulk-OHPs, it is encouraging
that higher device efficiencies are continually being reported. Provided that these devices can be
fabricated with efficiencies of >20%, it is likely that they will be attractive to the market assuming they
can be produced at very low cost and with far superior stability to 3D OHPs.

Funding: This work was supported by the Japanese Society for the Promotion of Science (JSPS) (17F17815),
EPSRC (EP/K022237/1, EP/M024938/1 and EP/R023638/1), the EPSRC Supergen SuperSolar Hub, the Department
for Employment and Learning (DEL) of Northern Ireland Studentship, and by the New Energy and Industrial
Technology Development Organization (NEDO).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. National Renewable Energy Laboratory Best Research-Cell Efficiency Chart. Available online: https:
//www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf (accessed on 25 September 2019).

https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf
https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf


Nanomaterials 2019, 9, 1481 22 of 28

2. Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency
tables (version 52). Prog. Photovolt. Res. Appl. 2018, 26, 427–436. [CrossRef]

3. Leijtens, T.; Bush, K.A.; Prasanna, R.; McGehee, M.D. Opportunities and challenges for tandem solar cells
using metal halide perovskite semiconductors. Nat. Energy 2018, 1–11. [CrossRef]

4. Jung, H.S.; Park, N.-G. Perovskite Solar Cells: From Materials to Devices. Small 2015, 11, 10–25. [CrossRef]
[PubMed]

5. Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Gratzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range
Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342,
344–347. [CrossRef] [PubMed]

6. Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.;
Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite
absorber. Science 2013, 342, 341–344. [CrossRef] [PubMed]

7. Lin, Q.; Armin, A.; Nagiri, R.C.R.; Burn, P.L.; Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics
2014, 9, 106–112. [CrossRef]

8. Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C.
Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13,
476–480. [CrossRef]

9. Xing, J.; Zhao, Y.; Askerka, M.; Quan, L.N.; Gong, X.; Zhao, W.; Zhao, J.; Tan, H.; Long, G.; Gao, L.; et al.
Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 2018, 9. [CrossRef]

10. Li, Z.; Moon, J.; Gharajeh, A.; Haroldson, R.; Hawkins, R.; Hu, W.; Zakhidov, A.; Gu, Q. Room-temperature
continuous-wave operation of organometal halide perovskite lasers. ACS Nano 2018, 12, 10968–10976.
[CrossRef]

11. Wang, K.; Wang, S.; Xiao, S.; Song, Q. Recent Advances in Perovskite Micro- and Nanolasers. Adv. Opt.
Mater. 2018, 6, 1800278. [CrossRef]

12. Feng, J.; Gong, C.; Gao, H.; Wen, W.; Gong, Y.; Jiang, X.; Zhang, B.; Wu, Y.; Wu, Y.; Fu, H.; et al. Single-crystalline
layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 2018, 1, 404–410.
[CrossRef]

13. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Mohammad, K.N.; Zakeeruddin, S.M.;
Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing Triple Cation Perovskite Solar Cells: Improved
Stability, Reproducibility and High Efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [CrossRef] [PubMed]

14. Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S. Il Compositional engineering of perovskite
materials for high-performance solar cells. Nature 2015, 517, 476–480. [CrossRef] [PubMed]

15. Li, X.; Bi, D.; Yi, C.; Decoppet, J.-D.; Luo, J.; Zakeeruddin, S.M.; Hagfeldt, A.; Gratzel, M. A vacuum
flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62.
[CrossRef] [PubMed]

16. Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead
trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci.
2014, 7, 982–988. [CrossRef]

17. Seok, S.I.; Grätzel, M.; Park, N.G. Methodologies toward Highly Efficient Perovskite Solar Cells. Small
2018, 14. [CrossRef]

18. Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J. From scalable solution fabrication of perovskite films towards
commercialization of solar cells. Energy Environ. Sci. 2019, 12, 518–549. [CrossRef]

19. Cheacharoen, R.; Rolston, N.; Harwood, D.; Bush, K.A.; Dauskardt, R.H.; McGehee, M.D. Design and
understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci.
2018, 11, 144–150. [CrossRef]

20. Fan, X.; Zhang, M.; Wang, X.; Yang, F.; Meng, X.; Chen, C.W.M.; Tang, C.Y.; Chen, C.W.M.; Cao, J.; Wang, Z.G.;
et al. Recent progress in organic–inorganic hybrid solar cells. 2013, 1, 8694–8709. J. Mater. Chem. A 2013, 1,
8694–8709. [CrossRef]

21. Sanehira, E.M.; Marshall, A.R.; Christians, J.A.; Harvey, S.P.; Ciesielski, P.N.; Wheeler, L.M.; Schulz, P.;
Lin, L.Y.; Beard, M.C.; Luther, J.M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency,
high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204. [CrossRef]

http://dx.doi.org/10.1002/pip.3040
http://dx.doi.org/10.1038/s41560-018-0190-4
http://dx.doi.org/10.1002/smll.201402767
http://www.ncbi.nlm.nih.gov/pubmed/25358818
http://dx.doi.org/10.1126/science.1243167
http://www.ncbi.nlm.nih.gov/pubmed/24136965
http://dx.doi.org/10.1126/science.1243982
http://www.ncbi.nlm.nih.gov/pubmed/24136964
http://dx.doi.org/10.1038/nphoton.2014.284
http://dx.doi.org/10.1038/nmat3911
http://dx.doi.org/10.1038/s41467-018-05909-8
http://dx.doi.org/10.1021/acsnano.8b04854
http://dx.doi.org/10.1002/adom.201800278
http://dx.doi.org/10.1038/s41928-018-0101-5
http://dx.doi.org/10.1039/C5EE03874J
http://www.ncbi.nlm.nih.gov/pubmed/27478500
http://dx.doi.org/10.1038/nature14133
http://www.ncbi.nlm.nih.gov/pubmed/25561177
http://dx.doi.org/10.1126/science.aaf8060
http://www.ncbi.nlm.nih.gov/pubmed/27284168
http://dx.doi.org/10.1039/c3ee43822h
http://dx.doi.org/10.1002/smll.201704177
http://dx.doi.org/10.1039/C8EE03025A
http://dx.doi.org/10.1039/C7EE02564E
http://dx.doi.org/10.1039/c3ta11200d
http://dx.doi.org/10.1126/sciadv.aao4204


Nanomaterials 2019, 9, 1481 23 of 28

22. Quan, L.N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E.M.; Hoogland, S.; Buin, A.; Kirmani, A.R.;
Zhao, K.; Amassian, A.; et al. Ligand-Stabilized Reduced-Dimensionality Perovskites. J. Am. Chem. Soc.
2016, 138, 2649–2655. [CrossRef] [PubMed]

23. Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.;
Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells.
Nature 2016, 536, 312–316. [CrossRef] [PubMed]

24. Yang, R.; Li, R.; Cao, Y.; Wei, Y.; Miao, Y.; Tan, W.L.; Jiao, X.; Chen, H.; Zhang, L.; Chen, Q.; et al. Oriented
Quasi-2D Perovskites for High Performance Optoelectronic Devices. Adv. Mater. 2018, 30, 1804771.
[CrossRef] [PubMed]

25. Kim, M.R.; Ma, D. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. J. Phys.
Chem. Lett. 2015, 6, 85–99. [CrossRef]

26. Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on
meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [CrossRef]

27. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.;
Yum, J.-H.; Moser, J.E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film
Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [CrossRef]

28. Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Qin, P.; Fang, G. Review on the Application of SnO2 in Perovskite
Solar Cells. Adv. Funct. Mater. 2018, 28. [CrossRef]

29. Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al.
Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science
2017, 356, 1376–1379. [CrossRef]

30. Hoye, R.L.Z.; Brandt, R.E.; Osherov, A.; Stevanovic, V.; Stranks, S.D.; Wilson, M.W.B.; Kim, H.; Akey, A.J.;
Perkins, J.D.; Kurchin, R.C.; et al. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid
Organic-Inorganic Solar Absorber. Chem. A Eur. J. 2016, 22, 2605–2610. [CrossRef]

31. Zhang, L.; Ju, M.-G.; Liang, W. The effect of moisture on the structures and properties of lead halide
perovskites: A first-principles theoretical investigation. Phys. Chem. Chem. Phys. 2016, 18, 23174–23183.
[CrossRef]

32. Rocks, C.; Svrcek, V.; Maguire, P.; Mariotti, D. Understanding Surface Chemistry During MAPbI3 Spray
Deposition and its Effect on Photovoltaic Performance. J. Mater. Chem. C 2017, 5, 902–916. [CrossRef]

33. Ahn, N.; Kwak, K.; Jang, M.S.; Yoon, H.; Lee, B.Y.; Lee, J.-K.; Pikhitsa, P.V.; Byun, J.; Choi, M. Trapped
charge-driven degradation of perovskite solar cells. Nat. Commun. 2016, 7, 13422. [CrossRef] [PubMed]

34. Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible
photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6,
613–617. [CrossRef] [PubMed]

35. Wu, B.; Fu, K.; Yantara, N.; Xing, G.; Sun, S.; Sum, T.C.; Mathews, N. Charge Accumulation and Hysteresis in
Perovskite-Based Solar Cells: An Electro-Optical Analysis. Adv. Energy Mater. 2015, 5, 1500829. [CrossRef]

36. deQuilettes, D.W.; Zhang, W.; Burlakov, V.M.; Graham, D.J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H.J.;
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