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Abstract: A facile method for synthesis of environmentally friendly magnetite nanomaterials
(MNMs) was applied using hydrophobic biocomponents as capping and stabilizing agents.
The biocomponents were extracted from Matricaria aurea (MAE) and Ochradenus baccatus (OBE)
and used for the surface modification of MNMs to increase their dispersion efficiency on the
collection of heavy crude oil spills. Synthesized MNM samples (MAE-MNMs and OBE-MNMs) were
verified using thermogravimetric analysis; Fourier-transform infrared spectroscopy; transmission
electron microscopy; dynamic light scattering, and vibrating-sample magnetometry. The application
of these nanomaterials in the collection of oil spill showed that the MAE-MNMs and OBE-MNMs
successfully collected 95% and 91% of the oil spill, respectively. These results support the potential
use of these materials as eco-friendly composites for the successful collection of oil spills that might
occur during offshore operations.
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1. Introduction

One of the most known sources of marine pollution is oil spills produced from frequent accidents
during the production and transportation of crude oil and its derivatives. Because conventional cleaning
methods such as skimming and booming are considerably expensive, researchers are motivated to search
for novel, cost effective methods [1,2]. Under this scope, a variety of chemicals, including polymers,
surfactants and ionic liquids, are widely applied as oil spill dispersants, sorbents, and collectors [3–13].
Among the currently available methods, the oil spill collector’s technique has been the most applied in
recent years due to its high efficiency, reusability, low cost and the ability to capture crude without
dispersion into water [14–16]. In our previous studies, new synthesized magnetic nanomaterials
(MNMs) used different natural capping agents such as asphaltene and plant extracts and applied as oil
spill collectors [16–18]. It was noticed that the efficiency to collect heavy crude oil increased with using
more hydrophobic MNMs [16–18].

According to the green chemistry principles, it is necessary to develop new substances alternative
to the currently used chemicals in oil spill removals that contribute additionally to the marine pollution.
New environmental regulations motivate researchers to consider alternative methods and chemicals
that they are environmentally friendly.
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Recently, various natural products have extensively been utilized as capping, stabilizing,
and reducing agents on nanomaterial synthesis due to their low cost, eco-friendly, availability,
sustainability, and non-toxicity [19,20]. Many studies on the synthesis of MNMs used natural
products such as, plant extracts [21–25], fungi [26–28], and biomolecules [29–34]. Plant parts,
including leaves, fruits, and peels were also used successfully as stabilizing and capping agents
in the preparation of MNMs [21–25]. M. aurea and O. baccatus plants belong to the Asteraceae and
Resedaceae family, respectively. These plants are used extensively as medicinal plants for treatments
of several diseases including hemorrhoids, colic, skin cracking, urinary tract infection, coughing, back
pain, fistula, bacterial infections, and malaria [35–37]. They are fragrant and dioecious herbs widely
growing in several regions of the world such as South Europe, North Africa, Middle East, and Asia [38].
The use of extracts from these plants for the synthesis of magnetite nanomaterials is being investigated
for the first time in the present work. The aim of this work extended to utilize the n-hexane extracts of
M. aurea and O. baccatus aerial parts as capping and stabilizing agents for the preparation of MNMs.
The efficiency of the formed MNMs in the collection of oil spill was evaluated by taking advantage of
the strong hydrophobicity of the capping agents.

2. Materials and Methods

2.1. Chemicals

All chemicals, i.e. as ferrous chloride tetrahydrate (FeCl2·4H2O≥ 99%), ferric chloride hexahydrate
(FeCl3·6H2O, 97%), ammonium hydroxide (25%), isopropanol and n-hexane were obtained from Aldrich
Chemical Co. (Missouri, USA) and used without further purification. Saudi Arabia-based heavy crude
oil was supplied from the Riyadh refinery unit: Aramco Co. (Riyadh, KSA) and the seawater was
collected from the Arabian Gulf along the Saudi coast.

The aerial parts of M. aurea and O. baccatus were collected from the natural area of Rowdah Khuraim
(Riyadh, KSA) during March 2016. A taxonomist in the herbarium division of King Saud University
identified the species. The plant’s aerial parts were chopped into small pieces and air-dried under shade.
After drying, the materials were separately soaked in n-hexane for 72 h thrice. The n-hexane extracts
of M. aurea (MAE) and O. baccatus (OBE) were filtered and concentrated under reduced pressure using
rotary evaporator.

2.2. Synthesis of Magnetite Nanomaterials (MNMs)

Capped MNMs were prepared by mixing solutions of 2:1 mole ratio ferric chloride hexahydrate to
ferrous chloride tetrahydrate, (5.4 g Fe3+ and 2.0 g Fe2+ were dissolved in 100 mL of deionized water)
with MAE or OBE solutions (2 g of each were dissolved separately in 50 mL of isopropanol). The mixture
temperature was elevated to 50 ◦C under N2 atmosphere, to ensure the completion of the reaction;
ammonia solution was added dropwise under continuous stirring for one hour, followed by adjustment
of solutions pH to 10 with ammonium hydroxide. The formed MNMs were separated by the placement
of external magnets, followed by sequential washing with isopropanol and water and then drying at
ambient temperature. In this study, the synthesized MNMs coated by MAE or OBE are abbreviated as
MAE-MNMs and OBE-MNMs, respectively.

2.3. Characterization of MNMs

The active functional groups in MAE and OBE extracts and MAE-MNMs and OBE-MNMs were
investigated using Fourier-transform infrared spectroscopy (FTIR) (Thermo scientific, MN, USA).
The experimental setup consisted of a Nexus 6700 FTIR spectrometer. The crystal lattice structure of the
MNMs was confirmed by X-ray powder diffractometry (XRD) using a BDX-3300 diffractometer
(Beijing University Equipment Manufacturer, Beijing, China) with a CuKa radiation source of
wavelength λ = 1.5406 Å). The MNMs’ particles size in ethanol, their particle sizes, dispersion
and zeta potential values were measured using dynamic light scattering (DLS) (Malvern Instruments,
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Malvern, UK). The experimental setup consisted of a Zetasizer 3000HS with a He-Ne laser source at
wavelength λ = 633 nm. The surface morphology of the MAE-MNMs and OBE-MNMs was obtained
using a JEOL JEM-2100F transmission electron microscope (TEM) (JEOL, Tokyo, Japan). The thermal
stability of the MAE-MNMs and OBE-MNMs was measured by thermogravimetric analysis (TGA)
using a Shimadzu DSC-60 thermal analyzer (Shimadzu Co, Canby, USA). The MNMs were heated
under nitrogen atmosphere from 25 ◦C up to 700 ◦C at a heating rate of 10 ◦C/min.

Thin layers of MAE-MNMs or OBE-MNMs were deposited on the surface of a glass slide and their
contact angle with seawater drops was determined using drop shape analysis (DSA) with a DSA-100
analyzer (Krüss GmbH, Hamburg, Germany). Prior to the measurements, small amounts of MA-MNMs
or OB-MNMs were dispersed in ethanol solution followed by spreading onto the glass slide surface and
then drying at 50 ◦C in a hot air oven. These steps were repeated three times until a thin film of MNMs
was formed on the glass slide surface. The magnetic properties of MAE-MNMs and OBE-MNMs were
obtained using vibrating-sample magnetometry (VSM) with a LDJ9600 magnetometer (LDJ Electronics,
MI, USA) in a magnetic field of 20,000 Oe.

2.4. Efficiency of MAE-MNMs and OBE-MNMs as Oil Spill Collectors

About 1 mL of Saudi-based heavy crude oil was injected onto a surface of 250 mL seawater in
a 500 mL beaker. Several ratios of the synthesized MNMs related to the oil contents were spread as
solid powder to the crude oil and remixed using a glass rod for one minute. After 5 min, the adsorbed
oil spill on the surface of MNMs was collected using external magnetic field, a permanent Nd-Fe-B
magnet (4300 Gauss), and washed in a beaker with chloroform. The chloroform was evaporated under
reduced pressure using rotary evaporator. The collected crude oil volume was determined as V1 and
the original oil spill volume designated as V0. The residual oil on the surface of the brine water was
extracted using chloroform. The ability of synthesized MNMs as oil spill collectors was calculated
using Equation (1):

CE (%) = (V0/V1) × 100 (1)

For reusability purposes, after the heavy crude oil collection was finished the used MNMs samples
were recollected using the permanent Nd-Fe-B magnet and washed several times with chloroform
and ethanol solvents. Finally, the MNMs were air-dried and then reused for a new cycle of crude oil
removal experiments.

3. Results and Discussion

Before the extraction of polar active constituents from the raw M. aurea and O. baccatus plants
materials, the hydrophobic constituents are usually defatted by n-hexane. During this process, large
amounts of n-hexane extracts are obtained. Their hydrophobic properties such as the diversity of
their hydrophobic constituents as well as their renewability, environmentally friendly nature and
rapid extraction motivated us to apply these materials as capping agent during preparation of MNMs.
Moreover, the synthesis of monodispersed MNMs in the presence of natural capping agents, extracted
from M. aurea and O. baccatus, is one targets of the present work. Their efficiency in the synthesis of
MNMs and their application towards the protection of marine species from the harmful presence of oil
spills are another goal of this work. The natural hydrophobic extracts were selected as capping and
stabilizing agents because the enhanced dispersity of the synthesized MNMs in crude oil and their
efficiency in the collection of oil spill.

3.1. Characterization of the Prepared MNMs

The active functional groups of MAE, OBE and MAE-MNMs and OBE-MNMs are elucidated
using FTIR spectra represented in Figure 1a–d. The spectra of MAE and OBE (Figure 1a,b) show strong
absorption bands at 3447, 3420 cm−1; 2918, 2970 cm−1; 2850, 2932 cm−1; 1736, 1766 cm−1; and 1629,
1655 cm−1 corresponding to O-H, saturated C-H, C=O, and C=C stretching vibrations. The appearance
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of new bands of the MNMs spectra at 580 and 583 cm−1 (Figure 1c,d) correspond to the stretching
vibrations of Fe-O, which confirms the formation of iron oxide as reported earlier [39].

Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 12 

appearance of new bands of the MNMs spectra at 580 and 583 cm−1 (Figure 1c,d) correspond to the  

Figure 1. FTIR spectra of a) M. aurea extract (MAE), b) O. baccatus extract (OBE), c) magnetite 

nanomaterials coated by MAE (MAE-MNMs) and d) magnetite nanomaterials coated by OBE 

(OBE-MNMs). 

The XRD diffraction patterns of the MAE-MNMs and OBE-MNMs are shown in Figure 2a,b. 

The appearance of characteristic peaks at 2θ angles 30.14°, 35.91°, 43.21°, 53.73°, 57.27°, 62.51° and 

74.79° is associated with the indices 220, 311, 400, 422, 511, 440 and 622, respectively, as indicated in 

the Figure 2. Compared to the standard peaks [40], it is elucidated that the chemical structure of 

MNMs is unaffected by the surface modification using the phytoconstituents of MAE and OBE 

extracts. Additionally, the appearance of a broad peak at 19.11° corresponds to the presence of the 

extracts and confirms the successful coating of the MNMs [16]. 

Figure 2. Powdered XRD diffraction patterns of magnetite nanomaterials coated by a) M. aurea 

extract (MAE-MNMs) and b) O. baccatus extract (OBE-MNMs). The peaks indices are indicated. 

Figure 1. FTIR spectra of (a) M. aurea extract (MAE), (b) O. baccatus extract (OBE), (c) magnetite
nanomaterials coated by MAE (MAE-MNMs) and (d) magnetite nanomaterials coated by OBE
(OBE-MNMs).

The XRD diffraction patterns of the MAE-MNMs and OBE-MNMs are shown in Figure 2a,b.
The appearance of characteristic peaks at 2θ angles 30.14◦, 35.91◦, 43.21◦, 53.73◦, 57.27◦, 62.51◦

and 74.79◦ is associated with the indices 220, 311, 400, 422, 511, 440 and 622, respectively, as indicated
in the Figure 2. Compared to the standard peaks [40], it is elucidated that the chemical structure of
MNMs is unaffected by the surface modification using the phytoconstituents of MAE and OBE extracts.
Additionally, the appearance of a broad peak at 19.11◦ corresponds to the presence of the extracts and
confirms the successful coating of the MNMs [16].
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The thermal stability of the formed MNMs was determined using TGA analysis (Figure 3).
The initial weight loss of the MAE-MNMs and OBE-MNMs (at temperature increase up to 200 ◦C) is
generally related to the evaporation of physio-adsorbed water or other solvents during the purification
process. The degradation of the MAE-MNMs and the OBE-MNMs begins approximately at 200 ◦C and
stops around 500 ◦C with a total weight loss of approximately 20% and 21%, respectively. Such material
loss may be attributed to the decomposition of the MAE and OBE constituents. The magnetite content
of the MAE-MNMs and the OBE-MNMs at 700 ◦C was measured to be 77% and 74%, respectively,
suggesting an increase in the total amount of capping agent in the OBE-MNM samples.
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Figure 3. TGA thermograms of magnetite nanomaterials coated by M. aurea extract (MAE-MNMs)
(blue curve) and by O. baccatus extract (OBE-MNMs) (red curve).

The TEM micrographs in Figure 4a,b show the surface morphology of the MAE-MNMs and the
OBE-MNMs. The formation of irregular spherical structures with an average diameter of 9.6 ± 3 nm
is observed. The thermograms exhibited limited variation in the particles size of the nanomaterials
and this variation may be related to the diversity of the MAE and OBE phytoconstituents. The formed
MNMs are smaller than those synthesized using extracts from different plant species [20,23,39].
Furthermore, Figure 4a shows that the MAE-MNMs agglomerate because the increase in the content of
the MNMs forces them to aggregate. This was also observed at the TGA analysis due to their magnetic
nature (Figure 3).
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Figure 4. TEM micrographs of magnetite nanomaterials coated by (a) M. aurea extract (MAE-MNMs)
and (b) O. baccatus extract (OBE-MNMs).

DLS measurements of the MAE-MNMs and OBE-MNMs in an ethanol solvent revealed the
particle size, dispersity and zeta potential values, as shown in Figures 5 and 6, respectively. The average
particle size and polydispersity index were 338.5 nm and 0.234, respectively for the MAE-MNMs;
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and 367.8 nm and 0.228, respectively, for the OBE-MNMs. The increase in particle diameter suggests
agglomeration of the MNMs in ethanol, which showed considerable difference with the TEM results of
the dried MNMs particles. The zeta potential measurements of the MAE-MNMs and OBE-MNMs
(Figure 6a,b)) showed positive values at 8.35 and 17.1 mV, respectively. The higher zeta potential
value of the OBE-MNMs confirms their higher colloidal stability in ethanol solvent, compared to
MAE-MNMs. Notably, the positive values of zeta potential suggest an enhanced interaction between
these MNMs with asphaltene in heavy crude oil, which has a negative surface charge during oil spill
removal [41,42].
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In our previous work [17,18], MNNs were capped by using hexane and chloroform extracts.
The MNNs capped by hexane extracts showed higher hydrophobicity and dispersity in nonpolar
organic solvents than that capped with chloroform extracts. For these reasons, the present work used
either M. aurea or O. baccatus hexane extracts for capping the MNNs. Generally, the capped MNMs
ability to collect oil spill is mainly affected by their ability to disperse in crude oil. So, an increase in
the hydrophobicity of the capping agents, provided by the coated plant extracts, directly increases
the MNMs’ dispersion efficiency in crude oil which further enhances their ability to collect oil spills.
We found that the capped MNMs exhibited high dispersion in toluene, chloroform, xylene, and other
low polar organic solvents, but in seawater the dispersion was very low. The hydrophobicity
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of the synthesized MNMs was determined by contact angle measurements. Figure 7 shows the
contact angles of the MAE-MNMs and OBE-MNMs at 128◦ and 111◦, respectively. This observation
corresponds to an increased hydrophobicity of the MAE as a capping agent compared to the OBE.
Moreover, the appearance of absorption bands in FTIR spectra (Figure 1c and d) between 3000–2850 cm−1

related to CH stretching vibrations confirms the presence of hydrophobic aliphatic chains in these
extracts on the MNMs surfaces.

Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 12 

 

Moreover, the appearance of absorption bands in FTIR spectra (Figure 1c and d) between 3000–2850 

cm−1 related to CH stretching vibrations confirms the presence of hydrophobic aliphatic chains in 

these extracts on the MNMs surfaces. 

 

Figure 7. Contact angles of water on magnetite nanomaterials coated by a) M. aurea extract 

(MAE-MNMs) and b) O. baccatus extract (OBE-MNMs). 

The ability of the prepared MNMs to response for an external magnetic field was evaluated via 

measuring magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) 

and coercivity (Hc) by VSM magnetic hysteresis loops at 25 °C. Figure 8 elucidates the 

magnetization of both MAE-MNMs and OBE-MNMs was not saturated even at highest field of 

(20,000 Oe or 2 T). This can be referred the capping of MAE or OBE on the magnetite surfaces leads 

to form non-crystalline phase which is responsible for the non-saturation of the hysteresis loop 

(Figure 8) even at high fields which is termed as high field susceptibility [43]. It indicates the 

formation of magnetically hard components that can be associated to surface spin disorder [43]. 

Figure 8 shows absence of hysteresis loops, remanence, or coercivity suggesting that the 

MAE-MNMs and OBE-MNMs are superparamagnetic materials. At 20,000 Oe, magnetization values 

of OBE-MNMs and MAE-MNMs are determined to be 55.03 and 48.93 emu/g, respectively, which is 

enough for the separation of the MNMs by the external magnetic field. Additionally, the increased 

magnetization value of the OBE-MNMs corresponds to lower amount of capping agents (higher 

magnetic content) as compared to the MAE-MNMs. This observation was also confirmed by the 

TGA analysis (Figure 3). 

 

Figure 8. VSM loop of magnetite nanomaterials coated by a) M. aurea extract (MAE-MNMs) (black 

curve) and b) O. baccatus extract (OBE-MNMs) (red curve) at 298 K. 

3.2. Efficiency of MAE-MNMs and OBE-MNMs As Oil Spill Collectors 

Increase the hydrophobicity of the prepared MNMs and their supermagnetic nature make them 

suitable candidates in oil spill remediation. Therefore, we applied several ratios of MNM to crude oil 

(1:1 up to 1:50) and evaluated their efficiency on the collection of Arabian heavy crude oil. The 

results, presented in Table 1, indicate that the efficiency of the MNMs in collecting oil spills increases 

Figure 7. Contact angles of water on magnetite nanomaterials coated by (a) M. aurea extract
(MAE-MNMs) and (b) O. baccatus extract (OBE-MNMs).

The ability of the prepared MNMs to response for an external magnetic field was evaluated via
measuring magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr)
and coercivity (Hc) by VSM magnetic hysteresis loops at 25 ◦C. Figure 8 elucidates the magnetization
of both MAE-MNMs and OBE-MNMs was not saturated even at highest field of (20,000 Oe or 2 T).
This can be referred the capping of MAE or OBE on the magnetite surfaces leads to form non-crystalline
phase which is responsible for the non-saturation of the hysteresis loop (Figure 8) even at high
fields which is termed as high field susceptibility [43]. It indicates the formation of magnetically
hard components that can be associated to surface spin disorder [43]. Figure 8 shows absence of
hysteresis loops, remanence, or coercivity suggesting that the MAE-MNMs and OBE-MNMs are
superparamagnetic materials. At 20,000 Oe, magnetization values of OBE-MNMs and MAE-MNMs
are determined to be 55.03 and 48.93 emu/g, respectively, which is enough for the separation of
the MNMs by the external magnetic field. Additionally, the increased magnetization value of the
OBE-MNMs corresponds to lower amount of capping agents (higher magnetic content) as compared
to the MAE-MNMs. This observation was also confirmed by the TGA analysis (Figure 3).
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3.2. Efficiency of MAE-MNMs and OBE-MNMs As Oil Spill Collectors

Increase the hydrophobicity of the prepared MNMs and their supermagnetic nature make them
suitable candidates in oil spill remediation. Therefore, we applied several ratios of MNM to crude oil
(1:1 up to 1:50) and evaluated their efficiency on the collection of Arabian heavy crude oil. The results,
presented in Table 1, indicate that the efficiency of the MNMs in collecting oil spills increases with the
increase of their ratio to crude oil. The best ratio of the MAE-MNMs and the OBE-MNMs was 1:10
with removal of 92% and 88% of oil spills, respectively. These data also showed a high efficiency of the
MNMs to crude oil ratio at 1:1, which can be attributed to the aggregation of the MNMs that effects the
attraction between these nanoparticles when an external magnetic field is applied.

Table 1. Efficiency (%) of synthesized magnetite nanomaterials (MNMs) on the collection of oil spills at
different ratios of MNMs to crude oil.

MNMs
Collection Efficiency (%) Using Different (MNMs: Crude Oil) ) (Wt.:Vol %)

1:1 1:10 1:25 1:50

MAE-MNM 95 92 88 80

OBE-MNM 91 88 83 76

The MNM samples were re-used five times. Each time samples were separated using an external
magnet and washed thrice with chloroform followed by an ethanol, air-drying, and direct utilization
for the next cycle. A ratio of MNMs to crude oil of 1:10 was chosen to evaluate the ability of the
recovered MNMs in the collection of oil spill and their results are represented in Figure 9. It was
found that slightly decreasing in their efficiency with an increasing in the number of the reused cycles.
This observation can be attributed to increase agglomeration of MNMs and adsorption of some crude oil
components such as asphaltene on the MNMs surfaces with each additional cycle. The agglomeration
of MNMs and adsorption of the residual crude oil components on their surfaces were confirmed
by carrying out both particle sizes measurements and TGA analysis as showed in Figure 5b,d and
Figure 10a,b, respectively. It was observed that, the MNMs particles agglomerated after 5 cycles to
reflect the adsorption and interaction of crude oil components on their surfaces. TGA thermograms
(Figure 10a,b) elucidate that the amount of the remained residual metal oxide above 650 ◦C decreased
with increasing in the number of cycles. Moreover, the TGA thermograms (Figure 10a,b) confirm the
increasing of the amount of organics adsorbed molecules on the MNMs surfaces after five cycles when
compared with the original MNMs.
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Figure 9. Efficiency on the collection of oil spills of recycled magnetite nanomaterials coated by M. aurea
extract (MAE-MNMs) (light blue bars) and O. baccatus extract (OBE-MNMs) (dark blue bars).
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4. Conclusions

In this study we used two different plants extracts obtained from M. aurea and O. baccatus
to synthesize capped hydrophobic magnetite nanomaterials. It was found that the diversity of
the biocomponents in both extracts decreased the particle size diameter of the prepared MNMs and
increased their ability to disperse and interact with the constituents of crude oil. The incorporation of the
biocomponents of MAE and OBE to the MNMs and the existence of these nanomaterials were confirmed
by FTIR and powdered XRD analyses. The contact angles measurements demonstrated an increase in
the hydrophobicity of the prepared MNMs, suggesting an increase in their ability to disperse in crude oil
compared to water media. The DLS and TEM measurements revealed the microstructural form of the
nanomaterials with an average diameter of 9.6± 3 nm. The synthesized MNMs showed a supermagnetic
behavior and the magnetization value was lower for OBE-MNMs compared to MAE-MNMs.
This increase suggests an increase in the content of the MNMs. Furthermore, the MAE-MNMs
showed a higher ability for collecting of oil spills because of their ability to disperse in crude oil
more effectively compared to the OBE-MNMs. The reusability of the MNMs was demonstrated for
at least five cycles, displaying a slight loss in the efficiency with every repeating cycle. To conclude,
the availability of the M. aurea and O. baccatus plants in nature, their environmentally friendly extracted
hydrophobic biocomponents, and the simplicity of MNM synthesis all make these nanomaterials
suitable for the remediation of oil spills occurring during offshore operations.
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