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Abstract: Due to the constant increase in the number of infectious diseases and the concomitant lack of
treatment available, metallic nanoparticles (e.g., silver nanoparticles) have been of particular interest in
the last decades. Indeed, several studies suggest that silver nanoparticles have valuable antimicrobial
activities, especially against bacteria, which may lead us to think that these nanoparticles may one
day be an attractive therapeutic option for the treatment of bacterial infections. Unfortunately, when
we look a little closer to these studies, we can see a very great heterogeneity (e.g., in the study design,
in the synthetic process of nanoparticles, in the methods that explore the antibacterial properties of
nanoparticles and in the bacteria chosen) making cross-interpretation between these studies impossible,
and significantly limiting the interest of silver nanoparticles as promising antibacterial agents. We
have selected forty-nine international publications published since 2015, and propose to discuss,
not the results obtained, but precisely the different methodologies developed in these publications.
Through this discussion, we highlighted the aspects to improve, or at least to homogenize, in order to
definitively establish the interest of silver nanoparticles as valuable antibacterial agents.

Keywords: silver nanoparticles; physicochemical properties; antibacterial activity; methods
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1. Introduction

The 3rd of April 2018, the Centers for Disease Control and Prevention published on its official
website an article about “nightmare bacteria”. These bacteria are resistant to all antibiotic tested, and
more than 200 cases were reported in USA in 2017 [1]. It is urgent to react. New therapeutic strategies
have to be proposed. These last fifteen years, the studies about using “nanoparticles” as antibacterial
agents did not cease [2]. What about metallic nanoparticles as new antibacterial drugs?

The antimicrobial properties of several metals, such as platinum, copper, gold and silver are very
widely documented in the scientific literature and some (i.e., gold and silver) are even known since
Antiquity. Even if a substantial quantity of scientific literature covers the use of colloidal suspensions
of metallic nanoparticles—mainly silver—only a few deals with the study of the influence of nanosized
silver-core. Indeed, in large part of studies, the extract-plant or biosynthesis approach is used for
the synthesis of the silver nanoparticles. As such chemicals used may have antibacterial activity,
it is not possible to conclude about silver nanoparticles (Ag NPs) one. Moreover, as silver exhibit
antibacterial properties, a large part of studies are devoted to the synthesis and characterization
of silver-based-nanocomposites.

Hence, one question remains: are metallic nanoparticles and, more specifically, silver nanoparticles
a promising antibacterial agent? To answer, it is necessary to consider studies dealing with the
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synthesis and antibacterial activity of aqueous colloidal solutions of silver nanoparticles obtained
by a synthetic approach, which does not imply antibacterial stabilizers, biosynthesis, extract plant
synthesis, composites and assimilated ones. Moreover, the colloidal solutions of silver nanoparticles
have to be well-characterized, and the antibacterial activity has to be evaluated accurately (i.e., using
standard procedure and identified bacteria strains). However, it is not always the case in reported
studies. Therefore, we selected international publications from 2015 to 2018, referring to “antibacterial”,
“silver” and “nanoparticles” keywords (using SciFindern, we obtained 4779 articles published in
English) and removed all ones dealing with biosynthesis/biogenic (green, plants, extract, leaf, bacteria,
fungi, etc.), composites (coated/coating, hybrid, alloys, core-shell, bi-metallic, decorated, combined
to other metals such as titanium, copper or iron, grafted, filer, doped, modified, porous, hydrogel,
etc.), carbonaceous materials (carbon nanotubes, graphene, etc.), NPs with a mean size higher than
100 nm (such as fibers, etc.), dental adhesive or supported/embedded nanoparticles (cellulose, silk, etc.)
and all formulations using silver nanoparticles combined with antibacterial agent or active molecules
(chitosan, pectin, tannic acid, curcumin, etc.). Finally, we obtained forty-nine international publications
published since 2015 (Table 1 and Supplementary Materials Table S1). The aim of this review is to
discuss the limits we are currently facing regarding the study of aqueous colloidal solutions of silver
nanoparticles, in particular, the different methods used, from their synthesis to the evaluation of their
antibacterial properties.
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Table 1. Methods, synthesis and characterizations of silver nanoparticles, and antibacterial activity evaluation of selected publications from the 2015–2018 period.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria Origin Protocol Culture Media Reference

“Naked”

19.5 ± 7.7 Nano-sphere N/A
−18.0 ± 0.6
(in culture

media)

NaBH4 + AgNO3 in
presence of

ultrasonication

E. faecalis
S. aureus

S. epidermidis
B. subtilis

E. coli
S. typhimurium

S. enterica

KCCM 13807
KCTC 1916
KCTC 1971
KCTC 1021
KCTC 1682

KCCM 40253
KACC 10763

Kirby-Bauer
method

Microdilution
method
MIC90

Mueller Hinton
Agar

Luria Bertani
[3]

10 Nano-flake 50 ppm N/A
Axonnite Silver
suspended in

demineralized water

A. baumannii
(n = 17)

A. baumannii
A. nosocomialis

(n = 10)

Clinical
isolates

ATCC 1906
Clinical
isolates

Microdilution
method N/A [4]

10
20
40

Nano-sphere N/A N/A Vapor nucleation in N2
gas E. coli N/A Kirby-Bauer

method
Mueller Hinton

2 Agar [5]

55.6 ± 2.9 (DLS) Nanosphere 8.53 mg −51.5 ± 2.5 Electrochemically
synthesized

P. aeruginosa
(n = 3)

S. maltophilia
(n = 3)

B. cepacia
(n = 3)

S. aureus
(n = 3)

Clinical isolates

Kirby-Bauer
method

Microdilution
method

TKA

Mueller Hinton
Cation-Adjusted [6]

2–5
(70–75% TEM) Nano-sphere 50 mg/kg +9.2 Nano-Tech (Warsaw,

Poland) L. monocytogenes PCM 2191 Microdilution
method

Tryptone Soy
yeast extract

broth
[7]

23.6 (TEM)
57.8 (DLS) Nano-sphere N/A −28.3

(N/A) Nanoleader (Korea) E. coli
(K-12) KCTC 1116 Growth Curves Luria Bertani [8]

10 Nano-sphere 1 mg/mL N/A Sisco Research lab.
S. aureus
S. aureus
(n = 30)

ATCC 25923
Clinical isolates

Agar Well
diffusion method

Microdilution
method

Mueller Hinton
Agar

Luria Bertani
[9]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria Origin Protocol Culture Media Reference

“Naked” 40 (TEM) Nano-sphere N/A N/A AgNO3 + NaBH4

S. aureus
B. cereus

P. aeruginosa
K. pneumoniae

E. coli

N/A Agar Well
diffusion method

Mueller Hinton
Agar [10]

Unknown
“Naked”

35
27.2 Nano-sphere 20 µg/mL

N/A N/A Sigma Aldrich (Dorset
UK) Laser generated

E. coli
(K-12) JM 109 Agar Well

diffusion method Mueller Hinton [11]

Citrate

23 ± 2 (TEM) Nano-sphere 2 mM N/A
Citrate BioPure™ Silver,

Nanocomposix (San
Diego, CA, USA)

L. monocytogenes
(n = 20)

L. monocytogenes
Clinical isolates Colony Forming

Units Mueller Hinton [12]

6.0–28.2 (XRD) N/A −28.2 to
−32.0 Plasma discharge S. aureus

E. coli
ATCC 25923
ATCC 35218

Kirby-Bauer
method Nutrient Agar [13]

2.3 ± 0.5
12.5 ± 2.2

32.4 ± 6.5 (TEM)
Nano-sphere N/A1 N/A1 NaBH4 + AgNO3 +

sodium citrate
S. aureus

E. coli
ATCC 35696
ATCC 23282

Microdilution
method

Kirby-Bauer
method

Growth Curves

Broth medium [14]

40–50
20 × 20–90

Nano-sphere
Nano-rod N/A −28.8

−23.5
Citrate thermal

reduction method

S. aureus
B. subtilis

P. aeruginosa
K. pneumoniae

E. coli

ATCC 25923
AST5-2

AL2-14B
AWD5

ATCC 25922

Microdilution
method

Kirby-Bauer
method

TKA

Nutrient Agar [15]

20.1 ± 4.4 (TEM)
49.3 ± 5.7

(DLS)
Nano-sphere N/A −19.2 ± 0.7 Citrate thermal

reduction method

E. coli
S. aureus

L. bulgaricus
L. casei

ATCC 25922
ATCC 25923

CGMCC 1.6970
CGMCC 1.2435

TKA
Luria Bertani
Tryptone Soy

MRS
[16]

10–40 (TEM)

Sharp-tipped
triangular,
truncated
triangular,

nanoprisms,
decahedra,
tetrahedra

N/A N/A

Photochemical
synthesis:

4.76 ± 3.88 nm silver
seed nanoparticles
(AgNO3 + citrate +

NaBH4) + 40 W blue
LEDs (Hongke Lighting

kem = 455–475 nm)
{111} facets

E. coli ATCC 25922 Growth Curves Luria Bertani [17]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria

Origin Protocol Culture Media Reference

Citrate

20 ± 9
25 ± 3

11 ± 6 (TEM)
Nano-sphere N/A

−26.37
−37.95
−28.23
(H2O +
salts)

AgNO3 + citrate +
NaBH4

S. aureus ATCC 25923 Agar Well
diffusion method Nutrient Agar [18]

42–58 (TEM) Nano-sphere N/A N/A

AgNO3 + citrate +
NaBH4; polydisperse;

XRD11: intense
reflection at (111)

S. aureus
S. pyogenes

S. typhi
P. aeruginosa

N/A Kirby-Bauer
method Tryptone Soy [19]

15
18
30

30 (DLS)

Nano-sphere N/A

−38.8
−30.7
−38.5
−42.2
(N/A)

AgNO3 + Citrate +
NaBH4

E. coli
B. subtilis N/A Kirby-Bauer

method Nutrient Agar [20]

GSH13 10–50 Nano-sphere 0.197 mg/mL N/A AgBF4 + NaBH4 +
glutathione

C. jejuni
(n = 22)
C. coli

(n = 18)
C. jejuni

Animal or
Human
clinical
isolates

NCTC 11168

Microdilution
method

Brucella
Mueller Hinton [21]

D-xylose
L-arabinose

D-ribose
D-glucose

D-galactose
D-mannose
D-lactose
D-xylose

33
30
39
25
28
25
15
18

Nano-sphere N/A N/A E. coli
Klebsiella spp. N/A N/A N/A [22]

L-fucose 10.15 ± 3.37
(TEM) Nano-sphere N/A −65.4

−17.7

AgNO3 + NaBH4 +
sodium citrate +

mercaptopropionic acid,
then L-fucose

P. aeruginosa
(PAO1) N/A Microdilution

method

Luria Bertani
without

Chloride ions
[23]

PEG 15.8 ± 2.2 (TEM) Nano-sphere N/A −17.2 ± 2.1 AgNO3 + EG/PEG

S. aureus
P. aeruginosa

S. enterica
E. coli

ATCC 6538
ATCC 15442
ATCC 10708
ATCC 11229

Microdilution
method Mueller Hinton [24]

PC
3.3 ± 0.9
4.9 ± 2.9
(TEM)

Nano-sphere N/A N/A
Zwitterionic Protection:

AgNO3 + NaBH4 +
PC-SH

E. coli
S. aureus

OW6
Mu50 Growth curves Todd Hewitt

broth [25]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria Origin Protocol Culture Media Reference

PVA

31 (SEM; TEM:
26)

24 (SEM)
19 (SEM)

14 (SEM; TEM:
10)

Nano-sphere N/A N/A
PVA + AgNO3 + NaBH4

(pH = 6; 8; 10; 12,
respectively)

E. coli
Pseudomonas sp. N/A Kirby-Bauer

method Nutrient Agar [26]

PVP/citrate 50–60
70–80

Semi-triangular
and

truncated
triangular

silver
nanoparticles

+ few
nano-sphere
Triangular

silver
nanoparticles
with sharp

corner

N/A N/A

Citrate + AgNO3 +
NaBH4 + PVP +

visible-light halogen
lamp (50 and 100 W,
respectively); bigger

nanoparticles (>100 nm)
obtained with

visible-light halogen
lamps with higher

intensities

E. coli N/A Colony Forming
Units Nutrient Agar [27]

PVP20

14.0 ± 0.3 (TEM) Nano-sphere 1 mg/mL −27.3
Nanocomposix, OECD

standard BioPure,
PVP20 40kDa

E. coli (K-12)
B. subtilis

MG1655
ATCC 6051 Growth curves Tryptone Soy [28]

5
20 Nano-sphere 1 mg/mL

2 mg/mL N/A
Shanghai Institute of

Fine Chemical Materials
(China)

E. coli
P. aeruginosa

S. aureus
S. epidermidis

ATCC 8739
ATCC 9027
ATCC 6538

ATCC 12228

Poisoned Food
Technique Mueller Hinton [29]

8
29 (TEM) Nano-sphere N/A −22.36

−37.82

PVP + ethylene glycol +
AgNO3; redispersed in

water

A. hydrophila
P. putida

E. coli
B. subtilis
S. aureus

4AK4
KT2442

Trans 1-T1
ATCC 28357

N/A

Kirby-Bauer
method

Microdilution
method

N/A
Mueller Hinton [30]

15.6 (TEM) Nano-sphere N/A N/A PVP + AgNO3 + NaBH4
in water; polydisperse

Citrobacter sp.
Enterococcus sp. N/A Colony Forming

Units N/A [31]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria

Origin Protocol Culture Media Reference

PVP20

3–34 (TEM) Nano-sphere N/A N/A
AgNO3 + Ethanol +

PVP (55000 molecular
mass) in water

S. aureus
PTCC No. 1112

E. coli
PTCC No. 1330

ATCC 6537
ATCC 8739 N/A Mueller Hinton [32]

10–15 (TEM) Nano-sphere N/A N/A

AgNO3 + PVP (k30; Mw.
40000) + hydrazine;
influence of AgNO3,
PVP and hydrazine

concentrations

E. coli
S. aureus

ATCC 25922
ATCC 25923

Kirby-Bauer
method Nutrient Agar [33]

60 ± 15
55 ± 10

60 × 2000–4000

Nano-sphere
Nano-cube,

right
bipyramids
Nanowire

N/A N/A

AgNO3 + PVP (k30) +
ethylene glycol + NaCl

(0. 1, and 5 mg,
respectively)

E. coli ATCC 25922
Growth curves
Microdilution

method
Luria Bertani [34]

20.6 ± 3.1 Nano-sphere 1 mg/mL −35 Nanocomposix (San
Diego, CA, USA)

C. jejuni
(n = 4)

C. jejuni
Salmonella spp.

(n = 5)

Chicken
isolates

NCTC 11168
Chicken
isolates

Microdilution
method

Mueller Hinton
Luria Bertani [35]

PVP
Glycerol

31.2 (TEM)
46.5 (DLS) Nano-sphere N/A +18.7

(N/A)

AgNO3 + PVP or
glycerol + sodium

citrate
(NH4OH, pH = 8)

C. sakazakii

ATCC 29544
ATCC

BAA894
ATCC 29004
ATCC 12868

Microdilution
method

Oxford cup
method

Luria Bertani [36]

Oleylamine 10 (TEM) Nano-sphere N/A −7.11 ColdStones Tech.
(Suzhou, China) B. subtilis ATCC 6633 Growth curves Luria Bertani [37]

Casein 12.5 ± 4 (TEM)
50.0 ± 0.7 (DLS) Nano-sphere N/A

−26.6 ± 1.7
{in

3-(N-morpholini)
propanesulfonic
acid-(hydroxy-methanyl)
aminomethane}

Lab. Argenol S. L.
(Zaragoza, Spain)

E. coli
P. aeruginosa

MC 1061
DS 10-129

Bioluminescence
inhibition assay Luria Bertani [38]

Sericin 3.78 ± 1.14
(TEM) Nano-sphere N/A N/A Silk sericin protein +

AgNO3 + NaBH4

S. aureus
E. coli

ATCC 25923
ATCC 25922

Cell counting
(FCM)

Nutrient
medium [39]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria Origin Protocol Culture Media Reference

Thioacetic
acid

Propionic
acid

20–25
30–35 Nano-sphere N/A N/A

Thioacetic or propionic
acid + silver acetate +

sodium carbonate
(US20120100372A1)

S aureus
S. epidermidis
A. baumannii
P. aeruginosa

ATCC 25923
ATCC 35984
ATCC 19606
ATCC 27853

Microdilution
method Mueller Hinton [40]

Lipoid acid 2.0 ± 0.5 (TEM) Nano-sphere N/A N/A
dihydrolipoic acid +
NaOH + AgNO3 +

NaBH4

S. aureus
E. coli
E. coli

N/A
DH5α

DSM4230
Growth curves Luria Bertani [41]

PEG
EDTA
PVP
PVA

44
39
35

31 (SEM)

Nano-sphere N/A1

−17.5
−23.0
−41.0
−47.0

PEG, EDTA, PVP or
PVA + AgNO3 + NaOH

+ NaBH4 in water

E. coli
Pseudomonas

spp.
N/A Kirby-Bauer

method Nutrient Agar [42]

“Naked”
Unknown

7.5
10.1 (TEM) Nano-sphere

9.7 × 10−8

mol/L
4 × 10−8 mol/L

−38.0
0.0

AgNO3 + NaBH4
Rice starch + AgNO3

S. aureus
S. mutans

S. pyogenes
E. coli

P. vulgaris

ATCC 29737
ATCC 35668
ATCC 8668

ATCC 15224
ATCC 7829

Agar Well
diffusion method

Microdilution
method

Brain Heart
Infusion

Mueller Hinton
[43]

PVA
Citrate
Citrate

10 nm (SEM)
40 nm (SEM)

60 nm
Nano-sphere

N/A
N/A

20 µg/L

−17.0
−48.4
N/A

Chitosan-Ag NPs also
prepared and tested

(Sigma Aldrich)

A. baumanni
(n = 17)

P. aeruginosa
(n = 13)

Enterobacteriaceae
(n = 21)

S. maltophilia
(n = 2)

S. aureus
(n = 13)
S. aureus

S. epidermidis
Enterococcus sp.

(n = 14)

Clinical isolates
Clinical isolates
Clinical isolates
Clinical isolates
Clinical isolates

ATCC 29213
INCQS 198

Clinical isolates

Agar Well
diffusion method

Microdilution
method

Time kill assay

Mueller Hinton
Mueller Hinton
Cation Adjusted

Tryptone Soy
Mueller Hinton
Cation Adjusted

[44]

Cysteine
PVP

7.6 ± 1.5
7.7 ± 1.6 (TEM) Nano-sphere N/A N/A

AgNO3 + NaBH4 +
L-cysteine

AgNO3 + KOH + PVP
(Mw 8000) + NaBH4

S. aureus
E. coli

P. aeruginosa

ATCC 29213
ATCC 23716
ATCC 25619

Microdilution
method

Mueller Hinton
Cation Adjusted [45]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria Origin Protocol Culture Media Reference

Citrate
MPA
MHA
MPS

10.2 ± 2.3
10.2 ± 2.5
10.2 ± 2.2
9.9 ± 2.0

Nano-sphere N/A

−47.4
−34.5
−29.1
−32.6

Citrate + tannic acid +
AgNO3

Citrate-Ag NPs +
mercaptopropionic acid

(ligand exchange)
Citrate-Ag NPs +

mercaptohexanoic acid
(ligand exchange)
Citrate-Ag NPs +

mercaptopropionic
sulfonic acid

(ligand exchange)

E. coli MG 1655 Growth curves Luria Bertani [46]

Citrate
PVP
PEG

40 (TEM; 10–70)

Nano-sphere
Triangular

silver
nanoparticles

with
rounded

edges
Hexagonal
silver NPs

N/A N/A

AgNO3 + citrate
PVP (Mw = 25000) +
AgNO3 + citrate +

H2O2 + NaBH4
PEG (2000) + NaOH +

AgNO3

E. coli DH5α
Agar Well

diffusion method
Growth curves

Luria Bertani [47]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria Origin Protocol Culture Media Reference

Lipoid acid
PEG

“Naked”

9.5 ± 1.9 (TEM)
9.8 ± 2.0

11.2 ± 2.1
Nano-sphere N/A

−28.6
(Serum free

culture
medium)
−10

(Serum free
culture

medium)
−33.9

(Serum free
culture

medium)

Nanocomposix, Europe
Nanocomposix, Europe

Also Tannic acid-NPs
US research

(Nanomaterilas
(Houston, TX, USA)

Actinomyces
(n = 1)

Bacteroides
(n = 4)

Bacteroides
fragilis

Bifidobacterium
(n = 1)

Bifidobacterium
breve

Finegoldia
(n = 2)

Fusobacterium
(n = 4)

Fusobacterium
nucleatum

Parabacteroides
(n = 1)

Parvimonas
(n = 2)

Peptostreptococcus
(n = 1)

Peptostreptococcus
anaerobius

Porphyromonas
(n = 3)

Porphyromonas
levii

Prevotella
(n = 5)

Prevotella
loescheii

Propionibacterium
(n = 2)

Tannerella
(n = 1)

S. aureus
S. aureus
S. aureus

S. epidermidis
S. mutans

Clinical isolates
Clinical isolates

ATCC 25285
Clinical isolates

ATCC 15700
Clinical isolates
Clinical isolates

ATCC 25585
Clinical isolates
Clinical isolates
Clinical isolates

ATCC 25286
Clinical isolates

ATCC 29147
Clinical isolates

ATCC 15930
Clinical isolates
Clinical isolates

ATCC 25923
ATCC 6538

ATTC 6538P
ATCC 14990
ATCC 29175

Plate dilution
method

Microdilution
method

Brucella agar
supplemented

Mueller Hinton
[48]
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Table 1. Cont.

Stabilizer NPs Size (nm) NPs Shape

Stock
Suspension

Concentration
or Mass

Zeta
Potential

(mV) *
Comment Bacteria Bacteria Origin Protocol Culture Media Reference

Citrate
HH

SHSH
SHST

15 ± 4
13 ± 2
13 ± 4

10 ± 6 (TEM)

Nano-sphere

290 mg/L
290 mg/L
330 mg/L
330 mg/L

−39.8 ± 0.74
(H2O +
NaCl)

−34.0 ± 1.97
(H2O +
NaCl)

−34.4 ± 2.03
(H2O +
NaCl)

−35.9 ± 1.09
(H2O +
NaCl)

AgNO3 + Citrate +
NaBH4

Hydroxylamine
hypochlorite + NaOH +

AgNO3
Sodium hypophosphite

+ sodium
hexametaphosphate +

AgNO2
Sodium hypophosphite

+ sodium
hexametaphosphate +

sodium
tripolyphosphate +

AgNO2

E. coli
(K-12)
E. coli

ATCC 10798
ER2566

Microdilution
method Mueller Hinton [49]

Starch 8 ± 4 (TEM) Nano-sphere N/A N/A AgNO3 + NaBH4 +
(C6H10O5)n

S. aureus
E. coli N/A Kirby-Bauer

method Nutrient agar [50]

AOT 20
50 “Nano-sphere” N/A N/A

Bis(2-ethylhexyl)
sulfosuccinate + AgNO3

+ ascorbic acid

E. coli
S. aureus N/A Microdilution

method Luria Bertani [51]

N/A: not available; KCCM: Korean Culture Center of Microorganisms; KCTC: Korean Collection of Type Cultures; KACC: Korean Agriculture Culture Collection; MIC: minimal inhibitory
concentration; ATCC: American Type Culture Collection; DLS: dynamic light scattering; TKA: Time Kill Assay; TEM: transmission electron microscope; PCM: Polish Collection of
Microorganisms; XRD: X-ray diffraction; CGMCC: China General Microbiological Culture Collection Center; MRS: deMan, Rogosa and Sharpe medium; GSH: glutathione; NCTC:
National Collection of Type Culture; PEG: polyethylene glycol; CTAB: cetyl-trimethyl ammonium bromide; NTA: nanoparticle tracking analysis; PC: phosphorylcholine; PVA: polyvinyl
alcohol; SEM: scanning electron microscope; PVP: polyvinylpyrrolidone; ATCC: American Type Culture Collection; EDTA: ethylenediaminetetraacetic acid; FCM: flow cytometry;
MPA: mercaptopropionic acid; MHA: mercaptohexanoic acid; MPS: mercaptopropionic sulfonic acid; HH: Hydroxylamine hypochlorite; SHSH: Sodium hypophosphite and sodium
hexametaphosphate; SHST: sodium hypophosphite, sodium hexametaphosphate and sodium tripolyphosphate; AOT: Bis(2-ethylhexyl) sulfosuccinate; * in aqueous medium if not specified.



Nanomaterials 2019, 9, 1775 12 of 22

2. Ag NPs and Antibacterial Activity

2.1. Nanoparticles Definition

Following ISO/TS 80004-1:2015 recommendations, nano-objects are defined as a material, which
has one, two or three dimensions less than 100 nm. As the antibacterial activity of nanoscale is under
consideration, we have to define nanoparticles as a nano-objects having three dimensions ranging from
1 to 100 nm. Thus, metallic nanoparticles can be defined as a metal atoms aggregate—i.e., chemically
bonded—exhibiting a certain size dispersity.

The LaMer’s theory can explain the formation of metallic nanoparticles in solution [52]. Briefly,
in solution, metal ions condense to lower the system free energy. When the supersaturation in the
precursor is reached, a critical germ forms. Then, the nanoparticle will be obtained by the growth of
this critical germ by either adding an atom to the critical germ or by coalescence with another critical
germ/nanoparticle. As the system wants to minimize its free energy, it will continue to grow until the
formation of the corresponding bulk material. So, it is necessary to add a stabilizer (i.e., ions/molecule
in interaction with nanoparticle surface) to avoid the aggregation process.

Thus, the preparation of NPs colloidal solution implies a solvent, a metal source, a reductant
and a stabilizer. Several recent review papers describe the different strategies to design NPs, more
specifically silver ones for biomedical applications [53–58]. In some cases, a unique compound can
be used as solvent, reductant and stabilizers or as reductant and stabilizer—e.g., polyol process or
citrate-based approach, respectively [59].

Therefore, stabilizer-NPs are characterized by their metallic-core-size, shape and structural
properties, the nature of the stabilizer/capping agent. However, as we are interested in colloidal
solutions for an antibacterial purpose, other parameters such as pH, ionic strength and all the chemicals
present in the solution have to be considered.

2.2. Antibacterial Mechanism of Silver Colloidal Solutions

There are four principal possible mechanisms of silver colloidal solutions (Figure 1): (i) the
formation of free radicals (e.g., reactive oxygen species) by redox reaction, (ii) Ag NPs adhesion to
bacteria cell membrane inducing its destabilization, (iii) the intercalation of Ag NPs between DNA
bases inhibiting DNA replication and transcription and (iv) Ag NPs-induced ribosome destabilization
inhibiting protein synthesis. The antibacterial mechanism of silver colloidal solutions is however
not elucidated: Ag NPs antibacterial activity results from Ag+ ions release from Ag NPs or the
Ag NPs themselves or both. For more details about these aspects, we recommend the following
references [60–65].
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2.3. Colloidal Solution Parameters Influencing Antibacterial Activity

The two parameters that we can find in almost all the studies dealing with Ag NPs and the
antibacterial activity are the size and the shape of the nanoparticles (Table 1). However, there are other
parameters of prime importance for antibacterial activity such as stability and accessibility of NPs’
surface, and silver concentration.

2.3.1. NPs-Metallic-Core Size

The NPs-metallic-core size is usually considered as the main parameter because as the size
decreases the surface-to-volume ratio increases resulting in physicochemical and biological properties
differing from the corresponding bulk material. Indeed, a small size will facilitate the interaction with
the bacteria surface and will potentially have higher antibacterial activity. For instance, Ajitha et al.
prepared, from silver nitrate, polyvinyl alcohol (PVA), and NaBH4 in water, spherical PVA-Ag NPs [26].
They obtained four PVA-Ag NPs sizes by varying the pH of the solution with NaOH (from SEM: 31, 24,
19 and 14 nm at pH = 6, 8, 10 and 12, respectively). Then they evaluated their antibacterial activities
using the Kirby-Bauer method and Escherichia coli and Pseudomonas spp. as test bacteria. The data
obtained indicate that the inhibition disk size increases when the NPs size decreases. However, as NPs
samples possess, by definition, a size distribution it is quite difficult to give a definitive conclusion, and
many questions remain: Which proportion of each NPs sizes are present? Which one is more efficient?
As the presence of Ag2O leads to Ag+ ions release in solution [66], what is the chemical composition
and oxidation state of Ag NPs (i.e., Ag◦ or Ag◦ @ Ag2O)?

2.3.2. Shape and Structural Properties

During their formation, NPs minimize their total free energy by adopting facetted structures. These
structures exhibit faces of different Miller indices, mainly (111) and (100) faces. It worth to note that (111)
faces have lower free energy than (100) ones (i.e., γ (111) < γ (100)). Hence, the so-called “spherical”
NPs possess mainly (111) faces whereas others kind of NPs (e.g., nanoplates, nanorods) present large
(100) faces. The NPs shape and the kind of faces will also influence bacteria/NPs interaction and then
their antibacterial activity. For instance, Hong et al. added NaCl to the reaction medium to modify
the nanoparticles shape [34]. Starting from AgNO3 and polyvinylpyrrolidone (PVP k30) in ethylene
glycol, they obtained “spherical” nanoparticles of 60 nm (±15 nm) exhibiting mainly {111} facets.
With a small amount of NaCl, truncated-nanocubes are formed. With these truncated-nanocubes,
there are by-products such as bipyramids, nanospheres and nanorods. The average size of these
truncated-nanocubes is 55 nm (±10 nm), and the sample exhibits mainly {100} facets with {111} ones
for truncated faces. After treatment of E. coli with Ag NPs, they found that {100} facets structures
have higher antibacterial activities than ones with {111} facets. It can be attributed to higher reactivity
of the {100} facets, which have higher energy than {111} facets. Therefore, nanocubes attach more
rapidly to the bacteria cell membrane, and they also have a higher contact surface with bacteria
membrane in comparison with spherical nanoparticles. This last point explains why with nanowires
(length >2–4 µm) they obtained had the lowest efficiency. Moreover, various nanoparticles shapes
can also be achieved with the seed-mediated growth approach [67]. Hu et al. used seed-mediated
growth to prepare silver nanorods starting from 2 nm seeds and cetyltrimethylammonium bromide
(CTAB) and ascorbic acid [68]. By varying the number of seeds in the growth solution, they obtained
as main products nanospheres or nanorods (spheres mean size: 42 nm; rods mean length: 70 and
85 nm). The antibacterial activities have been evaluated by treating S. aureus and E. coli with the
different samples of NPs, but no significant difference can be observed. However, as CTAB exhibits
antibacterial activity [69,70], it is not evident to decide between the influence of CTAB or NPs shape on
their antibacterial activities. Thus, even if NPs shape and structure should have a strong influence on
antibacterial activity, the lack of structure characterization limits our comprehension of its influence.
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Moreover, if different capping agents and/or different average sizes are used, it becomes also difficult
to conclude on the influence of these parameters on antibacterial activity.

2.3.3. Surface Stability

The surface stability of NPs is related to colloidal solution one. In a non-stable colloidal solution,
the NPs tend to aggregate and so reducing the accessible surface area. Therefore, the potential zeta
and capping agent are also two critical parameters.

A colloidal solution is usually considered as stable when the zeta potential is lower or higher of
−30 or +30 mV. As bacteria membrane cells are negatively charged, a colloidal solution having positive
zeta potential should have enhanced antibacterial activity. In most of the cases, the reported zeta
potential values are obtained from a suspension of nanoparticles in water. Are these values always
valid in culture media? If yes, we can correlate its sign/value to antibacterial activity. However, metallic
nanoparticles exhibit surface plasmon resonance (SPR), and this phenomenon can be characterized by
UV-vis spectroscopy. As the SPR depends on the surface electronic environment, the modification
of the UV-vis spectrum of nanoparticles in water and culture medium observed is related to surface
interaction. Hence, the zeta potential, which corresponds to the electric potential surrounding
nanoparticle surface; should also be modified when the colloidal solution is added to culture medium.
Moreover, most of colloidal solution used for antibacterial activity evaluation has a negative zeta
potential (see Supplementary Materials Table S1). To elucidate the influence of zeta potential, it is
necessary to perform a series of measurements with different pH and ionic strength values close to
culture media ones.

2.3.4. Surface Accessibility

Capping agent at the surface of the metallic core is either preventing or inducing NPs
aggregation [71]. Moreover, depending on the pH of the medium and surface dissociation constants
of the capping agents, the NPs’ assembly can occur [72]. Furthermore, the presence of divalent
cations can induce assembly of NPs by bridging stable negatively charged colloidal solutions [73].
However, capping agent influences also the interaction between medium/bacteria and NPs surface. As
NPs-bacteria surfaces interaction seem to play a crucial role in antibacterial activity (e.g., penetration
of NPs in the bacterial cell), it is essential to verify NPs surface accessibility when capping agent is
grafted to its surface. This aspect is, however, most of the time not considered in the studies dealing
with metallic NPs and antibacterial activities. A catalytic reaction can be used to prove the surface
accessibility. For instance, the hydrogenation of 4-nitrophenol by NaBH4 in water is possible only in
the presence of metallic nanoparticles (e.g., silver or gold nanoparticles) [74]. The systematic use of this
characterization of Ag NPs surface could give information about surface reactivity and one point of
comparison. However, the reactions have to be conducted using the same experimental conditions (i.e.,
same concentrations, temperature, the proportion of nanoparticles, etc.) to facilitate the comparison
between studies.

2.3.5. Other Chemicals and Concentration of Silver

It is also important to consider all chemicals used for the preparation of the NPs colloidal solutions.
Indeed, in some cases, molecules having recognized antibacterial activity are used during the NPs
synthesis, as reductant or solvent for example [32,46]. In such a case, it is no longer possible to consider
only stabilizer-Ag NPs, but antibacterial molecule activity has also to be.

Moreover, if the antibacterial activity of all chemicals used is not known, they also must be
evaluated. Therefore, it is crucial to have reference tests with the metallic precursor, stabilizer and all
other chemicals used for NPs synthesis. Moreover, the activity of metallic NPs has to be compared to
at least one “conventional antibacterial agent” in the same conditions.

The silver concentration is also an important parameter, which has to be considered and can be
determined by different techniques, such as inductively coupled plasma mass spectrometry (ICP-MS).
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Hence, the comparison of the minimal inhibitory concentration (MIC) between different studies could
be facilitated by expressing MIC in molar concentration (mol/L). Moreover, as silver-ions-antibacterial
activity is known since centuries, it is crucial to determine silver ions concentration in colloidal solution
and culture media after incubation time.

3. How to Evaluate the Antibacterial Properties of Ag NPs?

Most of the bacteria are divided into two groups: Gram-positive bacteria and Gram-negative
bacteria. This distinction is primarily based on the structure of the bacterial cell wall (Figure 2).
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This difference in cell wall structure is significant because it has a direct impact on the activity of
certain antibiotics that are then called narrow spectrum, i.e., only active on Gram-negative bacteria or
Gram-positive bacteria.

For several years we have been confronted with a particularly worrying phenomenon: resistance
to anti-infectives. This resistance is found in all microorganisms, to different degrees, but is particularly
worrying in bacteria. Indeed, bacteria have acquired the formidable ability to develop mechanisms of
resistance to anti-infectives, making most of the antibiotics used in therapy obsolete. This situation is
particularly worrying given the limited number of new antibacterial drugs available, and continued
emergence and rapid spread of newly resistant bacterial strains. Therefore, there is an urgent medical
need for new antibacterials [75].

In the search for new antibacterial drugs many studies have sought to study the antibacterial
properties of metal nanoparticles in general, and silver nanoparticles in particular.

3.1. Which Bacteria Test?

If we want to determine the antibacterial spectrum of Ag NPs, it is, therefore, necessary to test their
effectiveness on several different bacteria and if possible both on Gram-positive and Gram-negative
bacteria. In most studies, there are two major bacterial species: Escherichia coli and Staphylococcus
aureus (Table 1 and Supplementary Materials Table S1). Indeed, these two species are those most
frequently encountered in human infectious diseases. They are also particularly resistant to antibiotics
and therefore problematic [76,77]. Now for the same species, there are several strains, and these strains
all have different properties. It is difficult to compare studies that have not been conducted on the
same strains of a species. This may lead some authors to different or even opposite conclusions.

The choice of the bacterium to be tested is also fundamental depending on the therapeutic
applications that one wishes to develop for the use of Ag NPs. We can notably quote the study of
Niska et al. who wanted to study the interest of the Ag NPs in the oral field and who thus chose to
work on bacteria of the oral commensal flora [48].

However, some bacterial species have no interest in human infectious diseases; we think in
particular to Bacillus subtilis. Most of the time, these authors use this bacterium as a model, which may
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be conceivable, but then, it would be more scientifically right to be very careful about the interpretation
of the results, e.g., by recalling that this bacterium does not have interest in human disease, which de
facto would limit the interest of the study itself.

Many authors study the antibacterial properties of Ag NPs either on strains from a collection (e.g.,
ATCC) or clinical isolates (Table 1 and Supplementary Materials Table S1). The interest of strains from
a collection is that they are perfectly characterized (phenotypically, antibiotic resistance profile), which
is rarely the case for clinical isolates, but these ones are directly isolated from patients and therefore
correspond to a unique pathological situation (normally) clearly defined. It should be noted, however,
that some studies do not specify the origin of the bacteria that have been tested [19,20,26,27,31,42,78],
and this is hardly acceptable from a scientific point of view.

Now if we want at a time to demonstrate the full interest of Ag NPs, we will evaluate their
antibacterial properties on clinical isolates, on bacteria resistant to antibiotics. Unfortunately, if we
look at Table 1 and Supplementary Materials Table S1, finally very few studies have been done on
antibiotic-resistant bacteria; and in these studies, we rarely have the antibiograms of the bacterial
strains studied. This is the next step that we must take if we want to prove the interest of a potential
use of Ag NPs in human (or animal) therapy.

3.2. Which Technique to Use?

There is currently no standard, no reference for studying the antibacterial activities of nanoparticles.
Moreover, as we can see (Table 1 and Supplementary Materials Table S1) several techniques, very
different from each other, are used by the authors to evaluate the antibacterial properties of Ag NPs.
For a review of the different techniques that exist to evaluate the antibacterial properties of molecules,
we recommend the review by Balouiri and colleagues [79].

However, this poses a first problem: from the moment when the studies do not use all the same
technique, it will be challenging, if not impossible, to compare the results. In the laboratory, we have
chosen to adapt the method used for antibiotics: microdilution in liquid medium [80]. Indeed, after
evaluating several protocols, this technique allows us: not to have any problem of diffusion of Ag
NPs in the culture medium (which is not the case with the agar method), it is possible to agitate the
microplate to promote contacts between bacteria and Ag NPs (which is not possible with methods using
Petri dishes), this technique is the only one that can give us a minimum inhibitory concentration correct
(which must be the first step when conducting a study on the antibacterial properties of molecules).

Once the problem of the method is settled, another question arises: which culture medium to use?
Again, if we look at the different studies (Table 1 and Supplementary Materials Table S1), there is no
homogeneity in the choice of culture media used. On the contrary, here again, a very large number of
culture media, very different from each other are used: Luria Bertani, Mueller Hinton and Nutrient
Agar. This point can seem anecdotal for some authors, but it is on the contrary fundamental. Bacteria
are living organisms, and each culture medium has a different substrate composition; in such a way
that, depending on the culture medium used for the experiments, we will not have the same growth
kinetics of the bacteria, nor the same phenotypic characters for these bacteria. In the end, if the growing
conditions do not allow us to control the growth of bacteria how to be certain that we will only evaluate
the antibacterial properties of NPs? Again, it is not possible.

In the laboratory, we chose to use the cation-adjusted Mueller Hinton medium. The cation-adjusted
Mueller Hinton medium is the only one recommended for performing antibiograms in clinical
bacteriology [81]. Historically it has been developed for positively charged antibiotics (e.g., colistin)
which is still somewhat interesting in the case of Ag NPs. It is also important to specify that this
medium should be complemented in the case where the study focuses on demanding or “fastidious”
bacteria (i.e., that require an additional substrate for their growth, such as adding blood for streptococci,
for example) [81].

In the end, as we have just seen, it is difficult to conclude on the results of the studies we have
selected, although there is evidence on the antibacterial activities of Ag NPs. However, what is even
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more difficult is to compare studies with each other. Nevertheless, we can highlight the efforts that
have been made by some authors, we can for example highlight the work of Cavassin and collaborators
or Niska and collaborators [44,48] who worked on several bacterial species and for some species
several strains were tested, using accurate techniques; proof that we progress and we have to continue
this way.

4. Conclusions and Future Perspectives

In the fight against infectious diseases, the report is alarming: we are currently very badly
engaged, microorganisms are gaining, day by day, more battles. There are several reasons for
this situation, and we will remember two: antimicrobial resistance and the urgency to find new
anti-infectives [75]. One of the research topics in our research laboratory is dedicated to the research of
new anti-infectives. Moreover, we believe, like other numerous authors, that metallic nanoparticles,
such as silver nanoparticles, might represent, in the future, a therapeutic option for the management
and the treatment of infectious diseases. In any case, silver nanoparticles (and more generally metallic
nanoparticles) deserve our interest in them; that is the challenge. This review aimed to take stock,
through the latest publications on the subject, about the different methodologies that are currently
used, considering the synthesis of nanoparticles, their characterization, and even the evaluation of
their antibacterial properties. The idea was to be able to compare the studies with each other, to have
the best judgment regarding the promising use of Ag NPs. In the end, it appears that it is impossible to
compare the studies between them: there are too many discrepancies between studies (Table 1 and
Supplementary Materials Table S1). Indeed, we think that it is urgent to homogenize the studies, to
better characterize the nanoparticles, to choose a method (or to limit their number) for the evaluation
of the antibacterial properties, to choose bacteria of interest, in agreement with the epidemiological
data or the therapeutic uses envisaged for the silver nanoparticles. It is at this price that the data will
have more impact on the whole of the scientific community (Table 2).

Nevertheless, we must also point out a critical feature of Ag NPs: the toxicity. Indeed, having
an excellent antibacterial agent, with very interesting MICs, is an essential first step, when you are
looking for the antibacterials of tomorrow. However, at the same time, you must never forget the
second and equally important step: the safety of your “promising” antibacterial agent (i.e., Ag NPs).
De facto, many studies have reported a possible toxicity of Ag NPs, both in vivo and in vitro (see [82]
for a state-of-the-art review). Finally, studying the mechanisms of interaction between Ag NPs and
biological cells (i.e., eukaryotic cells) in order to better appreciate the potential risks related to a possible
future use of Ag NPs as antibacterial agents, also seems to become a significant issue.

Table 2. Proposed recommendations.

Nanoparticle Samples

Synthesis Specification of all chemicals used

[83]
Characterizations

Metal core size (TEM)
Hydrodynamic size (DLS)
Zeta-potential
Stock suspension concentration in metal or metal
mass (e.g., ICP-AES)

Microbiology

Antibacterial activity

Specification of the procedure used for antibacterial
activity determination:

• Broth Dilution Procedures (Macrodilution,
Microdilution . . . )

• Kirby-Bauer Method
• In accordance with standard and

approved denominations

[79,80,84–86]

Without forgetting to specify growing conditions
(temperature and time of incubation, shaking or not)
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Table 2. Cont.

Nanoparticle Samples

Bacteria

Specification of the origin of the bacteria:
Strains issued from international collections (e.g.,
ATCC) or Clinical Isolates (with appropriated
antibiograms)
For example:

• Escherichia coli ATCC 25922
• Staphylococcus aureus ATCC 29213
• Pseudomonas aeruginosa ATCC 27853

[79,80,84–86]

Bacterial medium
Mueller Hinton (MH)

Cation-Adjusted MH (CA-MH)
Supplemented in accordance with the bacterial
strains studied . . .

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/12/1775/s1,
Table S1: Ag NPs and antibacterial activity evaluation of selected publications from 2015–2018 period.
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