Nanostructured Cu₂O Synthesized via Bipolar Electrochemistry

Steven McWilliams ¹, Connor D. Flynn ¹, Jennifer McWilliams ², Donna C. Arnold ³, Ruri Agung Wahyuono ⁴, Andreas Undisz ⁵, Markus Rettenmayr ⁵ and Anna Ignaszak ^{1,*}

- ¹ Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Steven.McWilliams@unb.ca (S.M.); connor.flynn@unb.ca (C.D.F.)
- ² Department of Psychology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Jennifer.Sanford@unb.ca
- ³ School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK; d.c.arnold@kent.ac.uk
- ⁴ Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität, 07743 Jena, Germany; ruri.wahyuono@uni-jena.de
- ⁵ Otto Schott Institute of Materials Research, Chair of Metallic Materials, Friedrich-Schiller-Universität, 07743 Jena, Germany; Andreas.Undisz@uni-jena.de (A.U.); M.Rettenmayr@uni-jena.de (M.R.)
- * Correspondence: Anna.Ignaszak@unb.ca; Tel.: +1-506-261-9128

Figure S1: Schematic representing the bipolar electrochemical generation of copper ions for Cu₂O generation.

$Cu^{0} \rightarrow Cu^{2+} + 2e^{-}$	Eq. S1.
$2H_2O + 2e^- \rightarrow H_{2(g)} + 2OH^-$	Eq. S2.
$Cu^{2+} + 2C_6H_{11}O_7 \xrightarrow{-} \leftrightarrow C_{12}H_{22}CuO_{14}$	Eq. S3.
$2Cu^{2+} + C_6H_{12}O_6 + 5OH^- \rightarrow 2Cu_2O + C_6H_{11}O_7 + 3H_2O$	Eq. S4.
$Cu^+ + OH^- \rightarrow CuOH$	Eq. S5.
$2CuOH \rightarrow Cu_2O + H_2O$	Eq. S6.

Figure S2: (a) Color change of the reaction solution during BPE synthesis over 60 min, from left: 0 min, 10, 20, 30, 40 and 60 min (right photo). (b-g) Photos taken during progression of the reaction inside the bipolar cell.

Figure S3: Refinement profile for the Rietveld analysis of room temperature XRD data that was collected for 4.5 V-3H and fitted to the model.⁵¹

Figure S4: Refinement profile for the Rietveld analysis of room temperature XRD data that was collected for 4.5 V-1H and fitted to the model ⁵¹.

Figure S5: Refinement profile for the Rietveld analysis of room temperature XRD data that was collected for 5.0 V and fitted to the model.⁵¹

Figure S6: Refinement profile for the Rietveld analysis of room temperature XRD data that was collected for 6.0 V and fitted to the model.^{S1}

Figure S7: Refinement profile for the Rietveld analysis of room temperature XRD data that was collected for 7.0 V and fitted to the model.⁵¹

Figure S8: Refinement profile for the Rietveld analysis of room temperature XRD data that was collected for 8.0 V and fitted to the model.⁵¹

Figure S9: Emission spectra for Cu₂O synthesized by bipolar electrochemistry at 4.5 V (1h).

Figure S10: Emission spectra for Cu₂O synthesized by bipolar electrochemistry at 4.5 V (3h).

Figure S11: Emission spectra for Cu₂O synthesized by bipolar electrochemistry at 6.0 V (1h).

Figure S12: Emission spectra for Cu₂O synthesized by bipolar electrochemistry at 8.0 V (1h).

Figure S13: Emission spectra for commercial Cu₂O.

Figure S14: TEM of Cu₂O synthesized by bipolar electrochemistry for 1 hour at 4.5 V (a), 6.0 V (b), 7.0 V (c) and 8.0 V (d).

Figure S15: TEM and SEM (inserts) of commercial Cu₂O.

References

S1. M. L. Foo, Q. Huang, J. W. Lynn, W. -. Lee, T. Klimczuk, I. S. Hagemann, N. P. Ong and R. J. Cava, J. Solid State Chem., 2006, 179, 563.