Supporting Information

Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots

Cindy Dias ^{1,2,†}, Vasimalai Nagamalai ^{1,3,†}, Marisa P. Sárria ^{1,*}, Ivone Pinheiro ¹, Vânia Vilas-Boas ^{1,4}. João Peixoto ² and Begoña Espiña ^{1,*}

- ¹ INL International Iberian Nanotechnology Laboratory, Braga, 4715-330, Portugal; cindydias93@gmail.com (C.D.); vasimalai.gri@gmail.com (V.N.); ivone.pinheiro@inl.int (I.P.); vfevilasboas@gmail.com (V.V.-B.)
- ² CEB Centre of Biological Engineering, University of Minho, 4720-057 Braga, Portugal; jmp@deb.uminho.pt
- ³ Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600048, India
- ⁴ UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal
- + These authors contributed equally to this work.
- * Correspondence: marisa.passos@inl.int (M.P.S.); begona.espina@inl.int (B.E.)

Figure S1: Emission spectra of pear CD under different excitation wavelengths (**a**) from 200 to 470 nm and (**b**) from 470 to 600 nm. Optimum selected conditions are $\lambda ex/\lambda em: 470/538$ nm.

Figure S2: Emission spectra of kiwi CD under different excitation wavelengths (**a**) from 200 to 470 nm and (**b**) from 470 to 600 nm. Optimum selected conditions are $\lambda ex/\lambda em: 470/544$ nm.

Figure S3: Emission spectra of citrate CD under different excitation wavelengths (**a**) from 200 to 470 nm and (**b**) from 470 to 600 nm. Optimum selected conditions are $\lambda ex/\lambda em: 470/546$ nm.

Figure S4. XRD pattern of (a) Pear CD, (b) Avocado CD, (c) Kiwi CD and (d) Citrate CD.

Table 61 Autofly program on of CD in Case 2 and UV 2 gulture modium (A T T)
Table S1. Automuorescence of CD in Caco-2 and HK-2 culture medium (A.U.).

Caco-2 cells	Fluorescence	HK-2 cells	Fluorescence	
Control	3136.5	Control	6142	
Kiwi	3802	Kiwi	4152	
Pear	3111	Pear	6550	
Avocado	3188	Avocado	5104	
Citrate	3647	Citrate	6952	
Pepper	3802	Pepper	5519	

Table S2. Properties of the natural sourced CDs used in bioimaging and reported in the literature. All of them were tested for cell bioimaging.

Precursor	Synthesis	Time	Size	QY	In vivo	Ref
	method			(%)	imaging/toxicity	
Apple juice	Hydrothermal	12	4.5	4.27	X / X	1
Bagasse	Hydrothermal	3	1.8	12.3	X / X	2
Bee pollens	Hydrothermal	24	1.1-2.1	6.1-	X / X	3
				12.8		
Black pepper	Hydrothermal	12	3.5 ± 0.1	43.6	$\sqrt{\sqrt{1}}$	4
						and
						this
						work
<i>Bombyx mori</i> silk	Hydrothermal	3	5	13.9	X / X	5
Bread	Acid oxidation	4	2-10	4.5	X / X	6
Cabbage	Hydrothermal	5	2-6	16.5	X / X	7
Carica papaya	Hydrothermal	12	3	7	X / X	8
juice						
Coffee grounds	Heating	2	5±2	3.8	X / X	9
Cow manure	Chemical	72	4.8	65*	X / X	10
	oxidation					
Curcumine	Hydrothermal	12	3.28	8.6	$\sqrt{\sqrt{1}}$	11
Dried shrimp	Hydrothermal	12	6	54*	X / X	12
Enteromorpha	Hydrothermal	3-10	2.75±0.12	8	X / X	13
prolifera						
Garlic	Hydrothermal	3	11	17.5	X / X	14
Garlic	Microwave	2min	5	5	X / X	15
Ginger	Hydrothermal	2	4.3	13.4	X / √	16
Grape juice	Hydrothermal	12	2.7±0.5	13.5	X / X	17
Hair fibre	Acid	24	2-10	11.1	X / X	18
	treatment					
Honey	Hydrothermal	2	2	19.8	X / X	19
Konjac flour	Pyrolysis	1.5	3.37	13/22	X / X	20

Lemon juice	Hydrothermal	10	4.6	28	√ / X	21
Lychee seed	Carbonization	2	1.12	10.6	X / X	22
Mango	Carbonization	0.3-1	5-15	0.48-	$\sqrt{\sqrt{1}}$	23
				3.92		
Milk	Hydrothermal	2	3	12	X / X	24
Milk	Hydrothermal	2-8	3-5	5.86	X / X	25
Neem gum	Biogenic	3	5-8		X / X	26
Nescafe	Heating	0.25	4.4	5.5	√ / X	27
Orange juice	Hydrothermal	2.5	1.5-4.5	26	X / X	28
Onion waste	Hydrothermal	2	7-25	28	X / X	29
Onion peel	Microwave	1-	2-4		X / X	30
		3min				
Рарауа	Hydrothermal	5	2-6/8-18	18.39-	X / X	31
				18.98		
Peanut shell	Carbonization	2	0.4-2.4	9.91	X / X	32
Pigskin	Hydrothermal	2	3.5-7.0	24.1	X / X	33
Plant soot	Reflux with	20	2-4.3	0.72-	√ / X	34
	acid			4.28		
Potato	Hydrothermal	12	0.2-2.2	6.14	X / X	35
Sugar cane juice	Hydrothermal	3	2.71	5.76	X / X	36
Sweet potato	Hydrothermal	18	2.5-5.5	8.64	X / X	37
Trapa bispinosa	Thermal	2	5-10	1.2	X / X	38
peel	oxidation					
Vitamin B1	Carbonization	2	1-6	76*	X / X	39
Waste frying oil	Heating with	5min	1-4	3.66	X / X	40
	acid					
Watermelon peels	Carbonization	2	2	7.1	X / X	41
Avocado juice	Hydrothermal	12	$4.42 \pm$	35	$\sqrt{/}$	This
			0.05			work
Kiwi juice	Hydrothermal	12	4.35 ±	23	$\sqrt{/}$	This
			0.04			work
Pear juice	Hydrothermal	12	4.12 ±	20	$\sqrt{/}$	This
			0.03			work

Statistical Analysis

Statistics were performed using STATISTIC software (StatSoft v.8, US). Prior to the parametric tests all data were evaluated for homogeneity of variances using Levene's test and for normal distribution using Shapiro-Wilk test. In cases of non-homogeneity, data were transformed before the parametric analysis.

One-way ANOVA was used to analyze the effects of fruit-based CD on zebrafish embryos epiboly (8 h_{pf}), head trunk index (32 h_{pf}), spontaneous movements (32 h_{pf}), hatching (56 h_{pf}), yolk volume (56 h_{pf}) and free-swimming (80 h_{pf}). Nested ANOVA was applied to investigate differences on zebrafish embryonic heart rate. To avoid influences associated with covariates, ANCOVA test was performed to determinate the impact of the nanomaterials on zebrafish embryos yolk volume at t_{pf} = 8 h and 32 h (egg volume was used as co-variable) and on pupil size at 32 h_{pf} (eye size was used as co-variable). At 56 h_{pf}, zebrafish embryos yolk extension (embryo length was used as co-variable) was also analyzed using this statistical approach.

One-way ANOVA model was used to analyze the effect of fruit-based CD on both cell lines tested. Post-hoc comparisons were conducted using Student-Newman-Keuls (SNK). The

0.05 level of probability was considered as criterion of significance. The graphical data from *in vitro* tests were generated in GraphPad Prism 6.01.

	hpf	Independent variables	Statistical test	Kiwi	Pear	Avocado	Citrate	Pepper
	8	Epibolic arc	One-way ANOVA	F (5,110)=1.881 P= 0.103	F (3,73)= 0.804; P=0.496	F (5,112)= 0.713; P=0.615	F (5,107)=2.999; P<0.05	F (1, 38)=0.422, P=0.520
					F=(3,72)=1.669; P=	F (5,111)=10.741; P<0.05	F (5,106)=0.853;	
	8-56 Yolk	Yolk volume	ANCOVA	F (5,72)= 2.985; P<0.05	0.248		<i>P</i> =0.516	F (1,36)=1.696; P=0.201
Morphometric analysis	32	Head-trunk angle	One-way ANOVA	F (5,72)= 2.791; P<0.05	F (3,54)= 2.099; P=0.111	F (5,81)= 2.966; P<0.05	F (5,75)= 1.969; P=0.093	F (1,27)= 0.358, P=0.554
	56	Eye surface	One-way ANOVA	F (5,104)=7.389; P<0.05	F (3,27)=37.105; P<0.05	F (5,109)=10.228, P<0.05	F (5,106)=3.227; P<0.05	F (1,36)=9.000, P<0.05
	56	Hatching	One-way ANOVA	F (5,14)= 10.962; P<0.05	F (3,8)= 8.569; P<0.05	F (5,12)= 5.780; P<0.05	F (5,12)= 1.749; P=1.980	F (1,4)= 1.662, P=0.267
					F (5,83)= 45.328; P<0.05	F (6,108)= 116.21; P<0.05	F (6,108)= 281.23;	
Neuro-motor coordination	32	Cardiac frequency	Nested ANOVA	F (7,119)= 65.515; P<0.05			P<0.05	F (2,36)= 49.768, P<0.05
	32	Spontaneous movements	One-way ANOVA	F (5,14)= 3.749; P<0.05	F (3,8)= 1.8678; P=0.213	F (5,12)= 5.735; P<0.05	F (5,12)= 5.049; P<0.05	F (1,4)= 1.077, P=0.358

Table S3. Statistical analysis equations for the diverse sub-lethal toxicity parameters studied in zebrafish embryos.

 80	Free-swimming	One-way ANOVA	F (6,14)= 81.584; P<0.05	F(3,8)= 32.000; P<0.05	F (5,12)= 113.80; P<0.05	F (5,12)= 10.677; P<0.05	F (1,4)= 27.000;P<0.05
 80	Survival	Chi-square	χ^2 =6.848; DF=6; <i>P</i> =0.335	$\chi^2 = 100.294$, DF=5; P<0.05	χ^2 = 125.864, DF=7, <i>P</i> <0.05	χ ² =0.128; DF=5; <i>P</i> =0.999	χ^2 = 306.333; DF = 5; <i>P</i> <0.05

Figure S5. Caco-2 cell viability evaluation after 48 and 72 h incubation with growing concentrations of pepper CD. Different letters indicate significant differences among treatments (P<0.05). 48 h: F(8, 26)=14.885, P<0.05. 72 h: F(8, 27)=8.4291, P<0.05.

Figure S6. Caco-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of avocado CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 26)=4.6450, P<0.05. 72 h: F(8, 27)=21.2970, P<0.05.

Figure S7. Caco-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of kiwi CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 26)=6.0047, P<0.05. 72 h: F(8, 27)=12.7540, P<0.05.

Figure S8. Caco-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of pear CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 26)=16.398, P<0.05. 72 h: F(8, 27)=14.948, P<0.05.

Figure S9. Caco-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of citrate CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 26)=1.0935, P=0,3987. 72 h: F(8, 27)=0.4010, P=0,9101.

Figure S10. HK-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of pepper CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 42)=8.7523, P<0.05. 72 h: F(8, 36)=101.1400, P<0.05.

S-10

Figure S11. HK-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of avocado CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 51)=22.0340, P<0.05. 72 h: F(8, 36)=101.1400, P<0.05.

Figure S12. HK-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of kiwi CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 51)=19.615, P<0.05. 72 h: F(8, 36)=53.115, P<0.05.

Figure S13. HK-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of pear CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 51)=18.884, P<0.05. 72 h: F(8, 36)=10.496, P<0.05.

Figure S14. HK-2 cell viability evaluation after 48 h and 72 h incubation with growing concentrations of citrate CD. Different letters indicate significant differences among treatment (P<0.05). 48 h: F(8, 51)=1.5769, P=0.1551. 72 h: F(8, 36)=1.1170, P=0.

References

- 1. V. N. Mehta, S. Jha, H. Basu, R. K. Singhal and S. K. Kailasa, Sens. Actuators, B, 2015, 213, 434-443.
- F. Du, M. Zhang, X. Li, J. Li, X. Jiang, Z. Li, Y. Hua, G. Shao, J. Jin, Q. Shao, M. Zhou and A. Gong, Nanotechnology, 2014, 25, 315702
- 3. J. Zhang, Y. Yuan, G. Liang and S.-H. Yu, Adv. Sci., 2015, 2, 1500002.
- 4. Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. de F.; Menéndez-Miranda, M.; Costa-Fernández, J.M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M.T. Beilstein J. Nanotechnol. 2018, 9, 530–544.
- 5. Z. L. Wu, P. Zhang, M. X. Gao, C. F. Liu, W. Wang, F. Leng and C. Z. Huang, J. Mater. Chem. B, 2013, 1, 2868–2873.
- 6. M. Saxena and S. Sarkar, Mater. Express, 2013, 3, 201–209.

- 7. A.-M. Alam, B.-Y. Park, Z. K. Ghouri, M. Park and H.-Y. Kim, Green Chem., 2015, 17, 3791–3797.
- 8. B. S. B. Kasibabu, S. L. D'souza, S. Jha and S. K. Kailasa, J. Fluoresc., 2015, 25, 803–810.
- 9. P.-C. Hsu, Z.-Y. Shih, C.-H. Lee and H.-T. Chang, Green Chem., 2012, 14, 917–920.
- 10. C. D'Angelisdo, E. S. Barbosa, J. R. Corre[^]a, G. A. Medeiros, G. Barreto, K. G. Magalha[~]es, A. L. de Oliveira, J. Spencer, M. O. Rodrigues and B. A. D. Neto, Chem. Eur. J., 2015, 21, 5055–5060.
- 11. Pal, T.; Mohiyuddin, S.; Packirisamy, G. ACS omega 2018, 3, 831-843.
- 12. S. L. D'souza, B. Deshmukh, J. R. Bhamore, K. A. Rawat, N. Lenka and S. K. Kailasa, RSC Adv., 2016, 6, 12169–12179.
- 13. Y. Xu, D. Li, M. Liu, F. Niu, J. Liu and E. Wang, Sci. Rep., 2017, 7, 4499.
- 14. S. Zhao, M. Lan, X. Zhu, H. Xue, T.-W. Ng, X. Meng, C.-S.Lee, P. Wang and W. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 17054–17060.
- 15. C. Yang, R. Ogaki, L. Hansen, J. Kjems and B. M. Teo, RSC Adv., 2015, 5, 97836-97840.
- C.-L. Li, C.-M. Ou, C.-C. Huang, W.-C. Wu, Y.-P. Chen, T.-E. Lin, L.-C. Ho, C.-W. Wang, C.-C. Shih, H.-C. Zhou, Y.-C. Lee, W.-F. Tzeng, T.-J. Chiou, S.-T. Chu, J. Cang and H.-T. Chang, J. Mater. Chem. B, 2014, 2, 4564–4571.
- 17. H. Huang, Y. Xu, C.-J. Tang, J.-R. Chen, A.-J. Wang and J.-J. Feng, New J. Chem., 2014, 38, 784–789.
- 18. D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang and J.-J. Zhu, Carbon, 2013, 64, 424–434.
- 19. X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng and Y. Dou, Biosens. Bioelectron., 2014, 60, 292–298.
- 20. X. Teng, C. Ma, C. Ge, M. Yan, J. Yang, Y. Zhang, P. C. Morais and H. Bi, J. Mater. Chem. B, 2014, 2, 4631–4639.
- 21. H. Ding, Y. Ji, J.-S. Wei, Q.-Y. Gao, Z.-Y. Zhou and H.-M. Xiong, J. Mater. Chem. B, 2017, 5, 5272–5277.
- 22. M. Xue, M. Zou, J. Zhao, Z. Zhan and S. Zhao, J. Mater. Chem. B, 2015, 3, 6783-6789.
- 23. C. J. Jeong, A. K. Roy, S. H. Kim, J.-E. Lee, J. H. Jeong, I. In and S. Y. Park, Nanoscale, 2014, 6, 15196– 15202.
- 24. L. Wang and H. S. Zhou, Anal. Chem., 2014, 86, 8902–8905.
- 25. D. Wang, X. Wang, Y. Guo, W. Liu and W. Qin, RSC Adv., 2014, 4, 51658-51665.
- 26. C. Phadke, A. Mewada, R. Dharmatti, M. Thakur, S. Pandey and M. Sharon, J. Fluoresc., 2015, 25, 1103– 1107.
- 27. C. Jiang, H. Wu, X. Song, X. Ma, J. Wang and M. Tan, Talanta, 2014, 127, 68-74.
- 28. S. Sahu, B. Behera, T. K. Maiti and S. Mohapatra, Chem. Commun., 2012, 48, 8835–8837.
- 29. R. Bandi, B. R. Gangapuram, R. Dadigala, R. Eslavath, S. S. Singh and V. Guttena, RSC Adv., 2016, 6, 28633–28639.
- K. Bankoti, A. P. Rameshbabu, S. Datta, B. Das, A. Mitra and S. Dhara, J. Mater. Chem. B, 2017, 5, 6579– 6592.
- 31. N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen and J. Wang, Biosens. Bioelectron., 2016, 85, 68–75.
- 32. M. Xue, Z. Zhan, M. Zou, L. Zhang and S. Zhao, New J. Chem., 2016, 40, 1698–1703.
- 33. X. Wen, L. Shi, G. Wen, Y. Li, C. Dong, J. Yang and S. Shuang, Sens. Actuators, B, 2016, 235, 179–187.
- 34. M. Tan, L. Zhang, R. Tang, X. Song, Y. Li, H. Wu, Y. Wang, G. Lv, W. Liu and X. Ma, Talanta, 2013, 115, 950–956.
- 35. V. N. Mehta, S. Jha, R. K. Singhal and S. K. Kailasa, New J. Chem., 2014, 38, 6152-6160.
- 36. V. N. Mehta, S. Jha and S. K. Kailasa, Mater. Sci. Eng., C, 2014, 38, 20-27.
- 37. J. Shen, S. Shang, X. Chen, D. Wang and Y. Cai, Mater. Sci. Eng., C, 2017, 76, 856-864.
- 38. A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon and M. Sharon, Mater. Sci. Eng., C, 2013, 33, 2914–2917.
- 39. S. K. Bhunia, N. Pradhan and N. R. Jana, ACS Appl. Mater. Interfaces, 2014, 6, 7672–7679.
- 40. Y. Hu, J. Yang, J. Tian, L. Jia and J.-S. Yu, Carbon, 2014, 77, 775–782.
- 41. J. Zhou, Z. Sheng, H. Han, M. Zou and C. Li, Mater. Lett., 2012, 66, 222-224.