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Abstract: The combination of graphene and a metasurface holds great promise for dynamic
manipulation of the electromagnetic wave from low terahertz to mid-infrared. The optical response
of graphene is significantly enhanced by the highly-localized fields in the meta-atoms, and the
characteristics of meta-atoms can in turn be modulated in a large dynamic range through electrical
doping of graphene. Graphene metasurfaces are initially focused on intensity modulation as
modulators and tunable absorbers. In this paper, we review the recent progress of graphene
metasurfaces for active control of the phase and the polarization. The related applications involve, but
are not limited to lenses with tunable intensity or focal length, dynamic beam scanning, wave plates
with tunable frequency, switchable polarizers, and real-time generation of an arbitrary polarization
state, all by tuning the gate voltage of graphene. The review is concluded with a discussion of the
existing challenges and the personal perspective of future directions.
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1. Introduction

The electromagnetic response of an optical device, from basic lenses and mirrors to advanced
metasurface alternatives, is governed by two factors: material and structure. Beam engineering in
conventional optics relies on separate contributions from the material refractive index n and the
interface profiles d(x, y), leading to bulky size and limited functionality. Driven by the continuous
demand on minimization and the progress of nano-fabrication, metasurfaces offer a promising platform
for beam transformation over a thin layer of meta-atoms [1–3]. Meta-atoms with deep subwavelength
structures couple to the light with strong field localization such that the effective material property
is modified locally as ne f f (x, y), which is quite different from that of the natural material. With such
spatially-designable ne f f (x, y), beam molding is possible over an ultrathin layer of meta-atoms with
fixed thickness d. Metasurfaces significantly reduce the size of optical devices with comparable or
even unavailable novel functionalities, such as a metalens with close-to-unity numerical aperture
and a planar profile [4–6], polarization-multiplexed holography [7–10], the synthesis of multiple
functions [11–13], and coupling of spin-angular momentum [14,15], to name a few.

Actively-tunable or reconfigurable responses are highly desired in practical applications including
dynamic wavefront shaping, adaptive optics, and single-pixel detection, which can be facilitated by
including functional materials in the metasurfaces with dynamic modulation. Graphene, a single layer
of carbon atoms arranged in a honey-comb lattice, is an outstanding candidate with extraordinary
electrical and optical properties [16,17], as its Fermi level and the corresponding charge carrier density
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can be drastically modified by DC gate biasing. In graphene metasurfaces, the material and structure
promote each other such that the resonator strengthens the interaction of light with the atomic thin
layer, and the tunable material property of graphene in turn modulates the response of meta-atoms.
Therefore, the structured graphene or integration of graphene with passive metasurfaces is an effective
solution to enhance the dynamic modulation of beam engineering.

Compared to metasurfaces employing other active materials with different tuning mechanisms,
such as electrically-tuned liquid crystals [18,19], thermally-modulated phase change materials [20],
and mechanically-deformed elastic materials [21–23], graphene metasurfaces have several advantages.
Graphene as the thinnest active material is naturally compatible with planar metasurfaces and silicon
photonics. The electrical tuning speed is very high, from MHz [24,25] to GHz [26], with a large dynamic
tuning range or tuning depth. More importantly, the material property of graphene can be electrically
modulated in an extremely wide spectrum from sub-terahertz (sub-THz) to near-infrared (near-IR).
Interestingly, the conductivity modulation in different sub-bands is quite different, with modulation
focused on the real part at sub-THz and on the imaginary part at higher frequencies, leading to various
adjustable properties in metadevices.

The development of graphene metasurfaces starts from intensity modulation. In 2011, the intensity
modulation of the THz wave in graphene micro-ribbon array was reported [27], followed by several
designs as modulators and switches [24,25,28–31], tunable metasurface absorbers [26,32]. and spatial
light modulators [33]. Besides intensity modulation, increasing attention has focused in recent years
on the phase modulation for dynamic wavefront shaping and tunable polarization control, with
plenty of theoretical designs and several experimental breakthroughs. This paper emphasizes recent
development of graphene metasurfaces for active control of phase and polarization, which has not
been systematically summarized in related review articles [3,34,35].

The paper is organized as follows. Section 2 introduces the distinct material properties of graphene
in different frequency bands with a tunable Fermi level, which lays the physical foundation for
graphene-based active metasurfaces and offers different mechanisms of the tunability. Section 3
summarizes the dynamic graphene phase shifters with the target to achieve a large range of dynamic
phase response for desired wavefront shaping working in transmission, reflection, in-plane, and
out-of-plane manners. Section 4 is focused on the polarization manipulation to achieve tunable
polarization selectivity and polarization conversion. Conclusions and personal remarks on the
challenges and development directions of graphene metasurfaces are given in Section 5.

2. Material Properties of Graphene

The optical response of graphene is governed fundamentally by its surface conductivity. Since
the intuitive optical characterization is usually done through the permittivity or the mode index,
we summarize in this section the conductivity, the effective permittivity, and the mode index of the
surface plasmon (SP) wave supported by graphene, so as to perceive the transformation of optical
response with Fermi level and in different frequency bands.

The surface conductivity of graphene can be modeled by the well-known Kubo formula derived
with the random phase approximation (RPA) theory [36–38].

σ =
−ie2

πh̄2(ω + i/τ)

∫ ∞

0
ε

[
∂ fd(ε)

∂ε
− ∂ fd(−ε)

∂ε

]
dε +

ie2(ω + i/τ)

πh̄2

∫ ∞

0

fd(ε)− fd(−ε)

(ω + i/τ)2 − 4(ε/h̄)2 dε (1)

where e is the electron charge, h̄ is the reduced Planck constant, and ω is the angular frequency. fd(ε)

is the Fermi–Dirac distribution as fd(ε) = (e(ε−EF)/kBT + 1)−1. kB is the Boltzmann constant. T is
the temperature. EF is the Fermi level. τ is the carrier relaxation time defined by τ = µEF/(ev2

f ).

v f = 106 m/s is the Fermi velocity, and µ is the carrier mobility fluctuating in a large range determined
by the fabrication process. µ is around 0.1 m2/Vs in the chemical vapor deposition (CVD) graphene [39],
1 m2/Vs in the mechanically-exfoliated graphene [40], and even 100 m2/Vs in the suspend graphene
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at low temperature [41]. The carrier density n is related to the Fermi level by n = E2
F/(πh̄2v2

f ).
The dynamic modulation of n with EF makes graphene either metallic, semiconductive, or dielectric.

The first term in Equation (1) is the intraband contribution, which can be explicitly expressed
as [38]:

σintra =
2kBTe2

πh̄2 ln(2cosh
EF

2kBT
)

i
ω + i/τ

(2)

When EF � kBT, Equation (2) is simplified as the Drude model σintra = ie2EF
πh̄2(ω+i/τ)

. The second

term in Equation (1) originates from the interband contribution and can be approximated, if EF � kBT,
as [38]:

σinter =
ie2

4πh̄
ln
(

2EF − (ω + i/τ)

2EF + (ω + i/τ)

)
(3)

If the thickness d is considered, the effective permittivity of graphene relative to the vacuum
permittivity is defined as:

εr = εav +
iσ

ε0ωd
(4)

where ε0 is the vacuum permittivity and εav is the average relative permittivity of the surrounding
environment. The mode index of the SP wave supported in the graphene monolayer is derived from
the dispersion equation as [42,43]:

nsp =

√
εav − (

2εav

ση
)2 (5)

with η being the wave impedance.
In Figure 1, the three parameters above are plotted at different frequencies associated with

different types of light–matter interaction. The parameters are specified in the caption. In the sub-THz
region (Figure 1a), the real part of the conductivity σ

′
, corresponding to the imaginary part of the

permittivity ε
′′
r , is dominant, indicating graphene as a lossy film. The loss is weakly dependent on

the frequency, but is very sensitive to the variation of EF. Electric gating of the graphene-loaded
metallic metasurface in this frequency band is mainly embodied in the amplitude modulation of
the local resonances together with a limited range of phase variation due to the transition between
underdamped and overdamped phases. Graphene at this frequency is seldom patterned as it does not
support the SP wave with nsp less than one.

In the THz to mid-IR band (Figure 1b), the most important feature is the SP wave with very large
n
′
sp and very small loss. The variation of EF changes σ

′′
, ε
′
r, and n

′
sp, but only has a small effect on

the loss. The metasurface with patterned graphene shows tunable SP resonance frequency together
with a large dynamic range of phase variation. Even in the hybrid metasurface where the resonance
originates from the metallic antennas, variation of EF shifts the resonance frequency because graphene
modulates the dielectric constant of the environment.

When h̄ω is comparable to 2EF around the step in σ
′

and ε
′′
r (Figure 1c), both intraband and

interband transitions contribute to the optical response, such that the metasurface with graphene still
has tunability by changing the Fermi level. In the near-IR and visible frequencies where h̄ω � 2EF,
the interband contribution dominates. ε

′
r becomes positive with a constant ε

′′
r . Graphene behaves as

a dielectric layer with universal absorption of 2.3% [44].
The variation of key material properties from sub-THz to near-IR is summarized in Figure 1d.

It dictates different modulation mechanisms in the graphene-based metasurfaces, which endows
the design with diverse tunability with EF, such as shifting the operation frequency, modulating the
efficiency of wavefront shaping, switching among multiple functionalities, and dynamic polarization
conversion, as will be detailed in Sections 3 and 4.
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Figure 1. σ (from Equations (2) and (3)), εr (from Equation (4)), and nsp (from Equation (5)) at
sub-THz (a), THz to mid-IR (b), and near-IR frequencies (c). µ = 1 m2/Vs, d = 0.35 nm, εav = 1.
The thick lines are for EF = 0.2 eV, and the thin lines are for EF = 0.25 eV. The solid lines are the
real parts, and the dash lines are the imaginary parts. The key material properties of graphene are
summarized in (d) at different frequencies.

3. Phase Modulation in Graphene Metasurfaces

Metasurfaces have been applied with great success for complicated wavefront shaping because of
their compactness and flexibility when compared to conventional bulky devices. Dynamic wavefront
shaping is a highly-desirable feature towards practical applications including, but not limited to
adaptive optics and satellite communication. Ideally, the phase shifters should cover the complete 2π

phase range with high efficiency or even independent control of the amplitude and phase responses to
implement arbitrary kinds of wavefront shaping. In reality, it is not easily achievable by simply tuning
the optical properties of an atomic layer. The combination of graphene and a metasurface presents
an effective solution to enhancing the interaction with increased phase shifting. The constitutive
phase shifters in the graphene metasurface array are either graphene micro-/nano-structures with
separate biasing or graphene-hybridized metallic/dielectric resonators with a single-location biasing.
The former offers the maximum degree of freedom for dynamic wavefront shaping, and the latter is
more practical in implementation.

3.1. Wavefront Shaping in Transmission

In 2012, Min’s group experimentally demonstrated terahertz switching [28] by attaching graphene
to a layer of hexagonal metallic meta-atoms with top and bottom electrodes for static biasing (inset
of Figure 2a). Working in the low THz range similar to the case of Figure 1a, the graphene layer
acts as the surrounding medium with tunable loss in close proximity to the meta-atoms. The charge
carriers accumulated at the edges of the hexagon increasingly leak into the neighboring element
through the graphene layer with increased conductivity. Therefore, the resonance becomes weaker and
slightly shifted as the biasing voltage is applied from the charge neutral point (CNP). The measured
phase response in Figure 2a based on the THz time-domain spectroscopy (THz-TDS) system shows
a dynamic phase shift of 32◦ at 0.65 THz through 850-V voltage variation from the CNP. However,
the limited phase coverage is not enough for wavefront shaping. In 2018, more than 90◦ phase
modulation together with the 50-dB amplitude modulation was experimentally demonstrated [45] in a
bilayer-graphene-loaded split ring resonator array, as shown in Figure 2b,c.
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When graphene itself is patterned as a phase shifter, such as a graphene ribbon or a graphene
patch, it only provides a dynamic phase range of 180◦ around the plasmonic resonance by tuning the
Fermi level or the dimension due to the intrinsic Lorentz-shape electric dipole resonance (Figure 2d). In
fact, the effect of the material loss and the environment leads to an even smaller phase range [46,47].
Additionally the transmission intensity is very small away from the resonance. To improve the efficiency
of such a phase shifter, two graphene nanoribbons are combined in parallel in a unit cell [46]. By
individually tuning the Fermi level of each nanoribbon, phase delay varies from 0 to 180◦ with
comparable transmission intensity. Numerical simulations validate an anomalous deflector at IR
composed of such elements with tunable beam direction and a flat lens with tunable focal length
in Figure 2e. In order to cover the full 360◦ phase range, a stack of three graphene ribbons with
proper dielectric separation was proposed as the metasurface unit cell for efficient beam focusing [48].
The phase shifters achieve a high transmission amplitude above 0.7 with full control over the phase of
the transmitted wave when the outer and inner graphene ribbons are independently biased. However,
separate gate biasing among elements in three layers is too complicated to implement at the studied
mid-IR frequencies.

Figure 2. Transmissive graphene phase shifters for dynamic wavefront shaping. (a) Transmission phase
variation with biasing voltage and frequency in the hexagonal metallic metasurface integrated with
graphene. The inset is a schematic of the structure. The dashed line at 350 V corresponds to the charge
neutral point. At a fixed frequency 0.65 THz, dynamic phase shift of 32◦ is observed by tuning the
loss of graphene when Vg is from 350 V to −500 V. Reproduced with permission from [28], Copyright
Springer Nature, 2012. (b) Unit cell of the hybrid metasurface consisting of a split-ring resonator and
double-layer graphene capacitor. (c) Transmission magnitude and phase spectra at various biasing
voltages. The dynamic phase shift is due to the tunable material loss of graphene. Reproduced with
permission from [45], Copyright The authors, 2018. (d) Phase coverage and scattered magnetic field
of uniform graphene ribbons by tuning the Fermi level. The phase coverage is limited to 180◦. (e)
Two parallel graphene ribbons are grouped in a unit cell to achieve nearly constant transmission
intensity for different phase shifters. An array of such unit cells with individual biasing is simulated
for anomalous refraction (top) and focusing with tunable focal length (bottom). Reproduced with
permission from [46], Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014.

Recently, the geometric phase has been utilized widely in metasurfaces for wavefront shaping
by rotating the asymmetric inclusions [49,50]. In Figure 3a, through an array of graphene nanocross
resonators with different orientations [51], the transmitted circularly-polarized beam with the opposite
handedness of the excitation gains the geometric phase as twice the rotation angle while keeping the
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transmission amplitude of 0.4 at the optimum frequency. The phase profile for anomalous refraction is
solely determined by the orientation of the graphene inclusions irrelevant to the conductivity. Therefore,
highly efficient anomalous refraction is maintained over a wide bandwidth from 14.5 THz to 17 THz
when the conductivity is dynamically adjusted, as shown in Figure 3b. The increased carrier density
of graphene blue shifts the optimum frequency together with a dynamic scan of the beam direction.
Although all the graphene elements experience the same voltage, the biasing is complicated due to the
separate arrangement. The related study stops at the numerical validation. Until 2018, a similar idea was
experimentally demonstrated by Min and Zhang [52] around 1.15 THz with a more feasible structure in
Figure 3c. The geometric phase profile is provided by the metallic resonators with proper orientation,
on top of which is a graphene monolayer biased at the periphery. For anomalous refraction and focusing,
the phase profile does not change with gate voltage, while the intensity does (Figure 3d). Gate-induced
increase in the carrier density of graphene results in a stronger absorption of THz waves through the
intraband transitions. Therefore, the bending and focusing are most efficient at the CNP and experience
an intensity decrease with further biasing (Figure 3e,f). Comparison of Figure 3a,c shows that graphene
is a frequency-tunable resonator in the former and loss-tunable medium close to the metallic resonator in
the latter, corresponding to the material properties of Figure 1a,b, respectively. Therefore, the optimum
working frequency varies with the Fermi level in Figure 3b and stays the same in Figure 3d.

Figure 3. Transmissive active metasurfaces for dynamic wavefront shaping based on the geometric
phase. (a) Graphene nanocross metasurface with space-variant orientation for deflection of the
circularly-polarized beam. (b) The transmitted circularly-polarized beam with the opposite handedness
of the excitation gains the geometric phase as twice the rotation angle while keeping the transmission
amplitude of 0.4 at the optimum frequency. (c) Deflection efficiency spectrum when the graphene
nanocrosses have different Fermi levels. The large deflection efficiency is well maintained over a wide
bandwidth and a large range of the Fermi level. Reproduced with permission from [51], Copyright
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015. (d) Schematic of the active metasurface
composed of a single layer of graphene deposited on a U-shaped metallic aperture where the spatial
phase function is defined by the orientation of the U-shaped aperture. (e) Variation of the efficiency of
anomalous refraction with biasing voltage and frequency. (f) Electric field distribution at two different
gate voltages when the metasurface is designed for anomalous refraction. The metasurface works best
at the CNP and shows reduced intensity with additional biasing due to increased loss in graphene.
Reproduced with permission from [52], Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,
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2017. (g) Monolayer graphene attached to gold aperture antennas with different orientations for
geometric phase response and different lengths for resonance phase response. The resonance phase is
tunable by voltage to carefully compensate the variation of the phase function at different frequencies.
(h,i) The phase profile is dynamically tuned to satisfy two parabolic functions at two Fermi levels,
leading to different focal lengths with comparable focusing efficiency. Reproduced with permission
from [53], Copyright Chinese Laser Press, 2018.

As the geometric phase does not change with the Fermi level, the active tunability of the device is
limited to intensity modulation at a fixed frequency. In more scenarios, one wants to tune the focal
point or the steering angle dynamically with the maximum possible intensity. For this purpose, Wang’s
group proposed a strategy in 2017 to achieve a transmissive metalens with a dynamically-tunable
focal length [54]. The experimental demonstration was done very recently [53]. The structure consists
of monolayer graphene on top of gold aperture antennas with different orientations and lengths
(Figure 3g). The phase profile is determined by both the geometric phase and resonance phase,
the latter of which is adjustable by the Fermi level of graphene. With a careful design, the phase
profile can be dynamically tuned to satisfy two parabolic functions at two Fermi levels, leading to an
electrically-tunable focal length in a large range of 4.45λ in experiments with comparable efficiency, as
shown in Figure 3h,i.

3.2. Wavefront Shaping in Reflection

When a metallic mirror is introduced to the active phase shifter with a dielectric spacer,
the phase modulation range can be significantly enlarged. The whole structure can be considered
as an asymmetric Fabry–Perot resonator, where the large phase range is gained from the multi-path
propagation between the top and bottom layers. In other words, the electric current circulating between
the top metasurface and the bottom plate forms a magnetic resonance with 360◦ phase variation across
the resonance frequency.

In order to access the 360◦ phase range dynamically at a fixed working frequency, a loss tuning
mechanism is required in the top layer to tune the structure through the underdamped-critical
coupling-overdamped transition. Tuning the resistive loss of the top layer dictates how far the energy
goes through the dielectric spacer and how strong the coupling is with the bottom plate, and is therefore
an effective way to tune the phase response. The resistive loss changes the reflection intensity and
phase, but does not shift the resonance frequency. One can only access half of the 360◦ phase range at
a fixed frequency with the structure in Figure 4a, where the metallic patches are covered by graphene.
The 360◦ phase range can be covered by two types of metallic patches with shifted resonance frequencies.
The working frequency is chosen in the shaded area in Figure 4b between the two resonances [55].
The THz-TDS measurement has demonstrated a maximum phase modulation range of 243◦ at 0.48 THz,
which can be further increased if the carrier scattering loss is reduced in graphene.

The above design works at sub-THz, where graphene is a lossy surrounding medium, as analyzed
in Figure 1a. The necessity of two types of unit cells to access 360◦ phase response originates from the
inability of graphene to tune the resonance frequency. Another approach to accessing the full phase
range is to work at higher frequencies where graphene directly modulates the resonance frequency
with different biasing. In 2017, Atwater’s group demonstrated more than 230◦ phase modulation
using the structure in Figure 4c in mid-IR frequencies [56]. Here, graphene is attached to a uniform
array of gold antennas with very small gaps. In mid-IR, graphene shows low loss and a tunable
dielectric constant with the carrier density, as discussed in Figure 1b. The resonance frequency shifts
with the environmental dielectric constant, resulting in a widely-tunable phase range of more than
200◦ from 8.5 µm to 8.7 µm, as shown in Figure 4d,e. Although the measured reflectivity is quite
low due to absorption of the SiNx substrate and the low mobility of graphene charge carriers, the
proposed design is one of the most promising designs for dynamic beam steering. Despite the similar
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configurations in Figure 4a,c, graphene plays different roles in the dynamic adjustment depending on
the working frequencies.

Alternatively, graphene resonators can replace the graphene–metallic resonator structure in the
top layer for reflective phase modulation, as summarized in Figure 5. All of them are targeted at
mid-IR beam shaping, where the graphene pattern is a plasmonic resonator with tunable resonance
frequency. Among various shapes, the graphene ribbons are the most extensively-studied ones, due to
their simplicity and ease of biasing at one end of the structure. Specifically, Figure 5a utilizes the
spatially-variant graphene ribbons to achieve desired phase profile at the center frequency and to
change the Fermi level for dynamic modulation [47,57]. Figure 5b shows the phase variation with
the ribbon width, which serves as the guidance for designing the metasurface array for focusing and
steering applications.

Figure 4. Reflective phase shifters with monolayer graphene for dynamic phase modulation.
(a) Monolayer graphene is attached to the array of Al patches separated with the bottom Al film
with an SU-8 spacer. (b) Gate-dependent reflection phase spectra of the combined structure when the
Al patches have two sizes. Here, graphene as a lossy surrounding medium in sub-THz frequencies
tunes the resonance intensity and phase. In each unit cell, the maximum phase change is 180◦

around the resonance frequency by tuning the biasing voltage. By utilizing two types of unit cells
with different resonance frequencies and working in the shaded frequencies, a 360◦ phase change is
accessible by tuning the biasing voltage. Reproduced with permission from [55], Copyright American
Physical Society, 2015. (c) Graphene-tuned gold antenna array with back mirror. The zoom-in plot is
the SEM image of the gold antennas with nanometer gaps. (d,e) Tunable absorption (d) and tunable
reflection phase (e) for different graphene Fermi levels. The dielectric constant of graphene is sensitively
modulated in the mid-IR, leading to a widely-tunable phase range of more than 200◦ from 8.5 µm to
8.7 µm. Reproduced with permission from [56], Copyright American Chemical Society, 2017.

When the graphene ribbons are separately biased, more degrees of freedom are gained for
controlling the functionality temporally and spatially [58,59]. Figure 5c shows that the smooth 360◦

phase variation is covered by tuning the Fermi level, and it is well maintained from 4 THz to 6 THz.
Beyond this frequency range, the phase variation is either too sharp or too weak to use (Figure 5d).
It leads to switching of the functionality by frequency, for example, from an anomalous reflector at
5 THz to a normal reflector at 3.5 THz. With the Fermi level of the graphene ribbon tuned spatially
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and temporally, a metalens of a large numerical aperture is numerically demonstrated with either a
fixed or variable focal point over a wide bandwidth [58]. Completely different functionalities, such as
cloaking, illusion, and focusing, can be implemented in one metasurface [60]. In such kinds of active
designs, the efficiency is mainly governed by the mobility of graphene carriers. The study shows
that the carrier relaxation time τ seldom affects the reflection phase, but mainly controls the local
reflectivity. τ is around 1 ps in the designs of Figure 5, leading to an overall efficiency of around 60 to
70%. The efficiency can be improved to 90% if the relaxation time is increased to 5 ps [59].

Figure 5. Graphene nanoribbons for reflective wavefront shaping. (a) Graphene ribbon element on
top of the dielectric/metal substrate. (b) Variation of reflectivity and phase with the ribbon width.
Reproduced with permission from [47], Copyright The authors, 2015. (c) Smooth 360◦ phase variation
is covered by tuning the Fermi level of graphene , and it is shifted with a well-maintained shape
from 4 THz to 6 THz. Adapted from [58], Copyright IOP Publishing Ltd., 2017. (d) Far away from
the optimum frequency, the phase variation is either too sharp or too weak to use. Reproduced with
permission from [59], Copyright IEEE, 2018. Wavefront shaping is possible by properly selecting the
ribbon width at the fixed Fermi level from (b), or by individual gate control over an uniform graphene
nanoribbon array following (c,d).

Similar to the transmission cases, uniform biasing of either monolayer graphene or graphene
ribbons is promising for fabrication, but limited to efficiency modulation or on-off switching of a
specific function. In contrast, individual biasing of each ribbon is extremely difficult to implement
in device integration, although at-will wavefront shaping is theoretically possible in real time with
satisfactory efficiency. A compromise solution utilizes both the geometric phase and resonance phase
with a similar configuration as Figure 3g, but working in the reflection side with a back mirror [61].
The geometric phase governs the general phase profile, and the resonance phase is tuned by the
Fermi level to compensate minor phase variations needed for different focal lengths. However, in
both transmission and reflection designs, the lens aperture is limited by the small tuning range of the
resonance phase with the Fermi level, leading to an inaccurate focal point as compared to the design.

In addition, the metasurface is endowed with increased power when more complicated graphene
elements and the corresponding gate configuration are considered. For example, when two graphene
patches are combined in a unit cell in-plane [62] or stacked on top of the substrate with individual
gate control [63], the wavefront engineering has been studied with an increased bandwidth. Taking
advantage of the highly-confined surface plasmon in graphene, a dual-band focusing lens is proposed
by stacking two layers of graphene nanoribbons above the gold reflector with negligible crosstalk [64].
The wavefront can be independently engineered in two distinct frequencies with each layer being
responsible for one frequency.

3.3. In-Plane Plasmonic Wavefront Shaping and Coupling with Out-of-Plane Propagation

Apart from wavefront shaping in free space, control of the SP waves propagating along the
graphene surface holds significant promises towards minimization of the photonic integrated circuits.
Compared to the noble metal counterparts, graphene plasmonics show low loss and strong confinement
together with the tunability via electrical or chemical doping. As will be shown in the following
literature, in-plane and out-of-plane beam shaping focus on applications in the THz to mid-IR
frequencies taking advantage of the spatially- and temporally-tunable nsp of the SP wave with the
Fermi level following the discussion in Figure 1b.
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Fundamentally, the plasmonic wavefront is manipulated via a nonuniform conductivity pattern
along graphene. Several ways are proposed to achieve such a conductivity pattern [65]. Figure 6a uses the
uneven ground plane to create different distances between the flat graphene layer and the highly-doped
silicon ground plane [66]. When a fixed biasing voltage is applied, the electric fields experienced by
the graphene inside and outside of the double-convex region are different, which in turn produces an
inhomogeneous conductivity pattern for spatial Fourier transformation in Figure 6b. With a proper design
of the uneven ground plane, the focal length is even variable with the voltage [67]. Chemical doping,
though without dynamic control, is another popular way to change the optical properties of graphene.
Figure 6c shows that the adsorption of proper molecules on graphene leads to chemical doping through
charge transfer. By patterning two types of organic molecules on graphene, a plasmonic metasurface
can be realized with any gradient effective refractive index profile to manipulate SP beams as desired
[43]. A multiscale theoretical approach combining the first-principles electronic structure calculations and
finite-difference time-domain simulations is developed to reconcile the band structure modification by the
molecules and the mesoscopic effect on the SP wave propagation. The designed plasmonic Luneburg lens
and SELFOC lens are in a notably subwavelength size of around one tenth of the free space wavelength.
By creating vacancies with the designed shape in the graphene layer (Figure 6d), this enables excitation
of the SP wave from free-space illumination and manipulation of the SP wavefront [68]. Figure 6e,f
shows the plasmonic superfocusing and plasmonic vortex beam generation with a well-designed vacancy
geometry. The size of the focusing hotspot is far below the diffraction limit considering the strong
plasmonic localization in graphene.

Figure 6. In-plane plasmonic wavefront engineering. (a) Monolayer graphene on top of the uneven
ground plane made of highly-doped silicon. Different distances between the graphene layer and the
ground plane lead to two conductivities and two refractive indices of the SP wave in and out of the
lentil area. (b) Simulated electric field of the SP wave through the graphene Fourier lens with point
source excitation. Reproduce with permission from [66], Copyright Aptara Inc., 2012. (c) Schematic
representation of the graphene layer patterned with two types of organic molecules (TCNQ +
TTF and F4 - TCNQ) to achieve an inhomogeneous conductivity profile through charge transfer.
Reproduced with permission from [43], Copyright American Chemical Society, 2014. (d) Schematic of
the spiral-shaped graphene vacancy for excitation and focusing of the SP wave. (e) Superfocusing using
a spiral-shaped graphene vacancy together with a circularly-polarized incident beam. (f) Generation of
plasmonic vortex beam with five segmented graphene vacancies. All the in-plane wavefront shaping is
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achieved in a notable subwavelength area and beyond the diffraction limit considering the strong
localization of the graphene plasmon. Reproduced with permission from [68], Copyright Optical
Society of America, 2014.

On the other hand, the strong mismatch of the wave vectors in the plasmonic wave and free
space wave causes a great obstacle in exciting and leaking the SP waves in graphene. Different
mechanisms have been reported to excite the strongly-localized SP waves in graphene through
diffraction gratings [69], sharp tips [70,71], and vacancies [68]. Similarly, the coupling from the SP
wave to the propagation wave is the reverse process, which can be done in the same structure. To
further increase the flexibility, coupling the SP wave to the free space beam with steerable directions is a
highly-desired feature in many applications including communications, remote sensing, and image
scanning, which is not easily available especially in the THz region. In the design of Figure 7a, by densely
distributing gate pads underneath the monolayer graphene, the surface reactance can be sinusoidally
modulated with adequate biasing voltage to each pad [72]. The surface wave interacts with the
sinusoidal modulation to produce the leaky wave radiation. Since the radiation direction is determined
by the modulation periodicity, which can be dynamically varied by grouping different numbers of pads
in one period, the radiation direction can be steered in real time at a fixed frequency, as calculated in
Figure 7b. Alternatively, Figure 7c utilizes the periodic metal–dielectric–graphene plasmonic grating to
achieve electrically-controllable THz beam scanning [73]. The graphene gratings are biased with the
same voltage, which modulates the effective refractive index of the SP wave supported in graphene,
leading to varied radiation directions based on the grating equation. Figure 7d shows the radiated
near-field from 13◦ to −18◦ when the biasing voltage is 256.5 mV (left) and 53.2 mV (right).

The above leaky wave scanning is limited to one plane. Scanning in arbitrary directions in the full
space is more difficult, as pixel-by-pixel biasing makes the configuration a huge challenge for device
integration. Figure 7e is a simplified design to achieve such functionality. The dynamic bean scanning
in both elevation and azimuth planes is achieved by applying two groups of one-dimensional biasing
pads underneath the graphene sheet [74]. They are orthogonal and decoupled. One group offering
monotonic impedance variation along the y direction mainly determines the radiation in the azimuthal
plane, while the other provides sinusoidal impedance modulation along the x direction to decide the
elevation angle of the radiation. Figure 7f shows examples of the two-dimensional radiation pattern
towards different directions with the adequate choice of the voltages in the two groups of gating pads.
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Figure 7. Leaky waves from graphene plasmonic structures with a dynamically-steerable direction.
(a) A graphene sheet on the back-metalized substrate with the isolated poly-silicon gating pads for
space-dependent DC biasing. The surface reactance is sinusoidally modulated with adequate biasing
voltage to each pad. The periodic modulation offers effective momentum to transfer the surface
wave into free-space radiation. (b) The radiation direction of the leaky wave is dynamically shifted
when different numbers of pads are contained in a modulation period. Reproduced with permission
from [72], Copyright IEEE, 2014. (c) The silica-graphene grating with the silver substrate and a slit
for THz beam scanning. All the graphene ribbons are biased with the same voltage. The leaky beam
direction is determined and tuned by the effective refractive index of the SP wave in graphene. (d) The
near-field plot of the radiation with different biasing voltages applied. Biasing voltage is 256.5 mV (left)
and 53.2 mV (right). The refractive index of the SP wave is 1.27 and 2.60, resulting in the radiation
towards 13◦ and −18◦, respectively. Reproduced with permission from [73], Copyright Elsevier B.V.,
2015. (e) Graphene leaky wave antenna for two-dimensional beam scanning with the simplified two
groups of gating pads. One group on the left offering monotonic impedance variation along the y
direction mainly determines the radiation in the azimuthal plane, and the other provides sinusoidal
impedance modulation along the x direction to decide the elevation angle of the radiation. (f) Radiation
pattern in different directions via simulation by simply changing the two groups of biasing voltages.
Reproduced with permission from [74], Copyright Optical Society of America, 2016.

4. Polarization Modulation in Graphene Metasurfaces

Polarization manipulation, usually achieved by birefringence materials, total internal reflection,
optical gratings, and the Faraday effect, is instrumental in a wide range of optical applications,
such as telecommunications [75], imaging [76], sensing [77], polarimetry [78], and spectroscopy [79].
As compared to those conventional methods, metasurfaces have shown exceptional capabilities for
flexible polarization control in a planar, ultrathin, and integrable manner. Introduction of graphene
into the metasurfaces opens an exciting route to dynamically and actively taming the polarization
in a desired manner. The basic idea is an anisotropic subwavelength pattern made of graphene or
hybrid graphene/metal that supports two plasmonic eigenmodes along two orthogonal polarization
directions. Therefore, the polarization control generally utilizes the plasmonic property of graphene
in Figure 1b. By altering the relative magnitude and phase delay between the two eigenmodes via
geometric design and dynamical modulation of graphene conductivity, several outstanding features
are proposed, such as wave plates with tunable working frequency, switching between two polarization
states, or variation of the polarization along a continuous path in the Poincare sphere, all without
readjusting the geometry of the metasurface. The review of this part is classified by the functionality
as quarter-wave plates, half-wave plates, polarizers, and general polarization control.

4.1. Graphene-Based Quarter-Wave Plate

The quarter-wave plate (QWP) converts a linear polarization into a circular one, by engineering
the two orthogonal eigenmodes with equal amplitude and 90◦ phase delay. Figure 8a is an
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asymmetric graphene nanocross with distinct plasmon resonances along the two arms [80]. The 45◦

linearly-polarized (LP) beam is changed into a circularly-polarized (CP) beam at 7.92 µm when the
graphene Fermi level is 0.75 eV. The working wavelength is blue-shifted with the further increase of the
graphene Fermi level. However, the conversion efficiency is low, and the quarter-wave plate is strictly
satisfied at a single frequency. Thus, the bandwidth is very narrow (estimated as 1% from [80]) once a
certain biasing voltage is applied. Figure 8b enlarges the bandwidth to 40% due to the interaction of
the top graphene grating and the bottom gold grating with opposite phase retardation dispersion [81].
Variation of the carrier density changes the graphene from transparent to conductive, leading to a
polarization switch from co-polarized LP to CP with EF = 0 and 0.5 eV.

The form birefringence of the graphene grating is further enhanced in Figure 8c by introducing
a periodic gradient instead of the binary pattern [82]. The increased birefringence shifts the working
frequency to a lower value. The bandwidth of the quarter-wave plate relative to the center frequency
is therefore increased as compared to the binary design. In order to dynamically move the working
frequency in a wide bandwidth, liquid crystal (LC) is integrated into the graphene grating with
additional electrical modulation of the birefringence. The theoretical study indicates by electrically
controlling the liquid crystal director angle that the dynamic bandwidth of such hybrid quarter-wave
plate achieves 78% centered at 1.15 THz. The design in Figure 8d has shown similar dynamic bandwidth
by independently biasing the top graphene pattern and the bottom graphene film [83]. The bottom
layer composed of seven layers of graphene acts as a reflector with a tunable reflection phase, which
is used to compensate the difference of phase delay due to the frequency shift. Furthermore, the
efficiency is very high (∼70%) by working in reflection mode.

Figure 8. Graphene metasurfaces as active quarter-wave plates. (a) Graphene asymmetric nanocross for
LP to CP conversion. The 45◦ LP beam is converted into a CP beam at 7.92 µm when the graphene Fermi
level is 0.75 eV. The operation frequency blue shifts with the increase of the Fermi level. Reproduced
with permission from [80], Copyright Optical Society of America, 2013. (b) Hybrid metasurface
composed of graphene sandwich grating and gold grating separated by a polymer spacer. The form
birefringence in graphene grating and gold grating adds up to offer a constant phase delay of 90◦

between two eigenmodes over a wide bandwidth. Reproduced with permission from [81], Copyright
The authors, 2015. (c) Graphene grating sandwich with well-designed distance and in-plane gradient
on top of the LC layer. The spatial gradient of the graphene grating increases the form birefringence,
and the electrical control of the LC molecule direction leads the QWP to have a dynamic bandwidth
of 78%. Reproduced with permission from [82], Copyright The authors, 2018. (d) A graphene sheet
patterned with butterfly holes and backed by seven layers of graphene with separate biasing for
wideband LP to CP conversion. The bottom seven layers of graphene show a tunable reflection phase in
order to compensate the difference of the phase delay due to the frequency shift over a wide bandwidth.
Reproduced with permission from [83], Copyright The authors, 2017.

4.2. Graphene-Based Half-Wave Plate

Half-wave plates (HWPs) as the cross-polarization converter require 180◦ phase retardation and a
comparable intensity of the two eigenmodes. Different from the QWP, the HWP is a real challenge
through a single layer of anisotropic graphene pattern. As mentioned in Section 3.1, each eigenmode is
an electric dipole with 180◦ or less phase shift across the resonance. Spectral shifting of two dipole
resonances from the orthogonal directions of the anisotropic element leads to a phase difference of
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less than 180◦. Therefore, the monolayer design working in the transmission mode only rotates the
LP wave by a few degrees [84], and almost all the graphene HWPs work in the reflection mode with
the anisotropic pattern backed with a metallic mirror at a proper distance. Table 1 summarizes the
key features of these HWPs working in THz and mid-IR (all theoretical designs), from which we can
generalize the rule of designing graphene HWP to meet the needs of different applications.

The first three designs [85–87] in Table 1 share the same L-shaped graphene pattern (G pattern)
or the complementary slot. We found that by properly selecting the arm length and width,
the performance of the HWP can be narrowband [85], dual-frequency [86], or broadband [87],
depending on the spectral separation of the two eigenmodes and their quality factors. Besides
the L-shaped design, the graphene layer is patterned into various anisotropic shapes, from which the
sinusoidal [88] and φ-shaped designs [89] also gain very wide bandwidth. Here, the bandwidth is
specific to the static bandwidth when a fixed Fermi level is given to graphene. It is estimated with the
polarization conversion ratio (PCR) above 0.5, where PCR is defined as |Rcross|2/(|Rcross|2 + |Rco|2).
Rcross and Rco are the reflection coefficients of the cross- and co-polarized beams. The maximum PCR
in all cases is close to one, indicating a complete polarization conversion. The carrier relaxation time τ

used in the modelings varies from 0.5 ps to 1 ps, and it should be at least larger than 0.02 ps to maintain
the polarization conversion effect [90]. The Fermi level is relatively high, close to 1 eV in most cases.
An exception is [91], where the graphene Fermi level is 0 eV. The birefringence in this study originates
from two layers: the I-shaped metallic resonator and the graphene ribbon with orthogonal orientations,
leading to a broad operation bandwidth of around 96%. Although all the designs show very high
PCR above 90%, this does not account for the absorption. The peak efficiency listed in Table 1 is the
maximum value of |Rcross|2, which indicates the net power into the cross-polarization. Due to the
different relaxation times and different intensities of the field localization, the net efficiency varies from
50 to 90%. Still, these HWPs are efficient due to the blocking of the transmission channel.
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Table 1. Comparison of active half-wave plates made of graphene reflective metasurfaces. G, graphene.

Ref. Structure Freq. Static
Bandwidth

τ
EF

Peak
Eff.

Lattice
Size Thickness Dynamic Tunability

[85] L-shaped G pattern + back mirror 38.9 THz ∼ 3% ∼0.9 ps
0.9 eV ∼ 76% 0.02λ 0.23λ

∼ 13% dynamic bandwidth with
EF from 0.7 to 0.9 eV

[86] L-shaped G slot + back mirror 31.4 THz
41.3 THz

∼ 5%
∼ 3%

1 ps
0.9 eV ∼ 80% 0.016λ 0.28λ

∼ 30% and ∼ 20% dynamic bandwidth
with EF from 0.7 to 1 eV

[87] L-shaped G pattern + back mirror 6.65 THz ∼ 50% 1 ps
0.9 eV ∼ 80% 0.17λ 0.33λ

∼ 69% dynamic bandwidth with
EF from 0.7 to 1 eV

[92] rectangle G holes + back mirror 46.8 THz ∼ 5% 0.5 ps
1 eV ∼ 49% 0.03λ 0.25λ

∼ 32% dynamic bandwidth with
EF from 0.6 to 1 eV

[93] elliptical G pattern + back mirror 22.5 THz ∼ 9% 1 ps
0.9 eV ∼ 83% 0.015λ 0.16λ

∼ 28% dynamic bandwidth with
EF from 0.6 to 0.9 eV

[91] I-shaped metallic resonator + G ribbons + back mirror 0.67 THz ∼ 96% 1 ps
0 eV ∼ 90% 0.27λ 0.25λ

EF from 0 to 0.6 eV, polarization varies
from cross-LP to ellipse to CP

[90] H-shaped G holes + back mirror 35.7 THz 11% 0.5 ps
1 eV ∼ 70% 0.02λ 0.26λ

∼ 37% dynamic bandwidth with
EF from 0.6 to 1 eV

[94] Cross G pattern + back mirror 7.7 THz 25.8% 1 ps
1 eV ∼ 80% 0.05λ 0.25λ

∼ 77% dynamic bandwidth with
EF from 0.5 to 1 eV

[88] Sinusoidal G holes + back mirror 1.6 THz 47% 1 ps
0.4 eV ∼ 60% 0.09λ 0.26λ

Shift of the bandwidth with EF is
small relative to the static bandwidth

[89] φ-shaped G pattern + back mirror 5.98 THz 41.9% 0.6 ps
0.6 eV ∼ 80% 0.04λ 0.25λ

∼ 88% dynamic bandwidth with
EF from 0.4 to 1 eV



Nanomaterials 2019, 9, 398 16 of 25

The lattice size is apparently one or two orders of magnitude smaller than the vacuum wavelength
taking advantage of the strong localization of graphene plasmons. As the localization increases with
frequency, the lattice size is smaller in higher frequency designs. Due to such a small feature size, all the
proposed designs are very robust to the variation of the incidence angle up to 40◦ or more [88,90,93,94].
This is the merit of the graphene HWP compared to the metallic counterpart besides electrical tunability.
Interestingly, the thickness of the dielectric spacer layer separating the graphene pattern and the back
mirror is always around 0.25λ if the thickness means the single optical path taking the refractive index
of the dielectric into account. The round trip through the dielectric with the 180◦ phase delay upon
back reflection enables the enhancement of interference in the reflection side.

Finally, the dynamic tunability of the graphene-based HWP through the electrical control of the
Fermi level is discussed in the last column of Table 1. Generally, an increase of EF leads to reduced loss
and stronger plasmonic resonance with blue-shifted resonance frequency and thus helps increase the
PCR. Accordingly, a decrease of EF causes lower PCR and narrower static bandwidth. The lower limit
of the dynamic bandwidth is set by PCR > 0.5. In addition, EF above 1 eV is avoided considering the
breakdown of the capacitor and the extraordinarily high biasing voltage, which sets the upper limit of
the dynamic bandwidth. The designs in [87,89,94] show a broad dynamic bandwidth around 70∼90%.
Table 1 indicates that the design with a wide static bandwidth is more likely to have a wide dynamic
bandwidth. Please note that all the data with the ∼ sign are estimated from the plots and without the
∼ sign are the exact ones mentioned in the literature.

4.3. Graphene-Based Polarizer

In addition to engineering the phase retardation of the two eigenmodes, graphene metasurfaces
can be tailored to filter selectively one eigenmode while eliminating the orthogonal one so as to
be a polarizer, or in other words a polarization-selective surface. A straightforward example is an
anisotropic graphene resonator such as Figure 9a supporting two spectrally-separated resonances
along orthogonal directions [95]. By working at a frequency where one polarization is on resonance
and the other is off resonance, the on-resonance state is strongly reflected, while reflection of the
off-resonance state is fairly weak (Figure 9b). Such polarization selectivity is switched on only when
the graphene is doped to support the plasmonic resonance.

Besides the switchable function, graphene endows the polarizer with frequency tunability and the
active controllable isolation depth of the polarization states with the elaborate designs in Figure 9c,e,
respectively. In Figure 9c, the L-shaped trace is inserted into orthogonal-oriented graphene strips to
couple the resonances in the two directions such that the whole structure exhibits the CP selectivity [96].
Left circular polarization (LCP) and right circular polarization (RCP) excitation causes different current
distributions in the sandwich element with different resonance frequencies, such that one polarization
is blocked by strong resonances and the other goes through with small insertion loss. Figure 9d shows
that the operation frequency can be dynamically shifted with the variation of the graphene Fermi level.

The chiral metamaterials have been studied with enhanced circular dichroism (CD) [97] and
optical activity (OA) [98]. When the graphene layer is incorporated as a loss-controllable medium into
the chiral resonators in Figure 9e, the radiation loss of the resonator is controlled by the voltage [99].
Underdamped to overdamped phase transition for the RCP wave is clearly observed in the experiment,
while the off-resonance LCP wave experiences negligible modulation (Figure 9f). Therefore, at the
critical coupling condition, a giant CD with a 45-dB isolation is experimentally achieved. Different from
the plasmonic feature of patterned graphene in most of the polarization controllers, here the tunable
loss of the monolayer graphene is the key to tune the CD originating from the chiral meta-atoms.
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Figure 9. Graphene metasurfaces as active polarizers. (a) Rectangular slots in the graphene layer with
artificial birefringence and its biasing configuration. (b) Different lengths along the x and y directions
lead to different resonance frequencies. At the frequency of 12.7 THz, x polarization is on resonance
and strongly reflected, while y polarization is off resonance and weakly reflected. The x polarization is
filtered upon reflection. Reproduced with permission from [95], Copyright American Physical Society,
2012. (c) Two layers of orthogonally-orientated graphene strips sandwiching an L-shaped metallic
resonator. The asymmetric L resonator couples to the orthogonal graphene strips, leading the LCP
and RCP beams to different resonance frequencies, such that one polarization is blocked by strong
resonances and the other goes through with small insertion loss. (d) Variation of the LCP transmission
with the graphene Fermi level leads to a frequency-tunable polarizer. Reproduced with permisson
from [96], Copyright Optical Society of America, 2015. (e) Graphene as a loss-tunable material attached
to the bilayer of a conjugated double-Z chiral metamaterial for active control of the radiation loss.
(f) Measured transmission spectra for LCP and RCP waves with different gate voltages. The RCP
wave experiences underdamped to overdamped phase transition, while the off-resonance LCP wave
experiences negligible modulation. The isolation depth is 45 dB at the critical coupling condition
and can be actively controlled via biasing. Reproduced with permission from [99], Copyright The
authors, 2017.

4.4. General Polarization Control in Graphene Metasurfaces

In general, the output beam through graphene metasurfaces may exhibit elliptical polarization,
where the tilt angle and/or the ellipticity can be actively engineered with the variation of the graphene
Fermi level. Multiple polarization states are flexibly switchable with proper biasing voltage at high
modulation speed in a single structure, which is highly demanding for polarization encoding and
multiplexing.

In 2017, Shvets’ group experimentally demonstrated an active graphene metasurface that
converts a linear polarization into an elliptical one with controllable tilt angle and ellipticity [100].
The configuration is a C-bar-shaped anisotropic metallic metasurface integrated with a graphene
layer (Figure 10a), which induces a strong Fano resonance only when the polarization is along the bar
direction (y direction). Therefore, the reflection spectra of the y-polarized beam were well controlled
by the voltage due to the intense interaction of the in-plane electric field with graphene, while
the x polarization is unaffected, as shown by the measurement results in Figure 10b. At a specific
wavelength of 7.72 µm, the tilt angle can be modulated with constant ellipticity when the biasing
voltages are −200 V, 0 V, and 250 V in Figure 10c.
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Figure 10. Continuous or multi-state active polarization engineering. (a) Graphene integrated with an
anisotropic metasurface for linear to elliptical polarization conversion upon reflection. (b) Reflection
spectra of x- and y-polarized beams with different gate biasing voltages. The design induces a strong
Fano resonance only when the polarization is along the bar direction, i.e., the y direction. The Fano
resonance dip in y polarization shifts with the voltage, and the x polarization is unaffected. (c) The tilt
angle is adjustable with constant ellipticity by changing the biasing voltage as −200 V, 0 V, and 250 V at
7.72 µm. Reproduced with permission from [100], Copyright The authors, 2017. (d) Graphene-loaded
slot-shaped metasurface for polarization conversion due to strong resonance along the short edge and
weak interaction along the long edge. (e) Reflection phase difference between x and y polarization
states under different voltages. The phase differences of 90◦, 180◦, and 270◦ are obtained at 7.1 µm with
proper voltage applied. (f) The 61◦ linear polarized light is changed to LCP, cross-LP, and RCP when the
voltage is 34 V, 89 V, and 170 V relative to the charge neutral point (CNP) for encoding and multiplexing
applications. Reproduced with permission from [101], Copyright WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2015. (g) Unit cell of a tunable polarization rotator composed of 45◦-rotated bi-layer
metallic gratings and orthogonal bi-layer graphene gratings. The polarization rotation is enhanced
by the Fabry–Perot interference between the top and bottom gratings and dynamically changed via
modification of the graphene conductivity (h) The polarization rotation angle varies continuously from
20◦ to 45◦ and 45◦ to 70◦ by sequentially tuning the Fermi level of the orthogonal graphene gratings
with a high transmission efficiency of above 75% in a wide band between 0.83 and 1.2 THz. Reproduced
with permission from [102], Copyright Elsevier Ltd., 2018.

Similarly, by utilizing another anisotropic metasurface, namely the rectangle slot array in
Figure 10d, the polarization conversion comes from strong resonance along the short edge and weak
interaction along the long edge [101]. The voltage variation shifts the resonance frequency, as well as
the phase difference between the orthogonal LP modes. Figure 10e shows that the phase differences of
90◦, 180◦, and 270◦ are obtained at 7.1 µm with the corresponding voltage applied, which are used to
convert an LP mode into LCP, cross-LP, and RCP, respectively (Figure 10f). The three polarization states
can be used for encoding binary data and polarization multiplexing with any desired time-domain
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sequence. In addition, graphene gratings and metallic gratings are stacked with proper orientation in
Figure 10g to rotate the polarization direction of LP beam dynamically from 20◦ to 70◦ with a high
transmission efficiency of above 75% in a wide band between 0.83 and 1.2 THz [102], taking advantage
of the Fabry-Perot interference and the dynamic graphene conductivity. Such controllable optical
activity without chiral material holds good prospects in biology and spectroscopy.

5. Discussion and Conclusions

If the metasurfaces are classified as two categories: graphene-integrated metallic resonator array
and patterned graphene resonator array, most of the experimental validations until now fall into
the first case. This is not only because of the relatively mature transfer technique [103] of graphene
without further patterning steps, but also due to the simple biasing at a single location. A recent
study [104] concluded that the graphene/metal hybrid structure, as compared to the graphene-only
structure, has a higher quality factor and extinction ratio, with the performance maintained better
during the dynamic modulation. In contrast, patterning and independent biasing of the isolated
graphene inclusion remains a big challenge, especially at mid-IR, where the feature size is in the
nanometer scale.

The relaxation time of carriers in most of the CVD-grown graphene layer is around 10∼30 fs
when transferred to different substrates [28,52,56,100]. We notice that this value is one or two orders
higher in most of the theoretical designs, though high mobility of 104 cm2/Vs has been reported
before [40]. It is predicted that the small scattering time of tens of femtoseconds will introduce strong
absorption and significantly reduced the range of phase response [88–90]. Therefore, improving the
quality of graphene remains a key step to boosting the efficiency of active metasurfaces. The designs
robust to the graphene loss or utilizing the lossy feature are more favorable in practice. Other practical
considerations include ways to increase the carrier density at low gate voltage by using the ion-gel top
gate [105] or the bi-layer graphene capacitor [45].

The development of graphene metasurfaces is generally following the track of metallic metasurfaces.
The initially-proposed monolayer metallic metasurfaces usually suffer from poor efficiency and limited
phase response range. The introduction of the back mirror enhances the interaction of light with the
metallic resonators for efficient wavefront shaping in reflection mode. The geometric phase is then
successfully used for wideband phase manipulation, and the layered configuration is helpful to improve
the efficiency in transmission mode. All of these progresses have been witnessed in the development of
graphene metasurfaces. However, most of the graphene configurations stay at the stage of dynamic phase
shifters. To continue following the track of metallic metasurfaces, we envision graphene designs with
spatially- and temporally-variant phase profiles for complicated wavefront shaping beyond focusing
and bending, such as dynamic hologram imaging and reconfigurable structured beam generation, where
the static metallic counterparts have been widely studied.

With the recent trend from plasmonic to dielectric metasurfaces due to programmable electric
and magnetic responses, graphene-dielectric hybrid design has become one of the most promising
directions for active wave engineering with improved efficiency and increased flexibility. Initial
studies include enhanced transmission modulation [106,107], tunable electromagnetically-induced
transparency [108], quarter-wave plates [109], and very recently, experimentally-demonstrated tunable
absorbers [110].

In summary, the recent progress of graphene metasurfaces is overviewed with emphasis on the
active phase and polarization control by relating the basic material property to the tunable device
functionality. With the introduction of graphene, the metasurface is vested with tunable operation
frequency, controllable efficiency, or switchable multiple functionalities. Additionally, graphene also
extends the operation frequency of metallic metasurfaces into the sub-THz regime where metals as
perfect electric conductors do not interact much with light, and even the near-IR and visible region
where the interband transition dominates the conductivity [111]. Although most of the reviewed
studies stay in the theoretical designs and numerical validations, we have noticed that active wavefront
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shaping, such as anomalous reflection [52] and focusing [53], and electrical tuning of the polarization
states [99,100] have been proven by experiments in the past two years. We believe more and more
active devices based on graphene will become feasible with the advances of the fabrication technique
in the near future, to enrich the optical components and to address technical challenges for the THz
and mid-IR technology.
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