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Abstract: The mesoporous La-Na co-doped TiO2 nanoparticles (NPs) have been synthesized by
non-aqueous, solvent-controlled, sol-gel route. The substitutional doping of large sized Na+1

and La+3 at Ti4+ is confirmed by X-ray diffraction (XRD) and further supported by Transmission
Electron Microscopy (TEM) and X-ray Photo-electron Spectroscopy (XPS). The consequent increase in
adsorbed hydroxyl groups at surface of La-Na co-doped TiO2 results in decrease in pHIEP, which
makes nanoparticle surface more prone to cationic methylene blue (MB) dye adsorption. The MB
dye removal was examined by different metal doping, pH, contact time, NPs dose, initial dye
concentration and temperature. Maximum dye removal percentage was achieved at pH 7.0. The
kinetic analysis suggests adsorption dynamics is best described by pseudo second-order kinetic model.
Langmuir adsorption isotherm studies revealed endothermic monolayer adsorption of Methylene
Blue dye.

Keywords: La-Na co-doped TiO2; non-aqueous solvent controlled sol-gel route; physical adsorption;
methylene; blue

1. Introduction

A leading source of water pollution is dye containing effluents from industries like textile [1],
printing [2], leather [3], pharmaceuticals [4] and kraft bleaching [5] and so forth. Many of these dyes are
mutagenic, carcinogenic and even lead to chromosomal fractures [6–8] causing health hazards to living
beings. Eliminating such dyes from industrial effluents is becoming increasingly necessary. Prominent
methods used for this are: adsorption [9–11], coagulation/flocculation [12,13], membrane filtration [14,15]
and so forth. Among these, adsorption methods are advantageous because they are simple, economical
and effective. In addition, adsorption efficiency can be controlled by many factors including adsorbent
surface area, adsorbent dose, pH, contact time and adsorbate concentration [16–18].

Recently nanostructured material such as TiO2 [19,20], magnetic iron oxides [21–23] and
nanoparticle loaded carbon [24,25] have been reported by several researchers for efficient removal
of organic dyes. Due to their large surface area and easy tailoring of surface properties, use of
nanomaterials can be very effective in adsorbing dyes from industrial effluents. The pHIEP (the pH
at which zeta potential of nanoparticle equals zero) plays a vital role in the adsorption kinetics of
dye at nanoparticle surface because it affects formation of bonds between surface hydroxyl groups
and dye molecules during chemisorption. Hence, modification of nanoparticle surface can be a good
strategy for physical removal of organic dye. TiO2 is well studied material, which allows easy tailoring
of its surface by doping and varying synthesis methods. Alkali dopants [26–31] have been long used
to enhance surface area of TiO2 nanoparticles and creation of new surface sites which, significantly
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improve the adsorption of dyes. On the other hand, it is reported that minute doping of rare earth
elements in TiO2 [32–35] not only concentrate the organic dye at nanoparticle surface but also stabilizes
the meso-structure of TiO2.

Therefore modification of TiO2 using co-doping of rare earth elements and alkali metals is
expected to be more effective in the adsorption of dye at the surface. In view of this, pure, La doped,
Na doped and La-Na co-doped TiO2 nanopowder were prepared by solvent controlled non aqueous
sol-gel route [36–38]. A systematic investigation was carried out to understand the role of dopants
on adsorption property of dye at nanoparticle surface. Earlier reports [26,39] demonstrated that Na+

(1.02 Å) and La+3 (1.03 Å), due to their large size, could not enter in TiO2 lattice to substitute for Ti4+

(0.68 Å) but migrates to TiO2 surface. In present work, substitutional doping of Na and La is confirmed
by XRD, TEM and XPS for the first time. The variation in pHIEP values with doping is well explained
and correlated with adsorption behavior of dye at modified TiO2 surface.

2. Experimental Section

2.1. Synthesis Method

Non-aqueous, solvent-controlled, sol-gel route is excellent for preparation of highly pure oxide
nanoparticles (NPs) with good yield and is therefore adopted for the synthesis of TiO2 NPs. Pure
TiO2 gel was prepared by mixing 20 mL Titanium tetra isopropoxide (Spectrochem, Mumbai, India)
with 40 mL methyl cellosolve (SRL Chem, Mumbai, India) by stirring for 2 h at pH 3 (maintained
using 1 M HNO3 (Merck, Darmstadt, Germany). Under similar conditions, gels of La doped TiO2,
Na doped TiO2 and La-Na co-doped TiO2 were prepared using lanthanum nitrate (SRL, Mumbai,
India) and sodium nitrate (CDH, Mumbai, India) as La and Na precursor respectively. The labels
and nominal composition of samples are indexed in Table 1. The prepared gels were dried under
Infrared IR lamp and grinded to fine powder. For crystallization, all powders were calcined at 450 ◦C
for 1 h. The substantial concentrations of metal doping were determined by wavelength dispersive
X-ray fluorescence spectroscopy (WDXRF) and obtained results are also included in Table 1.

Table 1. Nominal & actual dopant concentration, 2θ values and crystallite size of NPs.

NPs Labelling
Nominal Dopant Conc.

(at. %) Dopant Conc. (at. %) 2θ (Degree)
A(101)

Crystallite
Size (nm)

Na La Na La

PT 0 0 0 0 25.722 14.0
LT 0 1 0 0.90 25.512 8.0

NT4 4 0 3.89 0 25.466 10.0
LNT2 2 1 1.82 0.81 25.425 7.5
LNT4 4 1 3.75 0.76 25.359 7.0
LNT6 6 1 5.67 0.74 25.380 9.0

2.2. Characterization

The concentration of metal dopant was identified by wavelength dispersive X-ray fluorescence
spectroscopy (WDXRF) (Bruker S4 PIONEER, Texas, USA). X-ray diffraction (XRD) patterns were
acquired on Rigaku diffractometer (Cu Kα, λ = 0.154 nm) to determine crystallite size. The
Brunauer-Emmett-Teller (BET) analysis of NP’s was performed using Quantachrome Instrument,
Florida, USA after degassing at 300 ◦C for 4 h. JEOL 2100-F (Tokyo, Japan) TEM operating at 200 kV
was used for transmission electron microscopy (TEM) analysis. Transmission electron microscope
(TEM) images, high resolution TEM (HRTEM) images, selective area electron diffraction (SAED)
pattern, Scanning TEM (STEM) images & energy dispersive X-ray (EDX) spectra were acquired to
determine crystallite size, d-spacing, crystallinity and elemental analysis. The binding energy of each
element present in sample was determined via X-ray photoelectron spectroscopy (XPS) (XPS oxford
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instrument using X-rays of energy 1486.6 eV, Concord, MA, USA). Zeta potential analyzer (ZEECOM
Microtec, Tokyo, Japan) was used to determine isoelectric point (IEP) of the prepared nanopowder.

2.3. Adsorption Studies

Methylene blue (Hi media, Pune, India) dye adsorption at NPs surface was carried out by batch
technique. All the adsorption experiments were carried out at room temperature (25 ◦C). The effect
of varying metal doping, initial pH, contact time, adsorbent NPs dose, initial dye concentration and
temperature on adsorption was studied. In general, a particular amount of NPs dose is added in 10 mL
methylene blue (MB) dye solution and stirred for required time. The pH of the solution is adjusted by
using 0.01 M NaOH and 0.01 M HCl. The adsorption capacity qe (mg/g) and removal percentage of
prepared NPs for MB dye were calculated by the Equations (1) and (2) [25]:

qe = (C0 − Ce)V/m (1)

Removal % = ((C0 − Ct)/C0) × 100 (2)

where, C0 (mg/L), Ce (mg/L) and Ct (mg/L) are the MB dye concentrations at initial time, equilibrium
time and contact time ‘t’ respectively. V (L) is the total volume of the suspension and m (g) is
mass of adsorbent NPs. In order to measure concentration of dye at different contact time, NPs are
removed from the solution by centrifugation and absorbance of supernatant measured by UV-Visible
spectrometer. These absorbance results are calibrated with standard samples and then concentration
of residual dye is measured. For data consistency, all the adsorption experiments are performed
in duplicates.

3. Results and Discussion

3.1. XRD Analysis

Structural characterization of nanopowder was carried out by XRD and is reported in Figure 1.
XRD patterns of PT show the diffraction peaks of pure TiO2 anatase phase. Similar peaks are observed
for LT, NT4, LNT2, LNT4 and LNT6. Absence of extra peaks confirms the formation of pure anatase
phase in doped NPs and that there are no segregated phases of dopants. The shifts in peak position
with doping confirm the substitutional doping of large sized La+3 (1.03 Å) and Na+1 (1.02 Å) dopant at
Ti4+ (0.68 Å) site. Generally, doping of large ionic radii metal ions in host lattice TiO2 results in strain in
crystal structure. This lattice strain is compensated by formation of oxygen vacancies [38,40]. Secondly
the substitution of host lattice ion by low valence metal ion is also likely to yield oxygen vacancies [41].
Thus, doping of large sized and low valent Na or La metal ions in TiO2 matrix would induce formation
of oxygen vacancies. Besides, La and Na mono-doping and co-doping in TiO2 reduces the intensity
of X-ray peaks of anatase phase. As compared to Na doping, La doping shows stronger reduction in
the intensity of anatase phase. This could be attributed to fewer oxygen vacancies expected upon La
doping as compared to Na due to high valence state of La.

The crystal plane (101) was selected to determine average crystallite size of prepared
nano-powders using Debye Scherrer formula. The calculated average crystallite size and 2θ values are
tabulated in Table 1. Clearly, the average crystallite size decreases for individual as well as co-doped
TiO2 nano-powder. Besides, there is critical doping concentration (LNT4) after which crystallite size
increases. The decrease in crystallite size is obviously due to substitution of low valent and large sized
dopants resulting in strained crystal structure and hence oxygen vacancies [41,42].
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Table 2. The pHIEP, BET surface area, BJH pore volume and pore diameter of all synthesized NPs. 

NPs pHIEP BET Surface Area (m2 g−1) Pore Volume (cm3 g−1) Pore Diameter (nm) 

PT 5.7 45.712 0.039 2.32 

LT 5.5 54.342 0.052 2.59 

NT4 5.2 49.629 0.066 2.70 

LNT2 5.0 63.418 0.080 2.85 

LNT4 4.7 74.996 0.119 3.19 

LNT6 4.6 67.971 0.104 3.08 

Figure 1. (a) XRD patterns of NPs. (b) Amplified image of (a).

3.2. BET Surface Areas and Pore Size

The mesoporous structure and surface area of prepared samples were examined by isothermal
curves formed by adsorption and desorption of N2 and the Barrett-Joyner-Halenda (BJH) pore size
distribution curves. As shown in Figure 2a, all prepared NPs exhibited H2 type hysteresis loop
with adsorption-desorption isotherms of type 4, typical characteristic of mesoporous structure with
ink-bottle shaped pores [43,44]. The respective pore size distribution curves (Figure 2b) are obtained
from desorption isotherm of pure and doped TiO2 samples using BJH method. The BET surface area,
pore volume and pore diameter of all the samples are tabulated in Table 2.
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Figure 2. (a) N2 adsorption-desorption isotherms and (b) pore diameter distribution curve of prepared NPs.

Table 2. The pHIEP, BET surface area, BJH pore volume and pore diameter of all synthesized NPs.

NPs pHIEP BET Surface Area (m2 g−1) Pore Volume (cm3 g−1) Pore Diameter (nm)

PT 5.7 45.712 0.039 2.32
LT 5.5 54.342 0.052 2.59

NT4 5.2 49.629 0.066 2.70
LNT2 5.0 63.418 0.080 2.85
LNT4 4.7 74.996 0.119 3.19
LNT6 4.6 67.971 0.104 3.08

Clearly, there is variation in hysteresis loop and pore distribution curve with doping. Increase
in La and Na doping in pure TiO2 results in large surface area due to decreased crystallite size. In
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addition, pore size and hence pore volume increases with certain level of dopant concentration as
in LNT4 and thereafter decreases. This could be attributed to formation of oxygen vacancies [45].
Moreover, this speculation is also supported by high porosity of NT4 sample as compared to LT,
because NT4 possess more oxygen vacancies.

3.3. Morphology

TEM, HRTEM and SAED give structural and morphological information about prepared
nanopowder. TEM bright field images of Figure 3a PT and Figure 3b LNT4 further corroborate
XRD result that crystallite size of LNT4 is smaller than PT nanopowder. The representative particle
size of LNT 4 nanopowder (8–12 nm) is smaller than PT nanopowder (15–20 nm). In addition, SAED
pattern (Inset of Figure 3a,b) form ring patterns which are indexed according to anatase phase of TiO2

which confirm the crystalline phase of PT and LNT4. The substitutional doping of dopants is further
confirmed by increased d spacing in LNT4 (Figure 3d) as compared to that of PT (Figure 3c).
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Figure 3e shows STEM dark field image of cluster of LNT4 nanopowder. The simultaneous
presence of La, Na and Ti peak in point EDX spectrum (Figure 3f) taken from the area shown by a
black circle (Figure 3e) corroborate XRD and HRTEM results.

3.4. XPS Analysis

The binding energy of different elements present in prepared samples, were examined by XPS
analysis. The obtained spectra were baseline corrected and then fitted by commonly used Voigt
function. As shown in Figure 4, the high resolution O 1s XPS spectra of all samples composed of
two peaks corresponding to Ti-O link and adsorbed hydroxyl groups (Ti–OH link) [46]. The increase
in peak intensity of Ti-OH link with Na and La doping confirms increased adsorption of hydroxyl
groups at the surface. This is due to increased formation of oxygen vacancies [47] at the surface of
nanoparticle due to substitutional doping of La and Na at Ti site (confirmed by XRD). Furthermore,
substitutional doping of La and Na at Ti site is also confirmed by comparative study of high resolution
XPS spectra of Ti 2p (Figure S1, Supplementary File). The doublet of Ti 2p of PT is composed of Ti
2p1/2 (B.E. 464.4 eV) and Ti 2p3/2 (B.E. 458.7 eV) and indicates Ti+4 state. The binding energy shows
red shift (Table 3) with La and Na doping, which could be attributed to the lower electronegativity of
La (1.10) and Na (0.93) than that of Ti (1.52). This result confirms substitutional doping of La and Na at
Ti site [48] and absence of other oxidation state of Ti.
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Table 3. Peak position of different peaks obtained from high resolution XPS of different samples.

Sample

Peak Position

Ti-O
Peak

O-H
Peak

Ti 2p3/2
Peak

Ti 2p1/2
Peak

La 3d5/2 La 3d3/2 Na 1s
PeakPeak 1 Peak 2 Peak 1 Peak 2

PT 530.07 532.03 458.71 464.41 - - - - -
LT 529.93 531.96 458.46 464.16 834.99 839.18 851.51 856.04 -

NT4 528.91 531.29 458.19 464.06 - - - - 1071.34
LNT4 529.90 531.91 457.75 463.38 834.83 839.03 851.38 855.89 1071.23

In addition, the high resolution XPS spectra of La 3d (Figure S2, Supplementary File) and Na
1s (Figure S3, Supplementary File) confirm the simultaneous presence of La and Na. The La 3d
peak composed of multiplet 3d5/2 and 3d3/2 with core level binding energy 834.9 eV and 851.8 eV
respectively corresponding to La+3 oxidation state [49]. The distance between two peaks La3d5/2 (peak
1) and La 3d3/2 (peak 1) corresponds to bonding of La with O [50]. Similarly, Na 1s peak with core
level binding energy 1071.3 eV represents Na+1 oxidation state [51].

3.5. Zeta Potential Study and Isoelectric Point

The surface charge of nanoparticles play a vital role on adsorption kinetics of dye at surface of
nanoparticles. Zeta potential measurement technique was used to determine surface charge. The pH
value at which there is no charge at the surface and hence zero zeta potential is defined as isoelectric
point. The surface of suspended TiO2 nanoparticles in water covered with hydroxyl groups [52] and
therefore surface charge is function of pH of solution according to Equations (3) and (4),

Ti+4−OH + H+ → Ti+4−OH2
+ (3)

Ti+4−OH→ Ti+4−O− + H+ (4)

When pH of solution is less than pHIEP, nanoparticle surface is positively charged according to
Equation (3) and favors adsorption of anionic species. Whereas, when pH of solution is greater than
pHIEP, nanoparticle surface is negatively charged according to Equation (4) resulting in adsorption of
cationic species.

Figure 5A shows the zeta potential values of different nanopowder as function of pH of solution.
It is clear from Figure 5B that pHIEP value decreases from PT to LNT6. This is attributed to increased
surface area and adsorbed hydroxyl groups [45,52]. The increased surface area results in more
adsorption of hydroxyl groups and hence more hydrogen ions are produced, which decreases pHIEP

value [53]. A higher concentration of hydroxyl groups at the surface of nanoparticle is expected to
favor more adsorption of dye molecules.
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3.6. Adsorption Studies

Effect of metal doping. The effect La and Na doping in TiO2 on adsorption of MB dye was studied
at optimal conditions [equilibrium time = 15 min; pH = 7.0; dye conc. = 5 mg/L; NPs dose = 1.2 g/L]
by considering absorbance peak at 664 nm. At pH 7, all NPs have negative zeta potential (Figure 5A)
which facilitates adsorption of cationic MB dye. It is clear from Figure 6a that LNT4 NPs shows
best removal rate of MB dye, even if LNT2, LNT4 and LNT6 possess nearly equal negative zeta
potential. This is attributed to small crystallite size and large surface area of LNT4 as compared to
LNT2 and LNT6.
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Effect of initial pH. The LNT4 NPs shows best dye removal percentage among all prepared
NPs. Therefore, further adsorption experiments are performed using LNT4 NPs as adsorbate. The
absorbance spectra of MB dye at different pH is shown in Figure S4 (supplementary file). There
is no change in peak position and shape of absorbance spectra observed. Figure 6b shows effect
of pH on dye removal percentage by LNT4 NPs [equilibrium time = 15 min; dye conc. =5 mg/L;
NPs dose = 1.2 g/L]. At lower pH, LNT4 shows very less dye removal percentage, which is obvious
due to positive zeta potential resulting in repulsive force on cationic dye. However, when pH is greater
than pHIEP, dye removal percentage increases. For example, at pH 7.0, 99% of the dye is removed.
This is because of electrical attraction between cationic MB dye and negative surface charge of LNT4 at
pH > pHIEP. At pH more than 7.0 there is negligible increase in removal percentage. Therefore, all
further sorption experiments were conducted at pH 7.0.

Effect of contact time. The effect of contact time on dye adsorption at LNT4 NPs surface was
investigated at different time intervals (2, 5, 10, 15, 20 and 25 min) at optimal conditions [pH = 7.0;
dye conc. =5 mg/L; NPs dose = 1.2 g/L]. Dye removal percentage increased from 47% to 99% with
increase in contact time from 2 min to 25 min. The sorption equilibrium was achieved within 15 min.
Attaining equilibrium in such short span of time indicates chemical adsorption of dye, instead of
physical adsorption that takes relatively long contact time [54]. After 15 min, there is negligible uptake
of dye is observed (Figure 6c). Therefore, further adsorption experiments were carried out for 15 min.

Effect of LNT4 NPs dose. The effect of LNT4 NPs dose on MB dye uptake is shown in Figure 6d.
MB dye sorption experiments were conducted using 5 mg/L dye solution at pH 7.0 [equilibrium time
= 15 min]. The LNT4 NPs dose varied from 0.6 g/L to 1.6 g/L. MB dye removal percentage increased
considerably from 73% to 99% on increasing dose from 0.6 g/L to 1.2 g/L. This increase in removal
percentage with increase in adsorbent dose is obvious and attributed more available surface area and
active surface sites [55]. No further uptake of MB dye was observed on increasing NPs dose to 1.4 g/L
and 1.6 g/L. Therefore, 1.2 g/L dose was chosen as optimum dose for further adsorption experiments.

Effect of initial dye concentration. The effect of initial dye concentration on dye sorption
was investigated using 5–15 mg/L MB dye concentration [equilibrium time =15 min; pH =7.0;
NPs dose =1.2 g/L]. The dye removal percentage drops from 99% to 42% as dye concentration is
increased from 5 mg/L to 15 mg/L (Figure 6e) due to less available surface area and surface sites.
Similar results were reported by many authors [16,56,57].

Effect of temperature. Generally wastewater effluents from industries are hot and hence
adsorbents used must be stable and thermal resistant [58]. Therefore, investigation of dye adsorption at
different temperature is important. Figure 6f shows the removal rate of MB dye at different temperature
by LNT4 NPs [equilibrium time =15 min; pH =7.0; NPs dose =1.2 g/L; dye conc.= 5 mg/L]. Clearly
there is more adsorption of MB dye with rise in temperature, which implies endothermic adsorption
process. The favorable increase in adsorption of dye with rise in temperature can be explained by
two ways [10]: (i) elevated interaction between cationic MB dye and hydroxyl groups at surface of
NPs; (ii) enhanced diffusion of MB dye molecules within pores of NPs. In addition, there may be
disruption of agglomeration with rise in temperature, which facilitates increase in surface area and
hence increased dye adsorption. Many reports [57,59] investigated effect of temperature on adsorption
of dye at adsorbent surface and similar results were found.

3.7. Adsorption Kinetics

In order to investigate the mechanism of adsorption, several kinetic models are used to fit
experimental data. Most commonly used kinetic models, namely pseudo first order, pseudo second
order and intra-particle diffusion are used to determine preferential kinetic model for dye adsorption.
The best fit model is determined by comparing linear regression correlation coefficient (R2) value. The
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simple form of pseudo-first-order, pseudo-second-order and intra-particle diffusion model might be
represented by Equations (5)–(7) respectively.

log (qe − qt) = log (qe) − (k1/2.303)t (5)

(t/qt) = 1/k2qe
2 + t/qe (6)

qt = kit1/2 + C (7)

where k1 (min−1), k2 (g mg−1 min−1) and ki (mg g−1 min−1/2) are rate constants of pseudo-first-order,
pseudo-second-order reaction and intra-particle diffusion respectively and C is the intercept. qe and
qt are the adsorption capacity at equilibrium and at contact time ‘t’ respectively. The rate constant k1

could be determined from slope of linear plot log (qe − qt) versus t. Similarly, slope of linear plot of t/qt

versus t gives the rate constant k2. The rate constant ki can be evaluated from the slope of the plot of qt

versus t1/2.
The plot of pseudo first order, second order and intra-particle diffusion kinetic model obtained for

adsorption of MB dye at the surface of LNT4 NPs is shown in Figure 7A–C. The obtained regression
coefficient (R2) and calculated k values are listed in Table 4. The value of regression coefficient (R2)
of second order kinetic model is higher than first order, which could be attributed to heterogeneous
nature of TiO2 NPs [23]. Thus the kinetics of MB dye adsorption on LNT4 NPs is best described by
pseudo second order kinetic model.
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Table 4. Adsorption kinetics parameter obtained from adsorption of MB dye at surface of LNT4 NPs.

1st Order Kinetics 2nd Order Kinetics Intra-Particle Diffusion

k1 R2 k2 R2 ki R2

0.253 0.9796 0.081 0.9959 0.762 0.9616

The slope of intra-particle diffusion plot measure rate of intra-particle diffusion, which can
occur after external surface adsorption. Whereas, intercept of plot is proportional to boundary layer
thickness and measure the contribution of surface adsorption to rate controlling step [60]. The low
value of regression coefficient (Figure 7c) reflects less involvement of intra-particle diffusion to rate
controlling step.

3.8. Adsorption Isotherm

The binding mechanism of dye at NPs surface can be understood by analyzing adsorption
isotherm. The adsorption isotherm of MB dye at surface of NPs was studied using Langmuir model,
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which consider adsorbent surface to be mono-layered with uniform energy at which adsorption
occurs [21]. The Langmuir isotherm equation is given by Equation (8) [61] as:

Ce/qe = 1/bqmax + Ce/qmax (8)

where, b (L/mg) is Langmuir isotherm adsorption constant and qmax (mg/g) is adsorption capacity,
which are calculated using slope and intercept, obtained from linear plot of Ce/qe versus Ce (Figure 8).
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The Langmuir adsorption constants and correlation coefficient (R2) for adsorption of MB dye at
two different temperatures are given in Table 5. The value of R2 is higher than 0.9, which confirms that
monolayer adsorption of dye is predominant. In addition, the value of qmax calculated by Langmuir
isotherm model increases with rise in temperature indicating adsorption process is endothermic.

Table 5. Adsorption isotherm parameter obtained from adsorption of MB dye at surface of LNT4 NPs.

Langmuir Isotherm Constant 15 ◦C 25 ◦C

qmax 24.62 25.04
b 1.35 0.33

R2 0.97 0.99

4. Conclusions

Physical removal of organic cationic MB dye by La-Na co-doped TiO2 nano-powder prepared
by non-aqueous, solvent-controlled, sol-gel route is demonstrated. The prepared NPs are crystalline
and mesoporous as confirmed by XRD and BET analysis. Furthermore, XRD and TEM results confirm
the substitution of large sized Na+1 and La+3 at Ti+4 sites. This low valent metal ion doping results in
formation of oxygen vacancies which facilitates more adsorption of hydroxyl groups at the surface
of NPs (confirmed by XPS). The adsorbed hydroxyl groups reduce the pHIEP value and, therefore
facilitate effective adsorption of cationic MB dye. The adsorption capacity of LNT4 NPs is found to
be highest, which could be attributed to its high surface area and porosity. In addition, adsorption
kinetics of MB dye at surface of LNT4 NPs is best described by pseudo second-order kinetic model due
to heterogeneous nature of titania NPs. Langmuir adsorption isotherm studies revealed endothermic
monolayer adsorption of Methylene Blue dye.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/3/400/s1,
Figure S1: High resolution XPS spectra of Ti 2p of prepared samples, Figure S2: High resolution XPS spectra
of La 3d of prepared samples, Figure S3: High resolution XPS spectra of Na 1s of prepared samples, Figure S4:

http://www.mdpi.com/2079-4991/9/3/400/s1
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(a) Effect of pH on absorbance spectra of MB dye. (b) Amplified image of (a) at pH 7 and pH9, Table S1: Area
under different peaks obtained from high resolution XPS of different samples, Table S2: FWHM of different peaks
obtained from high resolution XPS of different samples.
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