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Abstract: A monolayer-graphene-based concentric-double-rings (CDR) structure is reported to
achieve broadband plasmon-induced transparency (PIT) on the strength of edge mode in the
mid-infrared regime. The theoretical analysis and simulation results reveal that the structure designed
here has two plasmonic resonance peaks at 39.1 and 55.4 THz, and a transparency window with high
transmission amplitude at the frequency of 44.1 THz. Based on the edge mode coupling between
neighbor graphene ribbons, PIT phenomenon is produced through the interference between different
(bright and dark) modes. The frequency and bandwidth of the transparency window and slow light
time could be effectively adjusted and controlled via changing geometrical parameters of graphene
or applying different gate voltages. Additionally, this structure is insensitive to the polarization and
incident angle. This work has potential application on the optical switches and slow light modulators.
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1. Introduction

Graphene, a single layer of carbon atoms gathered in a two-dimensional honeycomb lattice [1–3],
has attracted significant attention in past few years owing to its excellent physical properties, such as
ultra-high electronic mobility [4], extremely low loss [5], stable optical response [6] and more
importantly, tunable surface conductivity [7,8]. According to the Kubo formula [9], the graphene
surface conductivity could be effectively tuned by changing Fermi energy via electrical gating or
chemical doping. Meanwhile, the short response time could make the ultrafast switching flexibly on
the order of picosecond come true [10]. Therefore, tunable optical devices based on graphene have
been widely developed in the nanoelectronics and optoelectronics domain [11–15], including optical
modulators, photovoltaic cells and photodetectors.

Plasmon-induced transparency (PIT) based on graphene, as an electromagnetically induced
transparency (EIT) analogue in the plasmonic system [16,17], has been a popular research hotspot
due to widespread applications. As we all know, EIT is a quantum concept, coming from quantum
coherence effect between atomic light excitation channels, which results in declining absorption of light
at the atomic resonance frequency or even turns into completely transparent [18]. This phenomenon
has promise for applications in label-free biological sensing [19], enhanced nonlinear effects [20]
and slow light modulators [21]. However, its implementation is restricted by harsh experimental
conditions such as the need for stable pumping, low temperature and high power laser systems [22–25].
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Besides, the frequency of the transparent window is mainly limited in the spectrum because of
limited energy interval [26]. Therefore, plenty of works about PIT have been investigated in the
aspect of nanostructures due to operability at room temperature and wide operational bandwidth.
Ever since S. Zhang et al. [27] demonstrated a π-shaped metamaterial (MM) structure to research PIT,
varieties of MMS structures have been emerging endlessly, including split-ring [28], cut wires [29],
U-shape [30] and various combination structures [31–33]. Recently, Z. Zhang et al. [34] studied a hybrid
metal-graphene MM to achieve the active control of broadband PIT in the terahertz (THz) region.
L. Han et al. [35] demonstrated anisotropic PIT in black phosphorus nanostrip trimer realizing wide
range adjustment at the mid-infrared (MIR) region. L. Jiang et al. [36] reported the low-threshold
optical bistability of reflected light by using the multilayer structure at THz frequencies. The realization
of the PIT effect is usually achieved by destructive interference between the bright and dark modes via
near-field coupling [37]. However, most of structures are too complicated to be fabricated easily and
they commonly concentrate on switching the amplitude of a narrowband PIT. Moreover, plenty of
structures only support surface plasmonic mode rather than edge plasmonic mode.

In this paper, we propose a concentric-double-rings (CDR) monolayer-graphene structure
to achieve the effective control of broadband PIT based on edge mode. Via near-field coupling,
the broadband PIT could be realized by destructive interference of different modes. This structure
could not only manipulate the bandwidth of the transparent window by changing the radius of rings in
the manufacturing process but also control the frequency position of the PIT window in the spectrum
by tuning the Fermi energy of graphene. Additionally, it possesses the polarization-insensitive and
large angle tolerance properties. Meanwhile, both the region and capability of slow light also could be
tunable via Fermi energy of graphene. This work offers possible applications at tunable MIR functional
devices, such as optical switches and slow light modulators.

2. Structures and Methods

Figure 1a,b denotes the geometry of the proposed CDR structure, which consists of the patterned
graphene arrays and dielectric substrate, and the corresponding detailed geometric parameters are
given in the caption. This structure is periodic in the x and y directions with periodicity 400 nm, and the
periodic graphene pattern is composed of two parts: outer ring (OR) and inner ring (IR), laid on the
dielectric substrate with the refractive index of 1.6. The width of gap wg between OR and IR is 48 nm,
which could be adjusted in the fabrication process according to the requirements. The OR and IR of
graphene have the same material properties except the size. Additionally, we assume a plane wave
at the MIR region vertically impinges on the CDR structure along the negative z direction and the
incident electric field polarized along the x direction.
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radius of inner-ring ri = 90 nm, width wi = 10 nm, radius of outer-ring ro = 148 nm, width wo = 30 nm,
and period px = 400 nm and py = 400 nm. (b) The side view of the unit cell: the thickness of graphene
tg = 1 nm, the thickness of dielectric td = 2 µm.

The complex surface conductivity of monolayer graphene could be derived by the Kubo
formula [9], which consists of intraband and interband transitions and describes as following:

σs(ω, µc, Γ, T) = σintra + σinter. (1)

In the random-phase approximation, the specific expressions are

σintra = −j
e2kBT

π}2(ω− j2Γ)

[
µc

kBT
+ 2 ln

(
exp

(
− µc

kBT

)
+ 1

)]
, (2)

σinter = −j
e2

4π} ln
[

2|µc| − (ω− j2Γ)}
2|µc|+ (ω− j2Γ)}

]
, (3)

herein, e is the charge of an electron, kB is the Boltzmann’s constant, T is the absolute temperature
in Kelvin and the h̄ = h/2π is the reduced Planck’s constant. Γ and µc is are the phenomenological
scattering rate and Fermi energy level, respectively. τ = 1/2Γ is the relaxation of electrons, which is
governed by τ = µmµc/evf

2. In this equation, µm is the carrier mobility and vf denotes the Fermi velocity.
ω is the radian frequency of the incident wave. Moreover, if the photon energy is far less than the
Fermi energy, the interband contribution consequently could be neglected according to the Pauli
Exclusion Principle, and only the intraband part will be considered [38]. The real and imaginary
parts of the conductivity of graphene are calculated in Figure 2 with regard to different Fermi energy
levels. Obviously, both the real and imaginary parts of the conductivity of graphene decrease with the
increase of the incident wave frequency. The effective permittivity of graphene is

εg = 1− j
σs(ω, µc, Γ, T)

ε0ω∆
, (4)

where ε0 is permittivity of vacuum, ∆ is the thickness of graphene. In this paper, the carrier mobility is
fixed as 1.0 × 104 cm2/V/s, the environment temperature is 300 K, and the Fermi velocity is set as
1.0 × 106 m/s.
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In this study, the numerical simulations were carried out by the finite-difference time domain
(FDTD) method and we used the software called FDTD Solutions to simulate the features of proposed
CDR structure. The FDTD method is a well-known method to solve Maxwell’s equations in the time
domain. The Maxwell’s equations in a source free region are given as [39]:
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∇× E = −µ
∂H
∂t

, (5)

∇×H = ε
∂E
∂t

, (6)

where E is the electric field and H is the magnetic field. µ and ε are the permeability and
permittivity of the medium respectively. According to the material parameters and initial conditions,
the electro-magnetic field’s quantities in each space-time point could be evaluated by solving Maxwell’s
equations. In the simulations, the periodical boundary conditions (PBC) is employed for a unit cell in
the x and y directions and the perfectly matched layer (PML) is applied in at the top and bottom of
the structure along the z direction. In order to get more accurate calculation results, we divided mesh
grids towards unit cell with dx = 2 nm, dy = 2 nm, and dz = 1 nm. Then the Frequency-Domain Field
and Power (FDFP) monitor was utilized detect the transmitted power at the bottom of structure.

3. Results and Discussion

In order to demonstrate the PIT effect, we numerically calculated the transmission spectrum of
the unit cell with different patterned graphene structures. As shown in Figure 3a, the red dot line,
blue dash line, and olive solid line respectively represent the transmission spectrum of the unit cell
corresponding to only IR (Figure 3b), only OR (Figure 3c) and CDR (Figure 3d) structures, and the
other geometric parameters keep the same as in Figure 1. It is obvious that the plasmonic resonances
of the IR and OR structure are excited at different frequencies, explained by the Fabry–Perot model.
When the frequency is 51.9 THz, the transmission of the IR structure is close to 0, but for the OR
structure, the lowest transmission appears at 45.4 THz. For the proposed CDR structure, there are
two plasomonic resonance peaks at 39.1 and 55.4 THz observed, and a transparency window is
found at the frequency of 44.1 THz. Particularly, the amplitude of transparency window is very
high. There exists light transmission for CDR structure at the frequency band where there is no light
transmission for OR structures. Therefore, the PIT phenomena could be produced in the unit cell
of CDR structure by combining IR and OR. The reason why this PIT phenomenon appears is the
interference between the bright and dark modes via near-field coupling, which could be explained by
the plasmonic hybridization model (PHM) in theory [40].
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Figure 3. (a) Transmission spectrum corresponding to the unit cell with an inner ring (IR), an outer
ring (OR) and a concentric-double-ring (CDR). The Fermi energy of graphene is fixed at 0.64 eV and
the refractive index of dielectric is set as 1.6 in the simulations. (b–d) Structural representation of IR,
OR and CDR, respectively.



Nanomaterials 2019, 9, 448 5 of 10

To further clarify the mechanism of the transparent window, three sets of unit cells with different
structures were investigated. The corresponding electric field distributions at plasomonic resonance
peaks are shown in Figure 4, where the absorption is extremely strong. According to Figure 4a,b,
we could find that the electric field is mainly distributed at the edge of the ring-shaped graphene.
Besides, there exists electric field interaction in the gap between IR and OR, which we could obtain
from Figure 4c,d. Therefore, the PIT phenomenon is produced by interference between the bright
modes and the dark modes from IR and OR via near-field coupling based on the corresponding edge
mode, which can be explained by PHM. The interference is closely related to the structure parameters
of the unit cell and directly have an influence on the position of frequency and the full wave at half
maximum (FWHM) of the transparency window. The width of gap wg between IR and OR is the
main factor we would consider firstly. As shown in Figure 5, in this case the width of IR wi and OR
wo remain unchanged, Figure 5a is the transmission spectrum when changing the radius of IR but
keeping the radius of OR the same as Figure 1, and Figure 5b is the transmission spectrum when
changing the radius of OR but keeping the radius of IR the same as Figure 1. When we change the
outer radius of IR or the inner radius of OR to increase the width of the gap wg, there is a blueshift
in the transmission. The FWHM of transparency window also changes with the width of the gap wg

increasing. For instance, the FWHM is broadened from 7.9 to 13.2 THz when the width of the gap
increases from 48 to 68 nm in Figure 5a.
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(c) 55.4 THz, (d) 39.1 THz when the structure of graphene is CDR.

Then, the relationships between transmission spectrum and width of IR and OR are also
demonstrated. As depicted in Figure 6, we maintain the other geometrical parameters unchanged,
including the width of the gap, and only change the inner radius (ri) of IR or outer radius (ro + wo)
of OR. As the inner radius of IR decreases, the frequency of transmission window experiences a blue
shift and the FWHM of it broadens, over 20 THz at the inner radius of 80 nm. The amplitude of
transparency window also increases with the inner radius of IR decreasing. When the inner radius
of IR is less than 75 nm, the PIT phenomenon disappears from transmission spectrum. When we
change the outer radius of OR, the transparency window also could be adjusted, including frequency,
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FWHM and amplitude. Additionally, we could find that the width of OR mainly influences high
frequency plasomonic resonance peak and the width of IR mainly influences low frequency plasomonic
resonance peak.
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The frequency tunability of PIT is a significant important feature in practical application.
The imaginary part of the conductivity of graphene determines the spectral shift of the resonance,
and the real part controls the amplitude modulation of the resonance [41]. Hence, the transparency
window could be adjusted indirectly by tuning the Fermi level via the applied gate voltage or chemical
doping. Figure 7a plots the transmission spectrum for different values of µc, 0.5, 0.6 and 0.7 eV,
respectively. As the Fermi energy increases, the frequencies of the transparency window tend to exhibit
a blueshift. However, the FWHM and amplitude of transparency window for different Fermi energy
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are approximately same. As shown in Figure 7b, slow light, as one of the most important applications
of PIT, is also studied for different Fermi energy. The slow light could be qualified by the delay time
τg [42]:

τg =
dψ(ωil)

dωil
, (7)

where ωil is the circular frequency of incident light, and ψ(ωil) is the transmission phase shift from
the light source to calculated point. When the Fermi energy is at 0.7 eV, there is a slow light region
due to the extreme dispersion within the transparency window. Additionally, the slow light region
experiences a redshift with the Fermi energy decreasing. As a result, the frequency of transparency
window and slow light could be electrically controlled.
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light region corresponding to different Fermi energy of graphene.

Furthermore, we investigated the effect of refractive index of substrate on the transmission
spectrum. In Figure 8a, we maintained the structure parameters unchanged and merely varied the
refractive index of substrate from 1.6 to 2.0 successively. It is clear that the transmission spectrum
exhibits a redshift with the increasing index. Additionally, the FWHM of the transparency window
becomes narrower. In addition, the PIT phenomenon under oblique incidence is researched in
Figure 8b. The incident angle is defined as the angle between the incident wave and negative
z-direction, varying from 15◦ to 45◦. It is obvious that the transmission spectrum is independent
of the incident angle. Besides, due to the central symmetry of the structure, the transmission is
insensitive to the polarization angle.
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4. Conclusions

To conclude, we have proposed a monolayer-graphene-based CDR structure to realize broadband
PIT on the strength of edge mode in the mid-infrared spectrum. The frequency and bandwidth of
the transparency window could be effectively adjusted and controlled via changing the geometrical
parameters of graphene or applying different gate voltages. The simulation results show that the
structure has two plasomonic resonance peaks at 39.1 and 55.4 THz, and a transparency window with
high amplitude at the frequency of 44.1 THz. The transmission spectra experience blue shift when
the Fermi energy of graphene increases or refractive index of the substrate decreases. The bandwidth
of the transparency window is broadened by increasing the width of the gap, IR or OR. Besides,
the transmission is insensitive to polarization angle and incident angle. We believe that our research
could be used in many future device applications, such as optical switches and slow light modulators
in the mid-infrared region.
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