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Abstract: A simple procedure for the palladium-catalyzed cyanation of aryl halides is described via a
nucleophilic non-toxic cyanide source, K4[Fe(CN)6] in the presence of Pd/coral reef nanocomposite
as a heterogeneous catalyst; the protocol provides a useful and easy method for the synthesis of
aryl nitriles that are generated from the corresponding variant aryl halides, with sodium carbonate
as a base. The nanocatalyst was prepared by a biological process using aqueous extract of leaves
of Cucurbita pepo as a stabilizing and reducing agent and coral reef as a natural support, without
deploying any hazardous chemicals. The catalyst, that is easily separable from the reaction mixture
and reused multiple times, was characterized by FT-IR (Fourier-Transform Infrared Spectroscopy),
ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy), XRD (X-ray Diffraction),
TEM (Transmission Electron Microscopy), FE-SEM (Field Emission Scanning Electron Microscopy),
EDS (Energy Dispersive X-ray Spectroscopy) and elemental mapping.
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1. Introduction

Nitriles are implicated in the syntheses of a variety of organic compounds, and thus occupy a key
position in organic chemistry manipulations. In the chemical industry, nitriles are oftentimes found
as an impartible part of dyes, natural products, pharmaceuticals, agricultural and materials [1–3].
Aromatic nitriles have been utilized in diverse fields as both synthetic intermediates, as well as a final
product in their own right, as shown by few examples in Scheme 1 [4]. Historically, two classical
methods have been used for the introduction of a cyano group on to the aromatic ring: diazotization
of anilines followed by a Sandmeyer reaction [5,6] with superstoichiometric amounts of copper(I)
cyanide and Rosenmund-von Braun reaction [7–9], which commonly deploys excessive amounts of
copper(I) cyanide and an aryl iodide at high temperature. Both methods lack today’s stringent criteria
of clean synthesis that follows a greener strategy. In large-scale industrial synthesis, ammoxidation
of toluene derivatives have been applied for the preparation of aryl nitriles where reaction proceeds
at high temperature (300–550 ◦C) in the presence of a heterogeneous catalyst. Nevertheless, as the
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aforementioned procedures suffered from harsh reaction conditions [10–12], efforts are being made to
address safety concerns, and to develop mild and efficient methods for the synthesis of aryl nitriles.
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Scheme 1. Selected examples of pharmaceuticals containing benzonitriles as the integral part.

The cyanation of aryl halides is a traditional strategy for C–C coupling and the preparation of aryl
nitriles with transition-metal-catalyzed reactions has been an important pathway in synthetic organic
chemistry. Takagi et al. [13], for the first time, disclosed Pd(II)-catalyzed cyanation of aryl halides with
KCN about 40 years ago. Mechanistic studies revealed the main shortcoming of the reaction owing
to excess dissociative of CN− to palladium (Pd) thus initiating catalyst deactivation which poisons
all the intermediates in catalytic cycle. To tackle such problems, much attention was expanded to
include the addition of reducing agents or applying less soluble NaCN [14–19], trimethylsilylcyanide
(TMSCN) [20], KCN [21–23] and Zn(CN)2 [24–27] salts in organic solvents; all these cyanide sources
are universally toxic, due to the generation of hazardous hydrogen cyanide gas. Beller and colleagues
introduced K4[Fe(CN)6] as a robust and non-toxic CN− source in Pd-catalyzed coupling reactions [28]
which was followed by many others using DDQ [29], N-cyano-N-phenyl-p-toluenesulfonamide [30],
ethyl cyanoacetate [31], K3[Fe(CN)6] and K4[Fe(CN)6] [32–36] to name a few as safer reagents deployed
in modern “cyano” chemistry.

Variety of catalytic systems constructed from palladium homogeneous catalysts have been
successfully employed in the cyanation reaction due to their availability, low cost and environmental
benignity [28,32–35]. Some of these methods are effective with good yields, but others suffer from
one or more drawbacks such as the use of expensive ligands, prolonged reaction time, the use of
homogeneous catalysts which cannot be easily recovered, and harsh reaction conditions procedures.
Clearly, the development of air and thermally stable heterogeneous nanocatalysts with high activity
and broad substrate tolerance is needed to allow reactions to be carried out by using K4[Fe(CN)6] as a
non-toxic CN− source under ligand-free conditions, then to broader industrial use of the reaction.

Metal-based nanoparticles (MNPs) have become topics of great current interest due to their
potential applications in many diverse areas of science, industry, medicine and pharmaceuticals, etc.,
especially for catalysis [37–40]. The physical techniques and chemical methods are severely applied for
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the synthesis of MNPs. Although, most of these methods are rather expensive and suffer from various
environmental and health side effects which restrict their application in medicinal chemistry processes
besides difficulty in purification and low yield [41–43]. Therefore, improvements leading to simplify
the preparative methods for MNPs is of great importance.

Our strategy entailed the generation of palladium nanoparticles (Pd NPs) using Cucurbita pepo leaf
extract. In view of the high propensity of metal NPs to agglomerate, solid supports have been usually
applied [44–48] which in this study was replaced by coral reef to anchor Pd NPs. Thus, biogenically
synthesized Pd/coral reef nanocomposite, assembled by a facile and eco-friendly method, has been
introduced in this unprecedented cyanation reaction using a plant extract.

The Curcurbiteae family, a very large group with approximately 130 genera and 800 species,
is widely used as food and herbal remedies around the world and they contain numerous
phyto-constituents belonging to the categories of alkaloids, flavonoids, and fatty acids (palmitic-,
oleic- and linoleic acids) [49–55]. We envisioned the leaves of the plant being an excellent source of
bioreducers to biosynthesize Pd NPs nanocatalyst.

In continuation of our previous efforts on the heterogeneous nanocatalysts [44–46], herein, for the
first time, we report a convenient method for the synthesis of aryl nitriles under ligand-free conditions
using K4[Fe(CN)6] as a safe source of cyanide and Pd NPs/coral reef nanocomposite as a heterogeneous
catalyst (Scheme 2). This catalyst was prepared using Cucurbita pepo plant extract as a reducing media
and fully characterized by various techniques. Moreover, an overall investigation of the effective
parameters on the cyanation reaction such as solvent, bases, catalyst loading and reaction time,
is described.
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2. Experimental

2.1. Apparatus and Analysis

All chemicals used in the current study were obtained from Merck (Darmstadt, Germany) and
Sigma-Aldrich Chemical (Sigma-Aldrich, M6250, St. Louis, MO, USA) Companies and were used
without further purification. The natural (dead) coral reef used in this study originated from Persian
Gulf, Iran. FT-IR (Fourier-Transform Infrared Spectroscopy) spectra were recorded using KBr pellets on
a Varian model 640 spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). 1H NMR and 13C
NMR spectra were recorded on a Bruker Avance III 400 spectrometer (Bruker, Billerica, MA, USA) at
400 and 100 MHz, respectively. Melting points were measured on a BUCHI 510 melting point apparatus
(Derwood, MD, USA) that are uncorrected. The catalyst characterization was performed by using
various characterization techniques including FTIR, XRD (X-ray Diffraction), SEM (Scanning Electron
Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) analysis. A Philips model X’Pert-Pro
MRD diffractometer (Amsterdam, The Netherland) with a Ni-filtered Cu Kα source (λ = 0.15418 nm)
was used to perform X-ray diffraction (XRD) measurements. The chemical composition of the prepared
nanocomposite was performed using EDS (Energy Dispersive X-ray Spectroscopy) performed in a
FESEM (Field Emission Scanning Electron Microscopy, TESCAN MIRA3-XMU, Brno-Kohoutovice,
Czech Republic).

2.2. Preparation of the Cucurbita Pepo Leaf Extract

Fifty grams of dried powdered leaves of Cucurbita pepo and 300 mL double distillated water
were well mixed on a magnetic heating stirrer at 80 ◦C for 30 min, the mixture was then centrifuged
(7000 rpm) and filtered. Finally, the extract was kept at refrigerator for subsequent use.

2.3. Bioreduction of Pd Ions and Synthesis of Pd NPs

Ten milliliters of the extract were added dropwise to 50 mL of 0.005 M PdCl2 solution at 80 ◦C in
an open glass vessel. Bioreduction process to form the nano palladium (Pd◦) was completed in 5 min as
color changed to dark brown; the reaction being monitored by UV-Vis spectroscopy (Shimadzu, Kyoto,
Japan). Then the colored solution was centrifuged at 7000 rpm for 45 min to accomplish separation.

2.4. Biological Preparation of Pd/Coral Reef Nanocomposite Using Cucurbita Pepo Leaf Extract

The Pd/coral reef nanocomposite was fabricated by immobilization of Pd NPs on coral reef
surface. The powdered coral reef, 1.0 g of powder was dispersed in 250 mL of the aqueous extract for
15 min at 80 ◦C under vigorous stirring. After that, 0.1 g of PdCl2 dissolved in 10 mL water and 1 mL
of hydrochloric acid (37%) was added dropwise to the mixture and magnetically stirred and heated at
80 ◦C for 3 h. The prepared nanocomposite was centrifuged, washed with ethanol and dried in an
oven and then characterized.

2.5. General Procedure for Synthesis of Aryl Nitriles

In a 150 mL flat bottom flask fitted with a magnetic stirrer, a mixture of aryl halide (1.0 mmol),
K4[Fe(CN)6] (0.2 mmol), potassium carbonate (1.0 mmol) and nanocatalyst (0.05 g) were stirred in
DMF (5.0 mL) at 120 ◦C and the progress of reaction was monitored using TLC. The catalyst was
separated using filtration after ending the process. After completion of the reaction (as monitored by
TLC), 5.0 mL of water was added then the reaction mixture was diluted using ethyl acetate (EtOAc)
with vigorous stirring. The organic layer was separated, dried over MgSO4, filtered and the solvent
removed under vacuum to afford the desired crude products. The crude product was purified by
recrystallization with EtOAc and n-hexane to provide pure product.



Nanomaterials 2019, 9, 565 5 of 18

3. Result and Discussion

Aryl nitriles were simply prepared from aryl halide in high yields by using inexpensive,
readily available and non-toxic K4[Fe(CN)6], catalyzed via biosynthesis Pd/coral reef nanocomposite.
The basic concept of bioreduction was followed that exploits the use of plant extract as a reducing agent
and efficient stabilizer to convert metal ions to metal NPs; the synthesis of nanocomposite benefits
from the combination of Cucurbita pepo leaf extract and coral reef as inexpensive sources. The leaf
extract was characterized and then Pd NPs were separately synthesized using the Cucurbita pepo leaf
extract as described below.

3.1. Characterization of Cucurbita Pepo Leaf Extract and Biosynthesized Pd Nanoparticle

Although the exact mechanism for the biosynthesis of metal nanoparticles (MNPs) using plant
extracts has not been confirmed, in view of the already established criteria [56–59], polar hydroxyl
groups are responsible for the synthesis of MNPs [60]. Scheme 3 depicts a plausible mechanism for the
bioreduction of Pd(II) ions to Pd NPs using Cucurbita pepo leaf extract.
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Scheme 3. Proposed mechanism for the synthesis of Pd nanoparticles (NPs).

The UV spectrum of the Cucurbita pepo leaf extract (Figure 1) shows specified signals at around
400 nm (bond I) and 260 nm (bond II) due to the cinnamoyl and benzoyl systems, respectively, referring
to the π→ π* transitions of polyphenolics.
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Figure 1. UV-Vis spectrum of plant extract and Pd NPs at different times.

The UV-vis spectrum of biosynthesized Pd NPs shows the effect of surface Plasmon resonance
following the appearance of maximum wavelength around 295 nm. The stability study of nanoparticles
revealed that they are stable for more than 4 weeks because the wavelength of nanoparticles shows no
significant deviation or disruption during this time. This stability may be due to possible adsorption
of antioxidant phytochemicals on nanosurfaces, thus preventing their decomposition and deformation
processes for extended periods of time.

Figure 2 shows the FT-IR signals of Pd NPs synthesized by Cucurbita pepo plant extract. The main
signals around 3550, 1745 and 1435–1575 cm−1 are assigned to the OH, carbonyl group (C=O) and
C=C aromatic ring vibrations, respectively which clearly confirm the presence of plant phytochemicals
on the surface of Pd NPs and their effect on protection and stability of nanoparticles.
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Figure 2. FT-IR spectrum of Pd NPs.

The XRD pattern of synthesized Pd NPs (Figure 3) exhibited a crystalline structure for the sample
with peaks at 40.13◦ (111), 46.4◦ (200) and 66.5◦ (220), which precisely pertain to the signals of Pd NPs
as corroborated by previous reports [61].
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Figure 3. X-ray Diffraction (XRD) pattern of Pd NPs.

3.2. Characterization of Pd/Coral Reef Nanocomposite

Pd NPs, synthesized via bioreduction of Pd2+ ions to Pd◦ with assurance of stability and feasibility
of their recovery, were immobilized on coral reef surface using an aqueous extract of Cucurbita pepo
leaves. Pd/coral reef nanocomposite was confirmed by FT-IR, FE-SEM, EDS and elemental mapping.

The surface morphology and size of the as-prepared Pd/coral reef nanocomposite was examined
by FE-SEM (Figure 4) and Transmission Electron Microscopy (TEM, Figure 5); the structure of the
nanocatalyst was found to be well-organized pure spherical form with the monodispersity of the Pd
NPs being clearly observed. Figure 6 shows the Pd NP size distributions; TEM images and histogram
indicate that the average size of the Pd NPs is about 12 nm.
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Further reaffirmation of the surface composition was attained by examining its composition using
EDS analysis. The EDS spectrum in Figure 7 shows the presence of the C, Ca, O and Pd with the
presence of Pd being endorsed by elemental mapping images (Figure 8).
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In order to further elucidate the presence of functional groups in the phytosynthesized
nanocomposite, FT-IR analysis was recorded in the range of 400–4000 cm−1. As shown in Figure 9,
the positions of the observed peaks are approximately similar to the corresponding peaks in the
spectrum of Cucurbita pepo plant extract. The FT-IR spectrum of Pd/coral reef nanocomposite
shows peaks at 3414, 1787, 1472, 1386, 1080, 856 cm−1 represent the OH functional groups, carbonyl
group (C=O), stretching C=C aromatic ring, C–OH stretching vibrations and monosubstituted, ortho-
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or meta-disubstituted aromatic compounds vibrations, respectively. This indicates that organic
compounds from the extract are adsorbed on the surface nanocatalyst through π-electron interaction;
flavonoid and other phenolic compounds comprising the extract being mainly responsible for the
reduction Pd2+ ions.
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3.3. Catalytic Performance of the Pd/Coral Reef Nanocomposite in the Cyanation of Aryl Halides

A safe and efficient method is mandatory to generate the aryl–CN bonds for compounds used in
drug development program which is adequately addressed by this work; a non-toxic cyanide source
in the presence of Pd/coral reef biocatalyst was deployed. Initial experiments were conducted to
determine the optimum reaction conditions (Table 1), using a model reaction between iodobenzene
(1.0 mmol), K4[Fe(CN)6] (0.2 mmol), in the presence of varying amounts of the Pd/coral reef
nanocomposite as catalyst and assorted solvents and bases (1.0 mmol). The reaction in the absence
of Pd/coral reef nanocatalyst, produced no benzonitrile product (Table 1, entry 1). Apparently,
the reaction was influenced significantly by the solvent and base deployed; the reaction was examined
in solvents such as DMF (dimethylformamide), DMSO (dimethyl sulfoxide), toluene, H2O and
N-methyl-2-pyrrolidone (NMP) in the presence of various bases (K2CO3, Et3N, NaF, Na2CO3 and
KOAc). The use of DMF as solvent and K2CO3 as base gave the excellent yield (Table 1, entry 2).
As shown in Table 1, catalyst was necessary for the cyanation of iodobenzene and the best results were
obtained in the presence of 0.05 g of the Pd/coral reef nanocomposite (Table 1, entry 2). Decreasing the
catalyst amount from 0.05 to 0.03 g decreases the product yield (Table 1, entry 11). The study further
revealed that when the catalyst amount was increased from 0.05 to 0.08 g, the reaction time and yield
did not show much changes (Table 1, entry 12).

The general scope of the cyanation reaction was next examined using a variety of aryl halides
bearing numerous electron-donating or electron-withdrawing groups under optimized conditions
and the results are summarized in Table 2. A wide variety of aryl iodides, aryl bromides and
aryl chlorides were transformed into their corresponding substituted aryl nitriles in good to
excellent yields. The reaction was tolerated by various functional groups such as methoxy, nitrile,
nitro and hydroxyl functionalities; the nature of the substituent on the aryl halides did not affect
the reaction yield including the steric effects of the ortho-substituents (Table 2, entry 5). As an
example, among the electron-poor nitrogen heterocycles, 3-iodo- and 4-iodopyridines produced
the corresponding products in good yields (Table 2, entries 9 and 10) and the reaction displayed
selectivity for 1-chloro-3-iodobenzene and 1-chloro-4-iodobenzene (Table 2, entries 11 and 12).
In the scenario when two I or Br groups were present, 1,4-diiodobenzene, 1,3-dibromobenzene and
1,4-dibromobenzene, (Table 2, entries 8, 15 and 16) interestingly afforded the double-addition product.
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Table 1. Pd/coral reef-catalyzed cyanation of iodobenzene using K4Fe(CN)6 at 120 ◦C under different
conditions a.

Entry Pd/Coral Reef (g) Solvent Base Time (h) Yield (%) b

1 0 DMF K2CO3 7 0
2 0.05 DMF K2CO3 2 88
3 0.05 DMF NaF 7 29
4 0.05 DMF KOAc 3 79
5 0.05 DMF Et3N 7 26
6 0.05 DMF Na2CO3 3 75
7 0.05 DMSO K2CO3 2 85
8 0.05 NMP K2CO3 7 28
9 0.05 Toluene K2CO3 10 18

10 0.05 H2O K2CO3 10 15
11 0.03 DMF K2CO3 2 64
12 0.08 DMF K2CO3 2 88

a Reaction conditions: Iodobenzene (1.0 mmol), K4Fe(CN)6 (0.2 mmol), base (1.0 mmol), DMF (5.0 mL), 120 ◦C;
b Isolated yields are after work-up.

Table 2. Cyanation of aryl halides with K4Fe(CN)6 in the presence of the Pd/coral reef nanocomposite a.

Entry Aryl Halide Product Time (h) Yield (%) b TOF (h−1)
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a Reaction conditions: Catalyst (0.05 g containing 0.001 mol% of Pd), aryl halides (1.0 mmol), K4Fe(CN)6 (0.2 mmol),
K2CO3 (1.0 mmol), DMF (5.0 mL), 120 ◦C; b Isolated yields are after work-up; c The reaction was carried out in the
presence of 0.4 mmol of K4Fe(CN)6.

All products were obtained in good to excellent yields and characterized by FT-IR, 1HNMR, 13CNMR
spectra and melting point. FT-IR spectra showed one sharp peak between 2225–2360 cm−1 for the CN
stretching band. The formation of products was also confirmed by 1HNMR and 13CNMR spectra.

Table 3 compares the results of the present study with previously reported findings [62–76] for
the synthesis of 4-methoxybenzonitrile. It is clearly indicated that Pd/coral reef nanocomposite is
an efficient catalyst displaying excellent catalytic activity under ligand-free conditions and affording
the high yield of 4-methoxybenzonitrile under short reaction time, at low catalyst loadings (Table 3).
Buchwald and co-workers developed two effective protocols for cyanation of 4-methoxybromobenzene
and 4-methoxychlorobenzene using K4Fe(CN)6 in the presence of palladacycle precatalyst and ligands
such as t-BuXPhos and XPhos in excellent yields [75,76]. However, our procedure does not require
any ligand for the cyanation of aryl halides. Additionally, the Pd/coral reef nanocomposite can be
synthesized, via a simpler method using Cucurbita pepo leaf extract as a stabilizing and reducing agent
without any hazardous, toxic and expensive chemicals and ligands, and the catalyst could be recovered
and recycled for multiple uses. Finally, coral reef as a natural support and the plant extracts utilized
the local sustainable resources originated from Persian Gulf, Iran.
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Table 3. Comparison of the Pd/coral reef nanocomposite with other previously reported catalysts in
the synthesis of 4-methoxybenzonitrile.

Entry Reaction Conditions Time Yield (%) a Ref.

1 p-CH3OC6H4I, Pd/CuO NPs, K4Fe(CN)6, K2CO3, DMF, 120 ◦C 15 h 88 [62]
2 p-CH3OC6H4Br, CuCN, L-proline, DMF, 120 ◦C 45 h 81 [63]
3 p-CH3OC6H4I, Pd(OAc)2, 1,1-bis(diphenylphosphino)ferrocene, HCONH2, POCl3, MW, N2, 160 ◦C 50 min 78 [64]
4 p-CH3OC6H4CH2OH, Cu(ClO4)2.6H2O, TMSN3, DDQ, DCE, 60 ◦C 4 h 82 [65]
5 p-CH3OC6H4CHO, Cu(NO3)2, NH3, O2, DMSO, 80 ◦C 5 h 86 [66]
6 p-CH3OC6H4I, CuI, HCONH2, PPh3, POCl3, N2, 140 ◦C 24 h 83 [67]
7 p-CH3OC6H4I, Cu(NO3)2.3H2O, HCON(Me)2, HOAc, TBHP, DMF, air, 140 ◦C 48 h 87 [68]
8 p-CH3OC6H4B(OH)2, CuI, PhCH2CN, TBHP, air, DMAc, 130 ◦C 20 h 72 [69]
9 p-CH3OC6H4I, [Rh(cod)Cl]2, Xantphos, HCONH2, POCl3, N2, 135-140 ◦C 24 h 85 [70]
10 p-CH3OC6H4I, CuF2, Li2CO3, CO(NH2)2, 1,10-phenanthroline, O2, DMSO, 150 ◦C 36 h 87 [71]
11 p-CH3OC6H4I, Pd-BNPs, K4Fe(CN)6, K3PO4, DMF, 120 ◦C 2 h 88 [72]
12 p-CH3OC6H4I, Cu(I)-HAP, K4Fe(CN)6, KF, DMF, 120 ◦C 15 h 80 [73]
13 p-CH3OC6H4Br, ZnO-Pd NPs, K4Fe(CN)6, KF, DMF, 130 ◦C 14 h 76 [74]
14 p-CH3OC6H4Cl, palladacycle precatalyst, XPhos, K4Fe(CN)6, KOAc, dioxane/H2O (1:1), 110 ◦C 1 h 95 [75]
15 p-CH3OC6H4Br, palladacycle precatalyst, t-BuXPhos, Zn(CN)2, THF/H2O (1:5), r.t. 18 h 97 [76]
16 p-CH3OC6H4I, Pd/coral reef, K4Fe(CN)6, K2CO3, DMF, 120 ◦C 2 h 89 This work
17 p-CH3OC6H4Br, Pd/coral reef, K4Fe(CN)6, K2CO3, DMF, 120 ◦C 3 h 89 This work

a Isolated Yield.

3.4. Reusability and Stability of Catalyst

The reusability of the catalysts is one of the most important aspect; it makes them useful
for commercial applications, especially for precious metal use. The Pd/coral reef nanocomposite
performed under heterogeneous conditions and the recovery studies were performed by conducting
the cyanation reaction of 4-iodotoluene with K4Fe(CN)6 under the optimized reaction conditions.
After completion of the reaction, the catalyst was separated from the reaction mixture by filtration,
washed with distillated water and ethanol, dried in oven at 100 ◦C for 1 h and reused for the next
reaction. It was interesting to observe that the catalyst can be reused up to 5 cycles with no loss of
activity (Figure 10). The recovered catalyst, after five cycles, was examined by FE-SEM (Figure 4d,e)
and EDS (Figure 11) analysis and the results revealed good stability of the Pd/coral reef nanocomposite
in the consecutive cyanation cycles; the chemical composition and size of Pd NPs did not reveal any
significant changes. To check Pd/coral reef nanocomposite heterogeneity, the leaching phenomenon
was investigated by using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy
(Perkin Elmer 5300V, Akron, OH, USA) analysis of the resulting solution of reaction. The content of the
Pd within Pd/coral reef nanocomposite, as determined by ICP-AES, was found to be 0.2 mmol/g. A hot
filtration study for the cyanation reaction of 4-iodotoluene with K4Fe(CN)6 was accomplished and
catalyst, immediately at the end of the reaction, was separated. The results of heterogeneity test confirm
that the leaching of Pd species during reaction progress is low and Pd/coral reef nanocomposite is a
heterogeneous catalyst in nature. According to the obtained results, it was revealed that less than 0.2%
of the palladium was observed in the solution during the cyanation reaction.
Nanomaterials 2019, 9, x FOR PEER REVIEW 14 of 18 

 

Figure 10. Reusability of Pd/coral reef nanocomposite for cyanation of 4-iodotoluene using K4Fe(CN)6. 

 

Figure 11. EDS spectrum of recycled Pd/coral reef nanocomposite. 

4. Conclusions 

In summary, we have developed a simple procedure for the cyanation of aryl halides using 

K4[Fe(CN)6] in the presence of Pd/coral reef nanocomposite as an efficient and recyclable 

heterogeneous nanocatalyst. The catalyst is obtainable via bioreduction of Pd(II) to Pd(0) NPs and its 

immobilization achieved on the coral reef surface as a natural support by using aqueous extract of 

the leaves of Cucurbita pepo as stabilizing and reducing agent without employing hazardous 

chemicals. The synthesized catalyst exhibits excellent catalytic activity for the synthesis of aryl nitriles 

in high yields, with a wide range of aryl halides, including electron-donating and electron-

withdrawing groups. In comparison with traditional cyanation of aryl halides, our protocol provides 

an eco-friendlier benign and practical organic process, especially since nanocomposite were synthesis 

by biologically process using local resources. This protocol offers several advantages such as simple 

work-up procedure, high product yields, ease of preparation; separation and reusability of catalyst 

from the reaction mixture bodes well for its applications. Finally, in keeping with sustainability 

principles, the described strategy uses the readily available local resources (dead coral reef and 

abundant plant) for the assembly of the nanocomposite catalyst that can be exploited for synthetic 

transformations under greener conditions. 

Author Contributions: Methodology and experimental design, M.N., F.G., and S.M.S.; resources: M.N.; 

supervision: M.N., and R.S.V.; writing-original draft: M.N., F.G., and R.S.V.; writing-review and editing: M.N., 

and R.S.V. 

Funding: This research received no external funding. 

C 

O 
Ca

Ca

Ca

Pd

Pd

keV
0

100

200

300

400

500

0 5 10

Figure 10. Reusability of Pd/coral reef nanocomposite for cyanation of 4-iodotoluene using K4Fe(CN)6.



Nanomaterials 2019, 9, 565 14 of 18

Nanomaterials 2019, 9, x FOR PEER REVIEW 14 of 18 

 
Figure 10. Reusability of Pd/coral reef nanocomposite for cyanation of 4-iodotoluene using K4Fe(CN)6. 

 
Figure 11. EDS spectrum of recycled Pd/coral reef nanocomposite. 

4. Conclusions 

In summary, we have developed a simple procedure for the cyanation of aryl halides using 
K4[Fe(CN)6] in the presence of Pd/coral reef nanocomposite as an efficient and recyclable 
heterogeneous nanocatalyst. The catalyst is obtainable via bioreduction of Pd(II) to Pd(0) NPs and its 
immobilization achieved on the coral reef surface as a natural support by using aqueous extract of 
the leaves of Cucurbita pepo as stabilizing and reducing agent without employing hazardous 
chemicals. The synthesized catalyst exhibits excellent catalytic activity for the synthesis of aryl nitriles 
in high yields, with a wide range of aryl halides, including electron-donating and electron-
withdrawing groups. In comparison with traditional cyanation of aryl halides, our protocol provides 
an eco-friendlier benign and practical organic process, especially since nanocomposite were synthesis 
by biologically process using local resources. This protocol offers several advantages such as simple 
work-up procedure, high product yields, ease of preparation; separation and reusability of catalyst 
from the reaction mixture bodes well for its applications. Finally, in keeping with sustainability 
principles, the described strategy uses the readily available local resources (dead coral reef and 
abundant plant) for the assembly of the nanocomposite catalyst that can be exploited for synthetic 
transformations under greener conditions. 

Author Contributions: Methodology and experimental design, M.N., F.G., and S.M.S.; resources: M.N.; 
supervision: M.N., and R.S.V.; writing-original draft: M.N., F.G., and R.S.V.; writing-review and editing: M.N., 
and R.S.V. 

Funding: This research received no external funding. 

C 

O 
Ca

Ca

Ca

Pd

Pd

keV0

100

200

300

400

500

0 5 10

Figure 11. EDS spectrum of recycled Pd/coral reef nanocomposite.

4. Conclusions

In summary, we have developed a simple procedure for the cyanation of aryl halides
using K4[Fe(CN)6] in the presence of Pd/coral reef nanocomposite as an efficient and recyclable
heterogeneous nanocatalyst. The catalyst is obtainable via bioreduction of Pd(II) to Pd(0) NPs and its
immobilization achieved on the coral reef surface as a natural support by using aqueous extract of the
leaves of Cucurbita pepo as stabilizing and reducing agent without employing hazardous chemicals.
The synthesized catalyst exhibits excellent catalytic activity for the synthesis of aryl nitriles in high
yields, with a wide range of aryl halides, including electron-donating and electron-withdrawing groups.
In comparison with traditional cyanation of aryl halides, our protocol provides an eco-friendlier benign
and practical organic process, especially since nanocomposite were synthesis by biologically process
using local resources. This protocol offers several advantages such as simple work-up procedure,
high product yields, ease of preparation; separation and reusability of catalyst from the reaction mixture
bodes well for its applications. Finally, in keeping with sustainability principles, the described strategy
uses the readily available local resources (dead coral reef and abundant plant) for the assembly of the
nanocomposite catalyst that can be exploited for synthetic transformations under greener conditions.
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