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Abstract: The low-power, high-performance graphene/ZnO Schottky photodiodes were demonstrated
through the direct sputter-growth of ZnO onto the thermally-cleaned graphene/SiO2/Si substrate at
room temperature. Prior to the growth of ZnO, a thermal treatment of the graphene surface was
performed at 280 ◦C for 10 min in a vacuum to desorb chemical residues that may serve as trap
sites at the interface between graphene and ZnO. The device clearly showed a rectifying behavior
with the Schottky barrier of ≈0.61 eV and an ideality factor of 1.16. Under UV illumination, the
device exhibited the excellent photoresponse characteristics in both forward and reverse bias regions.
When illuminating UV light with the optical power density of 0.62 mW/cm2, the device revealed a
high on/off current ratio of >103 even at a low bias voltage of 0.1 V. For the transient characteristics
upon switching of UV light pulses, the device represented a fast and stable photoresponse (i.e., rise
time: 0.16 s, decay time: 0.19 s). From the temperature-dependent current–voltage characteristics,
such an outstanding photoresponse characteristic was found to arise from the enhanced Schottky
barrier homogeneity via the thermal treatment of the graphene surface. The results suggest that the
ZnO/graphene Schottky diode holds promise for the application in high-performance low-power
UV photodetectors.
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1. Introduction

Graphene-based hybrid and heterostructures with other inorganic and/or organic materials render
more fascinating functionalities compared to conventional electronic and optoelectronic devices [1–3].
Among various graphene-based hetero-architectures, the graphene/inorganic semiconductor contacts
have attracted much attention because of their ample potential for high-performance Schottky
photodiodes (PDs) [4]. For example, the enhanced photoresponse characteristics with high sensitivity
and fast response were demonstrated on various graphene-based Schottky PDs that were composed of
typical inorganic semiconductor materials (e.g., Si [5,6], Ge [7], GaAs [8,9], CdSe [10], ZnO [11–21],
etc.). Among them, ZnO is one of the most prospective materials for high-performance ultraviolet
(UV) PDs because of its wide band gap and excitonic properties [22,23]. Due to the c-axis preference
of wurtzite ZnO, moreover, ZnO thin films [18,19] or ZnO nanorods [20] can be easily grown on the
defective graphene sheet that had been grown using chemical vapor deposition (CVD). Namely, the
presence of C–O nucleation sites on CVD graphene allows us to fabricate a simple device scheme of
the graphene/ZnO Schottky PD through the direct growth of ZnO on graphene. Furthermore, since the
work function of CVD graphene could be controlled by thermal [24,25] and chemical [26] treatments,
one can easily manipulate the Schottky barrier height at the graphene/ZnO interface. Owing to such
advantages, very recently, high-performance graphene/ZnO Schottky UV PDs have been realized
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through various techniques; for example, direct growth of ZnO onto graphene by using CVD [16],
chemical bath deposition [11], radio frequency (r.f.) magnetron sputtering [18,19], hydrothermal
methods [20], and dispersion of ZnO nanorods onto graphene [12–14]. When using graphene as an
active layer of the electronic and the optoelectronic devices, there are critical issues from chemical
adsorbates and residues that might remain on the graphene surface during the graphene transfer
step [24]. For instance, during the growth of ZnO on graphene, the chemical adsorbates and residues
will degrade the lateral homogeneity of the Schottky barrier because they act as unnecessary dopants
and/or contaminants at the graphene/ZnO interface. In Schottky PDs, the inhomogeneous barrier
underneath the photon collection area may degrade the ideality factor (i.e., transport characteristics) [4],
and will eventually restrict the photoresponse characteristics of the Schottky PDs. To realize the
high-performance graphene/ZnO Schottky UV PDs, therefore, enhancing the lateral Schottky barrier
homogeneity is essential. In other words, the chemical adsorbates and residues should be effectively
removed prior to the growth of ZnO onto the graphene surface.

In light of all the above, we have investigated the enhancement of the lateral Schottky barrier
homogeneity in the graphene/ZnO Schottky PDs. The devices were fabricated by direct sputtering of
ZnO onto thermally-cleaned single-layer graphene (SLG). Namely, to improve the ZnO/SLG interface
properties, in situ thermal cleaning of CVD SLG was performed just prior to the sputtering of ZnO
in a single chamber. This simple method uses neither chemical nor physical treatments that may
provide additional adsorption of gas molecules during subsequent handling of the sample in air
ambience. Despite such advantages, according to our best survey, no previous works have reported
on the in situ thermal treatment for fabricating a high-performance SLG/ZnO Schottky PD. Through
the temperature-dependent electrical characterization, we analyzed the Schottky barrier homogeneity
of the fabricated ZnO/SLG Schottky PDs. In addition, we thoroughly assessed the photoresponse
characteristics of the devices due to varying UV powers.

2. Experimental Section

2.1. Preparation of SLG/SiO2/Si Substrate

Figure 1 schematically illustrates the device fabrication procedures for the SLG/ZnO Schottky
PD. First, the SLG sheet was grown on Cu foil using CVD and transferred onto the SiO2/Si substrate
by using a poly(methyl methacrylate) (PMMA) transfer method (Figure 1a). Next, the sample was
mounted in the sputtering chamber and was thermally cleaned at 280 ◦C for 10 min in a high vacuum
(≈10−6 Torr) to eliminate chemical residues and/or molecular oxygens that might be adsorbed onto the
SLG surface during the transfer process (Figure 1b).
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Figure 1. Schematic illustration for the fabrication of the ZnO/SLG Schottky PD: (a) SLG transfer step,
(b) in situ thermal cleaning of SLG in vacuum sputtering chamber, (c) sputtering deposition of ZnO onto
thermally-cleaned SLG, and (d) fabrication of the ZnO/SLG Schottky PD via lithographic techniques.

2.2. Fabrication of ZnO/SLG Schottky PDs

The ZnO/SLG Schottky contacts were formed via the direct growth of the 200-nm-thick ZnO layer
onto the SLG/SiO2/Si substrate through r.f. magnetron sputtering (Figure 1c). The sputtering process
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was performed at room temperature in Ar plasma ambient under the following conditions: Ar gas
flow rate = 30 sccm, working pressure = 30 mTorr, and r.f. power = 150 W. After the growth of the ZnO
layer onto SLG, the active area (w ≈ 10 µm, l ≈ 30 µm) was defined by conventional photolithography
techniques. Finally, the Al (tAl ≈ 100 nm) and Ti/Al (tTi ≈ 10, tAl ≈ 100 nm) ohmic electrodes for
ZnO and SLG layer were formed using electron-beam evaporation and standard lift-off processes
(Figure 1d). We here note that two different types of ZnO/SLG Schottky PDs were prepared by using
as-transferred SLG and thermally-cleaned SLG so as to examine the effects of thermal cleaning on the
device characteristics. For convenience, we refer the former and the later as a ZnO/AT-SLG Schottky
PD and a ZnO/TC-SLG Schottky PD, respectively.

2.3. Measurements of Material and Device Characteristics

The Raman scattering characteristics of the as-transferred and thermally-cleaned SLG samples
were measured by using a Renishaw Micro Raman spectrometer (Renishaw, Wotton-under-Edge, UK)
under green laser excitation (λ = 514 nm). The topographic cross-section and the crystal structure
of the ZnO layer were monitored through scanning electron microscopy (SEM) using an FE SEM
XL-30 system (Phillips, Eindhoven, The Netherlands) and X-ray diffractometry (XRD) using a Bede
D3 system (Bede Scientific Instruments Ltd., Durham, UK), respectively. The temperature-dependent
electrical characteristics of the ZnO/SLG Schottky PDs were assessed at 300–400 K by using a Keysight
B1500A semiconductor device parameter analyzer (Keysight Technologies, Santa Rosa, CA, USA).
The photoresponse characteristics of the PDs were examined under light illumination using a 365-nm
UV light emitting diode, wherein the UV power density (PUV) was varied from 0–0.77 mW/cm2 during
photoresponse measurements.

3. Results and Discussion

Figure 2a schematically illustrates the final form of the fabricated ZnO/SLG Schottky PD, and
Figure 2b shows the Raman spectra of the SLG sheets used for the device fabrication. Both the
as-transferred and the thermally-cleaned SLG sheets revealed two predominant Raman features of
G and 2D bands from high-quality graphene. For as-transferred SLG, the G and 2D peaks appeared
at ≈1588 and 2684 cm−1, respectively, and the observed positions were blue-shifted from pristine
graphene (i.e., Gpristine ≈ 1580–1585 cm−1, 2Dpristine ≈ 2635–2645 cm−1) [25]. This implies that our
as-transferred SLG was doped by acceptor impurities from oxygen molecules [27] and/or chemical
residues [28,29] adsorbed during the graphene transfer step. After thermal cleaning at 280 ◦C, both G
and 2D peaks were shifted by 9 and 13 cm−1 toward their pristine graphene positions, respectively.
Such a red-shift of both the G and 2D peaks depicts the decrease in charge trapping effects because the
unintentional acceptors were effectively removed via thermal annealing at 280 ◦C [24,25]. Furthermore,
no appearance of the defect-mediated D band at ≈1350 cm−1 indicates that vacuum-annealing at 280 ◦C
caused no damage to the sp2 carbon bonds in SLG.

Onto the surface of high quality SLG, we deposited a 200-nm-thick ZnO layer at room temperature
by using an r.f. magnetron sputtering technique. As shown in Figure 2c, the cross-sectional SEM
image shows that the ZnO layer was effectively grown on SLG with a well-merged c-axis preferential
columnar structure. The ZnO layers grown on the as-transferred and the thermally-cleaned SLG sheets
exhibited a typical XRD pattern with the (000l) lattice phase (Figure 2d), which is indicative of the
wurtzite structure of typical ZnO. In such a ZnO/SLG structure, the Schottky barrier (φB = ΦSLG −

χZnO) would be formed at the interface between SLG and ZnO (Figure 2e) because the work function
of CVD SLG (ΦSLG > ≈4.5 + α eV) [30] is greater than electron affinity of ZnO (χZnO ≈ 4.1 eV) [31].
Here, the magnitude of α depends on the difference between the Dirac point and the Fermi level in
CVD SLG, and it could be caused by the p-type doping effect from oxygen molecules and/or chemical
residues. Thanks to the formation of the Schottky barrier, the SLG/ZnO Schottky PDs show a good
rectifying behavior (Figure 2f).
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Figure 2. (a) Schematic of the ZnO/SLG Schottky PD. (b) Raman spectra of the as-transferred and the
thermally-cleaned SLG sheets. (c) Cross-sectional view of the SEM image for the ZnO layer grown
on the SLG/SiO2/Si substrate. (d) XRD patterns of the ZnO layers grown on the as-transferred and
the thermally-cleaned SLG sheets. (e) Expected energy band diagram of the ZnO/SLG Schottky PD at
thermal equilibrium. (f) I–V characteristics of the ZnO/AT-SLG and the ZnO/TC-SLG Schottky PDs.
The inset of (f) shows the schematic configuration of the bias setup for the electrical characterization of
the fabricated device.

To characterize the Schottky barrier homogeneity of the ZnO/AT-SLG and ZnO/TC-SLG Schottky
PDs, as a primary task, we measured the current–voltage (I–V) characteristics for both samples at
temperatures ranging from 300 to 400 K in a dark chamber. For both samples, the diode current
increased with increasing temperature (Figure 3a,b). Particularly, the increase in the reverse saturation
current became significant because of thermally-activated carrier conduction (TACC) at elevated
temperatures (see also the inset of Figure 3a). According to the thermionic emission theory [32], the
I–V relationship of the Schottky diode at V > 3 kT/q can be expressed as:

J = J0 exp(qV/ηkT) (1)

J0 = AA∗T2 exp(−qφB/kT), (2)

where J0 is the reverse saturation current, q is the electron charge, η is the ideality factor, k is the
Boltzmann constant, T is the absolute temperature, A is the contact area, and A* is the Richardson
constant. Based upon Equations (1) and (2), we represented the Richardson plots (i.e., ln(J0/T2) vs.
1000/T) to determine the effective value of A* for our devices (Figure 4). From linear best fitting, the
values of A* were calculated to be 0.495 and 0.628 A·cm−2K−2 for the ZnO/AT-SLG and the ZnO/TC-SLG
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Schottky PDs, respectively. The obtained A* values are much smaller than the theoretical value of
the ZnO Schottky diode (≈32 A·cm−2K−2) because of the Schottky barrier inhomogeneity [33–35]. In
addition, the ultrathin insulating layer at the Schottky interface could be a possible scenario that may
degrade the A* value because the chemical adsorbates and oxygen molecules on SLG could locally
form inadvertent insulating potential barriers [36–38]. Although both samples showed a smaller value
of A* than the theoretical calculation, the effective value of A* was higher for the ZnO/TC-SLG Schottky
PD (i.e., A* = 0.628 A·cm−2K−2) than the ZnO/AT-SLG Schottky PD (i.e., A* = 0.495 A·cm−2K−2). From
this result, one can conjecture that the Schottky barrier homogeneity was enhanced in the ZnO/TC-SLG
Schottky PD because the thermally-cleaned SLG exhibited a red-shift of G and 2D peaks, which
is attributed to the effective elimination of oxygen molecules and/or chemical residues via thermal
annealing at 280 ◦C (see also Figure 2b).
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Figure 4. Richardson plots (i.e., ln(J0/T2) vs. 1000/T) for the ZnO/AT-SLG and the ZnO/TC-SLG Schottky
PDs. The symbols are the experimental data points, and the solid lines are the best-fitted curves to
determine A* for the PDs. The error bars indicate the standard deviation from data obtained from
multiple samples fabricated by identical procedures (i.e., five devices of ZnO/AT-SLG Schottky PDs
and five devices of ZnO/TC-SLG Schottky PDs, see also Supplementary Materials).

To examine further insight into the Schottky barrier homogeneity, we investigated the temperature
dependencies of φB and η for both samples. At 300 K, the ZnO/AT-SLG Schottky PD revealed a φB of
0.58 eV and η of 1.91 (Figure 5a). As we explained earlier, the Schottky barrier with φB = 0.58 eV was
effectively formed due to the difference between ΦSLG and χZnO. The high magnitude of η (= 1.91) is
thought to be responsible for multiple recombination channels [39], which might arise from chemical
residues residing at the ZnO/SLG interface. As the temperature increased, φB slightly increased while η
suddenly decreased. These behaviors (i.e., φB↗ and η ↓ with T↗) are commonly observed in typical
metal/semiconductor Schottky diodes, and are known to be attributed to the lateral Schottky barrier
inhomogeneity [40,41]. We therefore expect our ZnO/AT-SLG Schottky PD to have inhomogeneous
Schottky barriers with a significant φB fluctuation along the surface direction, particularly at impurity
and/or defect sites attributing to chemical residues (see also Figure 6a). In such a device, the effective
values of φB and η would increase and decrease with increasing temperature, respectively, because
TACC through higher Schottky barriers became serious at elevated temperatures (see also Figure 6b,c).
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and five devices of ZnO/TC-SLG Schottky PDs, see also Supplementary Materials).
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Figure 6. Expected Schottky barrier homogeneity along the in-plane direction normal to the surface
and its impact on the carrier transport characteristics at different temperatures: (a) three-dimensional
illustration of the energy-band diagram for the ZnO/SLG Schottky PD consisting of inhomogeneous
Schottky barriers (e.g., for the case of the ZnO/AT-SLG Schottky PD), (b) carrier transport across the
inhomogeneous Schottky barriers at T = T1, (c) carrier transport with TACC at T = T2 >> T1 for the
diode with inhomogeneous Schottky barriers, (d) three-dimensional illustration of the energy-band
diagram for the ZnO/SLG Schottky PD with homogeneous Schottky barriers (e.g., for the case of the
ZnO/TC-SLG Schottky PD), (e) carrier transport across the homogeneous Schottky barriers at T = T1,
and (f) carrier transport with TACC at T = T2 >> T1 for the case of the diode with homogeneous
Schottky barriers.

For the ZnO/TC-SLG Schottky PD, φB and η were determined to be 0.61 eV and 1.16, respectively,
at 300 K. In Schottky diodes, the low ηmanifested a clean interface between metal and semiconductor
for the device, resulting in a dominance of thermionic emission rather than recombination [42].
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One possible reason could be an effective removal of chemical residues from the SLG surface through
the thermal cleaning process. Furthermore, the magnitudes of both φB and ηwere almost independent
of temperature (Figure 5b), which is totally different from the thermodynamic behavior of the
ZnO/AT-SLG Schottky PD. In a homogeneous Schottky barrier system, due to the weak fluctuation of
φB along the surface direction, thermionic emission dominates its carrier transport whereas TACC
becomes insignificant at elevated temperatures (see also Figure 6d,f). As a consequence, an enhanced
Schottky barrier homogeneity will result in the almost invariance of both φB and η upon varying
the environmental temperature. Therefore, we expected that the Schottky barrier homogeneity was
enhanced in our ZnO/TC-SLG Schottky PD via thermal cleaning (i.e., formation of uniform φB along
the surface direction by the effective removal of the chemical residues from the SLG surface).

In Schottky PDs, the Schottky barrier homogeneity is one of the most crucial factors that strongly
affects the photoresponse characteristics. To confirm the effect of the lateral homogeneity of the Schottky
barrier, we assessed and compared the photoresponse properties of the ZnO/AT-SLG and ZnO/TC-SLG
Schottky PDs under UV light illumination with a PUV of 0–0.77 mW/cm2. For the ZnO/AT-SLG Schottky
PD, as shown in Figure 7a, the current exponentially increased with increasing PUV even in both
the positive and the negative voltage regions. Figure 7b,c shows the PUV dependence of the steady
state photocurrent (i.e., IPh = ILight − IDark) at various bias voltages and its corresponding IPh/IDark

ratio, respectively. The device exhibited a large difference between ILight and IDark, resulting in a high
IPh/IDark ratio. Since the current level of IDark was sufficiently low at V = 0.1 V, the high IPh/IDark ratio
of ≈1100 was achievable at 0.1 V.
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Figure 7. Comparison of the photoresponse characteristics between the ZnO/AT-SLG and the
ZnO/TC-SLG Schottky PDs: I–V characteristics under 365-nm UV light illumination for the (a)
ZnO/AT-SLG and the (d) ZnO/TC-SLG Schottky PDs, IPh as a function of PUV for the (b) ZnO/AT-SLG
and the (e) ZnO/TC-SLG Schottky PDs, and IPh/IDark ratio as a function of PUV for the (c) ZnO/AT-SLG
and the (f) ZnO/TC-SLG Schottky PDs.

When illuminating the UV light onto the ZnO/TC-SLG Schottky PD, a similar behavior to the
above was observed (Figure 7d). As can be seen from Figure 7e, however, the device exhibited a
slightly lower current level of IDark (= 0.12 nA) at 0.1 V, compared to the ZnO/AT-SLG Schottky PD
(IDark = 0.35 nA). We ascribe this feature to the lower contribution of carrier recombination at the small
bias voltage in our ZnO/TC-SLG Schottky PD because the device revealed a quite low magnitude of η
(= 1.16). Accordingly, the IPh/IDark ratio was increased by a factor of ≈4 (i.e., IPh/IDark ≈ 4200) at 0.1 V
(Figure 7f), compared to the ZnO/AT-SLG Schottky PD. The low operating voltage was advantageous
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in both demonstrating a high on/off ratio and reducing the power consumption [43]; hence, we believe
the ZnO/SLG Schottky structure is preferable for the application of low power UV photodetectors.

Figure 8 shows the transient waveforms of IPh for the ZnO/AT-SLG and ZnO/TC-SLG Schottky PDs
under UV light illumination (PUV = 0.77 mW/cm2) at an optical switching frequency of 0.5 Hz. Both the
ZnO/AT-SLG and the ZnO/TC-SLG Schottky PDs exhibited a distinct, stable, and repeatable switching
characteristic of IPh upon turning on and off the UV signal. However, the on-state photocurrent was
unstable in the ZnO/AT-SLG Schottky PD (Figure 8a), whereas the ZnO/TC-SLG Schottky PD revealed
a stable photoresponse of IPh at the UV on state (Figure 8b). The rising time (τr) and the decay time
(τd) of the ZnO/TC-SLG Schottky PD were τr = 0.16 s and τd = 0.19 s, respectively; and those of the
ZnO/AT-SLG Schottky PD were τr = 0.41 s and τd = 0.31 s, respectively. When considering the on- and
off-state resistance (RPD = 0.2–500 MΩ) and the electrostatic capacitance (CPD ≈ 320 pF) of our devices,
the time constant (i.e., τRC = RPDCPD) was determined to be 64 µs–160 ms. Therefore, the observed
photoresponse time was close to the maximum τRC and is comparable to other graphene/ZnO Schottky
PDs [11–16,44] (see also Table 1). For further improvement of the photoresponse time, a study on defect
natures in ZnO can be the next step, for example, engineering of point defects and their lifetimes.
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Figure 8. Photoresponse transient characteristics for the (a) ZnO/AT-SLG and the (b) ZnO/TC-SLG
Schottky PDs under UV light illumination with PUV = 0.77 mW/cm2. τr and τd were determined
when the photoresponse had leached 90% and 10% of the on-state current time, respectively. The
right-hand-side insets display the contribution of various photogenerated carriers to IPh under UV
light illumination (blue dots: photocarriers from defect sites at the interface between ZnO/SLG, red
dots: photocarriers from ZnO).
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Table 1. Comparison of the photoresponse characteristics for various types of graphene/ZnO-based
Schottky PDs.

Materials and
Structures

λUV
(nm) VB (V) τr (s) τd (s) G R IPh/IDark Ref.

SLG/ZnO TF AT
365

0.1 0.41 0.31 ≈347 ≈101 1100 This
WorkTC 0.1 0.16 0.19 ≈381 ≈111 4200

MLG/ZnO NRs 365 −5 0.7 × 10−3 3.6 × 10−3 385 113 <100 [12]

SLG/AlZnO NRs 380 SP 37 × 10−6 330 × 10−6 - 0.039 [11]

SLG/ZnO NRs 325 −1 0.3 0.5 - 21.26 ≈30 [13]

SLG/ZnO NRs 325 −2 0.52 3.4 1.92 4 [14]

rGO/ZnO NRs N/A 1 2.42 0.2 ≈72 ≈2.0 >>103 [15]

rGO/ZnO NRs 365 SP 0.1 0.2 5 [16]

GQDs/ZnO NRs 340 −1 [44]

Note: TF, thin film; NRs, nanorods; SP, self-powered; GQDs, graphene quantum dots; λUV, wavelength of UV light;
VB, bias voltage.

Here, one should focus on the fact that the photoresponse time of the ZnO/TC-SLG Schottky
PD was outstandingly shorter than those of the ZnO/AT-SLG Schottky PD. We attribute such a
discrepancy to the difference in Schottky barrier homogeneity between two devices. In the case
of the inhomogeneous Schottky-barrier system (e.g., ZnO/AT-SLG Schottky PD), as illustrated in
the right-hand-side inset of Figure 8a, the photocarriers would irregularly jump over the Schottky
barrier due to the φB fluctuation along the surface direction. In addition, some of photocarriers
might suffer from charge-trapping at the ZnO/SLG interface due to the presence of residual chemical
constituents and/or oxygen molecules. These cause the unstable on-state photocurrent and retard the
photoresponse time. Contrariwise, such behaviors could be effectively diminished in the homogeneous
Schottky barrier system (e.g., ZnO/TC-SLG Schottky PD) because the Schottky barrier undulation
was suppressed via elimination of trap sites through thermal cleaning of the SLG surface (see the
right-hand-side inset of Figure 8b). Owing to the enhanced Schottky barrier homogeneity, more stable
and prompter photoresponse characteristics could be achievable from the ZnO/TC-SLG Schottky PD.

Finally, we discuss the responsivity (R) and the gain (G) of the prepared ZnO/SLG Schottky PDs.
In PDs, R is defined by the ratio of the photocurrent to the optical power of incident light (Popt), and G
is given by the ratio of the photogenerated carriers (Ne) to the incident photons (NPh). These can be
described using following equations [45]:

R =
IPh

Popt
=

ILight − IDark

Popt
, (3)

G =
Ne

NPh
=

IPh

Popt
×

hυ
q

, (4)

where hν is the photon energy of the incident light. Using Equations (3) and (4), we calculated R
and G for both the ZnO/AT-SLG and the ZnO/TC-SLG Schottky PDs. We here note that the average
IPh value during a single pulse duration was used for calculations of R and G. In the case of the
ZnO/AT-SLG Schottky PD, R and G were calculated to be ≈101 A/W and ≈347, respectively, and these
are comparable to those of the state-of-the-art graphene/ZnO nanorod Schottky PDs [12,15] (see also
Table 1). Compared to the ZnO/AT-SLG Schottky PD, both R and G were increased by ≈10% for
the ZnO/TC-SLG Schottky PD (i.e., R ≈ 111 A/W and G ≈ 381). We attribute the increased R and G
values to the enhanced Schottky barrier homogeneity in the ZnO/TC-SLG Schottky PD. In photocarrier
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conduction, G can also be defined as the ratio of the photocarrier lifetime (τPC) in the photocarrier
generation region to the carrier transit time (τTR) in the photocarrier collection region [3]:

G ≈
τPC

τTR
. (5)

From this relation, we can expect τPC at the SLG/ZnO interface to be increased in the ZnO/TC-SLG
Schottky PD, when assuming that τTR is identical in SLG. This specifies that the photocarrier diffusion
length (LPC) is increased in the ZnO/TC-SLG Schottky PD because of the following relationship [32]:

LPC =
√

DPC·τPC (6)

where DPC is the diffusion coefficient of the photocarrier. In other words, LPC is increased due to
the decreased interface trap density resulting from the effective removal of the chemical residues
and/or oxygen molecules at the SLG/ZnO interface via thermal cleaning of the SLG surface prior to the
deposition of ZnO onto SLG.

4. Summary and Conclusions

We fabricated high-performance, low-power ZnO/SLG Schottky UV PDs by sputtering ZnO
onto thermally-cleaned SLG sheets. The device clearly showed a rectifying behavior and exhibited
an excellent photoresponse under UV illumination. When the UV light (PUV = 0.62 mW/cm2) was
irradiated onto the device, the IPh/IDark ratio was recorded to be more than 4 × 103. For the transient
characteristics, the device represented a fast and stable photoresponse (i.e., τr = 0.16 s and τd = 0.19 s)
upon switching of the UV light pulse. From analyses of the temperature-dependent I–V characteristics,
we found such an outstanding photoresponse performance to arise from the enhanced Schottky barrier
homogeneity due to the reduced interfacial trap density (i.e., effective removal of chemical residues
and/or oxygen molecules at the ZnO/SLG interface via thermal cleaning).

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/5/799/s1,
Figure S1: I–V characteristic curves of various ZnO/AT-SLG Schottky PDs fabricated through an identical device
fabrication process using as-transferred SLG, Figure S2: I–V characteristic curves of various ZnO/TC-SLG Schottky
PDs fabricated through an identical device fabrication process using thermally-cleaned SLG.
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