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Abstract: In a single quantum dot (QD) system connected with ferromagnetic electrodes, the electron
transport properties, assisted by the thermal and Fock state optical fields, are theoretically studied
by the Keldysh nonequilibrium Green’s function approach. The results show that the evolution
properties of the density of state and tunneling current assisted by the Fock state optical field, are quite
different from those of the thermal state. The photon sideband shift decreases monotonously with
the increase in the electron–photon coupling strength for the case of the thermal state, while the
shift is oscillatory for the case of the Fock state. Negative differential conductance (NDC) appears
obviously in a QD system contacted with parallel (P) and antiparallel (AP) magnetization alignment
of the ferromagnetic electrode leads, assisted by the Fock state optical field in a wide range of
electron–photon interaction parameters. Evident NDC usually only arises in an AP configuration QD
system assisted by the thermal state optical field. The results have the potential to introduce a new
way to actively manipulate and control the single-electron tunneling transport on a QD system by the
quantum states of the optical field.

Keywords: quantum dot; ferromagnetic electrodes; negative differential conductance;
Keldysh nonequilibrium Green’s function; optical fields

1. Introduction

Circuit quantum electrodynamics (QED) enable people to manipulate and probe with high
sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities.
Recently, it has become possible to fabricate new devices, in which the superconducting quantum bits
are replaced by hybrid mesoscopic circuits, combining nanostructure devices and metallic reservoirs.
Owing to the versatility of nanofabricated circuits, the hybrid circuit QED would be suitable for a
number of applications which are not accessible with standard cavity QED [1].

Because of the discrete energy spectrum and behavior similar to that of an atom [2], a quantum
dot (QD)-based hybrid circuit, QED, could be used to probe the interactions of light with matter
(light–matter interactions) [3–6], to implement the quantum optical device [7,8], in order to engineer
new states of matter with relevance to the fields of quantum optics [9,10] and solid state physics [11,12].
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The greatest advantage of the hybrid circuit QED systems is that the artificial atom properties can
be arbitrarily controlled by the application of an external field. It provides a new way to study the
light–matter interactions in electronic circuits. There are mainly two kinds of studies. The first class of
studies focuses on the artificial atom limit, where the hybrid circuit QED can be used to manipulate
and probe the electronic degrees of freedom, such as confined charges or spins. The second class
of studies focuses on revealing or controlling the dynamics of electron tunneling between QD and
electrode leads using a cavity photon field.

On the other hand, negative differential conductance (NDC) has attracted considerable attention
due to its potential applications in the realization of low-power memory devices and logic circuits. NDC
could be used to reveal the intrinsic highly nonlinear character of molecular junctions, and it appears
to be related to fundamental features of electron–electron or electron–vibration interactions [13,14].
The typical system, where NDC appears, is a QD with a single orbital level, coupled to an on-site single
phonon mode, and connected to leads with asymmetric tunneling rates [15]. NDC can also be found in
phonon-assisted QD systems, with finite Coulomb correlation parameters, connected to an asymmetric
magnetization alignment of the ferromagnetic electrode leads [16]; a double QDs system connected to
symmetric or asymmetric magnetization alignment of the ferromagnetic electrodes leads [17]; and a
molecular junction connected to leads with asymmetric tunneling rate [18]. In the past, the phonons,
in all the phonon-assisted QD systems investigating NDC, are in a thermal state, and it is difficult
to actively modulate and control the NDC. It is interesting to investigate how other quantum states
influence the dynamics of electron tunneling via the interaction of a QD with another form of external
field, especially the NDC property.

In this paper, the purpose is to investigate the dynamics of electron tunneling through a
photon-assisted QD system connected to the ferromagnetic electrodes leads with an infinite Coulomb
correlation parameter. The QD system can be implemented by the hybrid circuit QED technique,
where the dynamics of electron tunneling can be controlled by the cavity photon field. The state of
the assisting photon field in this paper is the Fock state, and the results are compared with that of the
thermal state.

Photon-assisted electronic transport attracts great attention [19,20]. However, most of the studies
employ a classical treatment for the external field, that introduces a time-dependent oscillating energy
level in QD, which is valid only in the case of a high-intensity field and weak coupling [21]. It has
been shown that the spectrum in the quantum case is shifted from the non-interacting spectrum,
and that the shift of photon sidebands is photon-intensity-dependent [21,22]. Employing the quantum
treatment of the electron–photon interaction [21] and the Keldysh non-equilibrium Green’s function
approach [23–26], we study photon-assisted transport properties of electrons through a single QD
connected with ferromagnetic electrode leads.

The paper is organized as follows. In Section 2, we present the physical model and theoretical
calculation by the Keldysh non-equilibrium Green’s function approach, based on the quantum
treatment of the optical field. In Section 3, we study the effects of the electron–photon coupling strength,
bias voltage and other parameters of optical fields on the density of states and tunneling current.
The conclusion will be given in Section 4.

2. Physical Model and Formalism

Figure 1 illustrates the system schematic of the QD with ferromagnetic leads coupled to a one-mode
optical cavity; the QD is modeled as a one-level system. The loss of the optical field is not considered
here, because we focus on the influence of the thermal and Fock state optical fields on the transport
properties through a single QD.
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Figure 1. The system structure sketch. 

The total Hamiltonian of the system can be written as H = HL + HR + Hph + HD + HT. The 
Hamiltonians for electrons in the left (L) and right (R) electrode leads are [1,8,21], 
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Figure 1. The system structure sketch.

The total Hamiltonian of the system can be written as H = HL + HR + Hph + HD + HT.
The Hamiltonians for electrons in the left (L) and right (R) electrode leads are [1,8,21],

HL + HR =
∑

kσ,α∈L,R

εkσ,αc†kσ,αckσ,α (1)

where c†kσ,α(ckσ,α) is the conduction electron creation (annihilation) operator with wave vector k and
spin σ in lead α, and εkσ,α is the spin-dependent single-electron energy.

The third term stands for the single-mode optical field. Hph = }ω0a†a, where a†(a) is the photon
creation (annihilation) operator with frequency ω0. The electron Hamiltonian on the QD is:

HD =
∑
σ

[
εσ + eVg + λ(a† + a)

]
d†σdσ + Ud†

↑
d↑d†↓d↓ (2)

where εσ denotes the spin-dependent energy level of the QD, which can be controlled by modulating
the gate voltage Vg and λ is the coupling constant between the QD electron and photon mode, which
is time-independent, and is different from the classical treatment that introduces a time-dependent
oscillating energy level in QD [19,20]. The symbol e is the amount of charge on an electron, while that
of d†σ(dσ) is the corresponding creation (annihilation) operator of an electron in the QD, and U is the
electron Coulomb correlation parameter. The last term describes the conduction electron hopping
between the QD and electrode leads,

HT =
∑

kσ,α∈L,R

Tkσ,αc†kσ,αdσ + H.c. (3)

where Tkσ,α is the spin-dependent tunneling co-efficient.
Using the Keldysh nonequilibrium Green’s function formalism, the current through the system

can be obtained as [16,24–26],

I =
−1
π

e
}

∫
dε

( fL − fR)
∑
σ=↑,↓

ΓL,σΓR,σ

ΓL,σ + ΓR,σ
ImGr

σ(ε)

 (4)

where, fL and fR are the Fermi distribution functions for the left and right leads respectively, having
different chemical potentials upon a voltage bias µL − µR = eVbias. This Vbias is the bias voltage between
the two electrode leads, while } is Planck’s constant. Γα ,σ represents the spin-dependent tunneling

rates between QD and electrode leads, characterized by Γα,σ = 2π
∑
k

∣∣∣Tkσ, α

∣∣∣2δ(}ω− εkσ,α

)
. Gr(Ga) is the

retarded (advanced) Green’s function for the QD electron coupled to the photon as well as to the leads,
and G< is the lesser Green’s function. Equation [4] is only valid if the left and right tunneling rates are
proportional to each other, i.e., ΓL,σ = χΓR,σ, where χ is a constant [26].
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It is convenient to eliminate the electron–photon coupling terms in the Hamiltonian by using
a canonical transformation, i.e., H̃ = esHe−s with s = ζ

(
a† − a

)
d†σdσ and ζ = λ/(}ω0) [16,24,25].

The transformed Hamiltonian becomes H̃ = H̃el + H̃ph, where H̃ph = }ω0a†a, and

H̃el =
∑

kσ,α∈L,R
εkσ,αc†kσ,αckσ,α +

∑
σ
ε̃σd†σdσ + Ũd†

↑
d↑d†↓d↓

+
∑

kσ,α∈L,R
(T̃kσ,αc†kσ,αdσ + H.c.),

(5)

where ε̃σ = εσ − δ+ eVg, Ũ = U − 2δ, δ = g}ω0, g = ζ2 and T̃kσ,α = XTkσ,α with X = exp
[
−

(
a† − a

)]
.

T̃kσ,α can be approximated as its expectation value T̃kσ,α = 〈X〉Tkσ,α, which is valid only when the
hopping between QD and leads is small compared to the electron-photon interaction [16,24,25]. In the
new representation, the retarded Green function of the system can be written as [25]:

Gr(t) = −iθ(t)
〈
eS

[
dσ(t), d†σ

]
+

e−S
〉

= G̃r(t)
〈
X(t)X†

〉
ph
+ θ(t)G̃<(t)

[〈
X(t)X†

〉
ph
−

〈
X†X(t)

〉
ph

] (6)

By the equation of motion approach [26], under the infinite-U limit, it is easy to find the Fourier
transform of G̃r

σ(t) as [16,25,26],

G̃r(a)
σ (ω) =

1−
〈
nσ

〉
}ω− ε̃σ − Σ̃

r(a)
0σ (}ω) − Σ̃

r(a)
1σ (}ω)

(7)

where the self-energy terms are [27,28]:

Σ̃
r(a)
0σ (}ω) =

∑
k,α∈L,R

∣∣∣T̃kσ,α
∣∣∣2

}ω−εkσ,α±i0+ = |〈X〉|2
∑

k,α∈L,R

|Tkσ,α|
2

}ω−εkσ,α±i0+

=
∑

α∈L,R

PI
W∫
−W

|〈X〉|2|Tσ,α|
2
ρ(ε,)dε,

}ω−ε, ∓ i|〈X〉|2
∑
k

∣∣∣Tkσ,α

∣∣∣2πδ(}ω− εkσ,α)


=

∑
α∈L,R

PI
W∫
−W

|〈X〉|2|Tσ,α|
2
ρ(ε,)dε,

}ω−ε, ∓ i |〈X〉|
2Γσ,α
2


(8)

Σ̃
r(a)
1σ (}ω) =

∑
k, α∈L,R

∣∣∣T̃kσ,α

∣∣∣2 f(εkσ,α)
}ω+ε̃σ−ε̃σ−εkσ,α±i0+

= |〈X〉|2
∑

α∈L,R

Γα,σ
2π

PI
W∫
−W

f (ε)dε′

}ω+ε̃σ−ε̃σ−ε′
∓ iπ fα(}ω+ ε̃σ − ε̃σ)


= −|〈X〉|2

∑
α∈L,R

Γα,σ
2π

{
±iπ fα(}ω+ ε̃σ − ε̃σ) + ln 2πkBT

W + Ψ
(

1
2 ∓ i}ω+ε̃σ−ε̃σ−µα2πkBT

)} (9)

where PI represents principal value integral, Ψ is the digamma function, and W is the conduction
half-bandwidth of the electrode lead. Σ̃

r
0σ is the self-energy due to the tunneling into the leads without

the influence of electron-electron interaction in QD, while Σ̃
r
1σ is the modification to the self-energy

Σ̃
r
0σ because of the electron-electron interaction in QD [26]. For convenience, we consider a constant

conduction density of states ρ(ε) = 1/2W for −W < ε < W, and Tkσ, α = Tσ, α which is independent of
wave vector k [28].

The situations for thermal and Fock state optical fields are formulated as follows.

A. If the optical field is in the thermal state ρthermal =
∑
∞

N=0
NN

th

(1+Nth)
N+1 |N〉〈N|. Although the results

are similar to those reported in [25] of the phonon-assisted inelastic transport through a single QD
with ferromagnetic electrodes for the thermal state optical field, it was mainly applied to perform a
contrastive analysis for the case of the Fock state. Furthermore, the phonon-assisted spin-polarized
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tunneling through a QD, interacting with the thermal state phonon field under a finite Coulomb
correlation parameter, has been studied in [16]. The average photon number of the thermal state
is assumed to be an independently varied parameter in this paper, because the temperature of the
thermal optical field can be controlled differently from the temperature of the electrode leads.

B. If the optical field is in the Fock state |NFock〉, using some algebra, one can obtain
〈
X†X(t)

〉
Fock

=〈
X(t)X†〉∗Fock (see Appendix A)

〈X(t)X†〉Fock = e−g
∞∑

k=0

NFock∑
l=0

gl(−1)kNFock!

(l!)2(NFock − l)!
L2l−k

k (g)e−i(k−l)ω0t (10)

where L2l−k
k is Laguerre polynomials, NFock is the photon number in the Fock state. Thus,

the corresponding imaginary part of Gr
σ(ω) reads (see Appendix B)

ImGr
σ = −(1−

〈
nσ

〉
)
∞∑

k=0

NFock∑
l=0

Φkl

{
[1− f σ(ε−(k−l)}ω0)][Γ̃σ−Aσ(ε−(k−l)}ω0)]

[ε−ε̃σ−(k−l)}ω0−Bσ(ε−(k−l)}ω0)]
2+[Γ̃σ−Aσ(ε−(k−l)}ω0)]

2

+
f σ(ε+(k−l)}ω0)[Γ̃σ−Aσ(ε+(k−l)}ω0)]

[ε−ε̃σ+(k−l)}ω0−Bσ(ε+(k−l)}ω0)]
2+[Γ̃σ−Aσ(ε+(k−l)}ω0)]

2

} (11)

where

Φkl = e−g NFock! gl(−1)k

(l!)2(NFock − l)!
L2l−k

k (g) (12)

Aσ and Bσ are the imaginary part and the real part of Σ̃
r
1σ(ω), respectively. Γ̃σ = (Γ̃L,σ + Γ̃R,σ)/2 ≈

iΣ̃
r
0σ, Γ̃α,σ = Γα,|〈X〉|2. ε = }ω. f σ(ε) =

[ΓL,σ fL(ε)+ΓR,σ fR,σ(ε)]
(ΓL,σ+ΓR,σ)

.

The averaged occupation number 〈nσ〉 of the spin σ electron in a QD can be calculated by the
self-consistent equations as follows [26]:

〈nσ〉 = −
∫

dε
π

f σ(ε)ImGr
σ(ε) (13)

This equation is obtained from the fluctuation–dissipation theorem [26].

3. Discussion

We first discuss the influences of the thermal and Fock state optical fields on the coupling coefficient
between a QD and ferromagnetic electronic leads after the canonical transformation.

The effective QD–lead coupling coefficient T̃kσ,α may be approximated as its expectation
value T̃kσ,α = 〈X〉Tkσ,α after the canonical transformation [24,25]. In the new representation,
the electrons are dressed with a photon cloud with the interaction of QD and leads. It is easy
to find 〈X〉thermal = exp[−g(Nth + 1/2)] for the thermal state and 〈X〉Fock = exp

(
−

g
2

)
LNFock(g) for the

Fock state (see Appendix C).
Figure 2a shows that 〈X〉 decreases exponentially to zero with the increase of g for the thermal

state, while it reduces to a certain negative value, and then tends to zero gradually with increasing
g = (λ/}ω0)

2 for the Fock state. Figure 2b,c show that 〈X〉 will decrease and oscillate around the
abscissa axis when approaching zero for the Fock state with an increasing photon number.

For the case of the Fock state |NFock〉, the curve crosses the abscissa axis NFock times, for example,
once for |1〉, twice for |2〉, and three times for |3〉 and so on. The nonmonotonicity of Laguerre functions
results in the oscillatory behavior. For effective coupling coefficients T̃kσ,α, the real zeros reveal that the
tunneling can be critically suppressed at certain values of the g for the Fock state. We can also find that
the T̃kσ,α may possess a negative value at a certain regime of g. It reveals that the Fock state optical
field would change phase for T̃kσ,α when QD electron dressing with a photon cloud interacts with the
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electronic leads. This attests to the existence of quantum interference between transmissions through
different photon sideband channels [29].

Then, we analyzed the influences of the thermal and Fock state optical fields on the effective
tunneling rate Γ̃α,σ of a QD and the ferromagnetic electronic leads after the canonical transformation.
The expression of the effective coupling rate is Γ̃α,σ = Γα0|〈X〉|2. Figure 2d shows 〈X〉 as a function of
the photon number for the thermal and Fock state optical fields.

From Figure 2, we can find that the effective coupling rate Γ̃α,σ is suppressed by a factor |〈X〉|2,
which is determined by the parameter g and the photon number of the optical field. The real zeros
appear at a certain value of g for the Fock state.

From Equation (8), Equation (9) and Equation (11), we can find that optical fields impact the
shift of photon sidebands by the product factor |〈X〉|2 in Bσ, and that they affect the line width of
photon sidebands with the product factor |〈X〉|2 in Aσ and Γ̃σ, respectively. The amplitudes of photon
sidebands are influenced by optical fields using the coefficients

〈
X†X(t)

〉
and

〈
X(t)X†

〉
in Equation (6),

and
〈
nσ

〉
in Equation (7) which is determined by the self-consistent Equation (13).Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 18 
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Figure 2. 〈X〉 as a function of g for the thermal and Fock state optical fields. (a) Nth = NFock = 1. (b) Nth

= NFock = 2. (c) Nth = NFock = 3. (d) 〈X〉 as a function of photon number for the thermal and Fock state
optical fields, and g = 0.5.

|〈X|〉 2 not only depends on the electron–photon coupling strength, but also on the photon intensity
for the quantum state optical field. Figure 2 shows that |〈X〉th|

2 decreases monotonously with the
increase in the electron–photon coupling strength or averaged photon number for the thermal state
optical field, while it becomes oscillatory upon an increasing electron–photon coupling strength or
photon number for the Fock state case.

3.1. Density of State (DOS)

Here, we investigate the properties of DOS in a QD under different parameters. In the following
discussions, we set εσ = εσ = E0 = EF + eVg − δ with EF = 0, which is the equilibrium chemical
potential of the left (right) electrode lead in the absence of gate voltage Vg. µL(µR) is the chemical
potential of the left (right) electrode, which is taken as µL(R) = EF ± eVbias/2. We also introduce the
tunneling rate between QD and lead Γα as ΓL = Γ0(1 + PσZ) and ΓR = Γ0(1± PσZ) with +(−) for the
P and AP magnetization alignment of the ferromagnetic electrodes, where Γ0 describes the tunneling
rate between the QD and lead without internal magnetization. P is the spin polarization of the
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ferromagnetic electrodes. β = 1/kBTleads, Tleads is the temperature of the electrode leads. For simplicity,
we state that the energy unit is taken as the photon energy }ω0, and the unit of β is 1/}ω0. W is set as
100}ω0 in this article.

Moreover, when the temperature of the electrode lead approaches the Kondo temperature Tk,
the decoupling approximation, used in the derivation of Equation (7), could lead to some drawbacks
due to the logarithmic divergence of the digamma function. Specifically, the divergence of the digamma
function could lead to incorrect behavior of the DOS at the Fermi level [30]. Thus, in this paper,
we assume that the temperature of the electrode lead Tleads is higher than the Kondo temperature Tk
determined by the method in [31].

Up to now, as far as we know, there is no experiment on NDC based on a photon-assisted QD
system. However, there exist several experiments on NDC based on a phonon-assisted carbon tube
system [32,33]. The NDC features can be described quite simply using a generic model which consists
of a quantum dot with a single-orbital level, coupled to an on-site single phonon mode, and connected
to leads by tunnel junctions [15]. Thus, we set the numeric values of the parameters in this paper with
reference to that in [15,24,25,32,33]. We also set the photon energy }ω0 as an elementary scale, and give
the units of other parameters with }ω0 and the amount of charge on an electron e.

Here, we begin to discuss DOS for the system under different parameters.
Because the thermal state and Fock state become the vacuum state when the photon number

equals to zero, Figure 3 shows the DOS changes with E0 and g for the vacuum state. One can find
that the main peaks appear near the location at ε = E0, which are the channels for electron transport
without any participation of a photon. Figure 3b,e show that both sides of the main peak appear as a
series of satellite peaks. The electron–photon interaction has at least two effects: It results in an energy
shift δ of the elastic peak position relative to that for g = 0, and leads to a set of new peaks induced by
photon emission. The nth sideband peak on the right (left) side with respect to the main peak near
the location at E0 corresponds to the nth photon emission sideband of the electron (hole) transport.
The electron (hole) contribution comes from the first (second) term on the right-hand side of Equation
(11), respectively [16,24,25].
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Figure 3. Density of states (DOS) for the vacuum state at P = 0.1, Γ0 = 0.2}ω0, Vbias = 0 and β = 100 in
the P configuration. The unit of ε and E0 is }ω0.

Compared with that of E0 = −1}ω0, the main peak and sideband width are compressed, the peaks
of sidebands become larger and evidently shift to the right with the increase in E0, as shown in



Nanomaterials 2019, 9, 863 8 of 18

Figure 3a–f. The weight of photon sidebands transfers gradually from the left to the right of the
main peak, and the line shape of each photon satellite shows a jump discontinuity [34] with respect
to ω in Figure 3b,e [24]. This is because when the effective QD electron energy level approaches to
Fermi surface, the electrons (holes) near the Fermi surface dominate the tunneling process, and the
sharp change of Fermi functions near the Fermi surface level at the lower temperature results in the
jump discontinuity. This behavior is consistent with that obtained for electron–phonon coupling
in [16,24,25]. An increasing number of photon sidebands appear with increasing g, and all peak values
of the sidebands increase as g becomes greater, even in the vacuum state of the optical field, which is
quite different from those of the case under classical treatment for the external field [20]. The width of
main peak is compressed as the increase of g.

Comparing Figure 4a–c with Figure 3a–c respectively, although the difference between spin up
DOS and spin down DOS is larger as P = 0.31 [25] and the higher spin polarization could result in a
higher spin-dependent splitting in DOS, the envelopes of DOS are similar to each other respectively.
Without loss of generality, we set P = 0.1 throughout this paper.Nanomaterials 2018, 8, x FOR PEER REVIEW  8 of 18 
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Figure 4. Density of states (DOS) as a function of ε for the vacuum state. The parameters for (a), (b) and
(c) are the same as that of Figure 3a–c except for P = 0.31, respectively. The unit of ε and E0 is }ω0.

Figure 5 shows the different stages of evolution of the DOS with the thermal and Fock state optical
fields for E0 = −1}ω0 and Nth = NFock = 1. Compared with Figure 3a, when the photon intensity is
non-zero, the weight of main peak near ε = −1}ω0 becomes larger, accompanied with compressed
width, and photon satellites are evident on both sides of the main peak. Photon satellites exist above
the Fermi surface, while they are almost non-existent for the vacuum state in Figure 3a, as it can only
absorb photons from the external optical field.
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Figure 5. DOS for the thermal and Fock state optical fields at E0 = −1}ω0, g = 0.5, P = 0.1, Γ0 = 0.2}ω0,
Vbias = 0, β = 100 and Nth = NFock = 1 in the P configuration. The unit of ε is }ω0.

As there is definitely one photon in the Fock state |1〉 (while the one-photon probability is only
25%, and the zero-photon probability is 50% in the thermal state, with an average photon number of
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Nth = 1), the photon sideband peaks for the case of the Fock state are higher, and the weight of the
main peak is lower than those of the thermal state. There are photon satellites above the Fermi surface
for the case of the thermal state because of the non-vanishing multi-photon probabilities.

Figure 5c shows that the DOS is spin-dependent because of the spin polarization of the
ferromagnetic electrodes [25]. There is a small spin splitting of the sideband in the P configuration,
which comes from the spin-dependent real part of the self-energy in Equation (9). The spin
splitting of DOS increases with the increasing value of the spin polarization parameter P of the
ferromagnetic electrodes.

When E0 changes to −0.5}ω0 in Figure 6, the DOS is obviously changed in the thermal and
Fock state optical fields. The weight and width of main peak is almost the same as that in Figure 5.
The weight of the photon sidebands transfers gradually from the left to the right of the main peak,
such as those in Figure 5. There are photon satellites above ε = 1}ω0 for the thermal state because the
multi-photon probabilities are non-vanishing.Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 18 
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Figure 6. DOS for the thermal and Fock state optical fields with the same parameters as those in
Figure 5, except that E0 = −0.5}ω0. The unit of ε is }ω0.

From Figure 5 to Figure 7, one can find that the DOS noticeably changed with the increasing of E0

in the thermal and Fock state optical fields. The weight of main peak near ε = 1}ω0 becomes larger
accompanied by a compressed width for thermal state, and the weight of main peak becomes smaller,
accompanied by a compressed width for Fock state. Almost all of the photon satellites are transferred
to the right side of the main peak for the Fock state because pure electron transport predominantly
contributes to the DOS [25]. There are photon-satellites that exist below the Fermi surface for the
thermal state because the multi-photon probabilities are non-vanishing, while this is not the case for
the Fock state optical field.
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Figure 7. DOS for the thermal and Fock state optical fields with the same parameters as those in
Figure 5, except for E0 = 1}ω0. The unit of ε is }ω0.
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Comparing Figure 8 with Figure 6, we find that the DOS for different states evidently varies with the
parameter, g. With the increase of the electron–photon coupling parameter, g, the height of the main peak
decreases, while the heights of the photon-assisted sideband peaks increase, which indicates a higher
probability of photon–emission or photon absorption. The widths of these peaks become narrower since,
according to the discussions of Figure 2, the system is trapped in a region of exponentially-suppressed
tunneling rates with increasing values of the g parameter [16]. We can also find that the pedestals of
each sideband overlap for smaller electron–photon coupling parameters, g, while they tend to have
well-defined boundaries at larger electron–photon coupling parameters, g. With the increase of g,
an increasing number of photon sidebands appear, and the peak value increases.Nanomaterials 2018, 8, x FOR PEER REVIEW  10 of 18 
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Figure 8. DOS for the thermal and Fock state optical fields with the same parameters as those in
Figure 6, except that g = 0.8. The unit of ε is }ω0.

By the comparison of Figure 9 with Figures 3b, 3e and 6, it could be found that the amplitudes of
the main peak and photon satellites increase with increasing photon intensity. Comparing Figure 9b
with Figure 6b, one can find that the weight of the main peak near ε ≈ −0.5}ω0 is almost equal to
zero and a new sideband appears at ε ≈ 1.5}ω0 when the photon number of the Fock state equals 2.
The reason is that the source lead electron (hole) at the Fermi surface can absorb (emit) 2 photons to get
to ε ≈ 1.5}ω0 and form a new sideband. It is evident that the weights of photon satellites increase,
while the peak widths become narrower, when the photon number increases from 1 to 2. The reason
for this is that the suppression factor of the tunneling rate is enhanced as the photon number increases,
which is discussed in Figure 2.
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Figure 9. DOS for the thermal and Fock state optical fields with the same parameters as those in
Figure 6, except that in (a) 〈Nth〉 = 0.6 and in (b) NFock = 2. The unit of ε is }ω0.

Total DOS (the sum of spin up and down DOS) are shown in Figure 10 at different bias voltage
in the thermal and Fock state optical fields with different effective QD energy levels and different
electron–photon coupling constants. It can be seen that there are slight differences in the total DOS for
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different bias voltages at E0 = −0.5}ω0 and g = 0.5; however, the height and location of the sideband
is quite different for diverse bias voltage at E0 = 1}ω0 and g = 1.5. There are new sidebands that
appear at ≈ −3,−4,−5}ω0 for Vbias = 2.5 (blue line) with respect to Vbias = 1.5 (red line) in Figure 10c,
and new sidebands appear at ≈ −1,−2,−3}ω0 for Vbias = 2.5 with respect to Vbias = 1.5 in Figure 10d.
The weights of the sidebands that appear at ≈ −2, −1, 0, 1}ω0 for Vbias = 2.5 are different from that
for Vbias = 1.5 in Figure 10c respectively, and the weights of sidebands appearing at ≈ 0, 2, 3, 4, 5}ω0

for Vbias = 2.5 are quite different from that for Vbias = 1.5 in Figure 10d respectively. This can lead to
complex current–voltage characteristics in the thermal and Fock states, which are discussed in the
next section.Nanomaterials 2018, 8, x FOR PEER REVIEW  11 of 18 
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Figure 10. Total DOS (the sum of spin up and down DOS) for the thermal and Fock state optical fields
with the same parameters as those in Figure 6, except that E0 = −0.5}ω0 and g = 0.5 for (a) and (b);
E0 = 1.0}ω0 and g = 1.5 for (c) and (d). The unit of ε is }ω0 and the unit of Vbias is }ω0/e.

Figure 11 demonstrates DOS at different leads’ temperatures for the thermal and Fock state optical
fields. An increasing number of photon emission (absorption) sidebands appear (within circle) with the
increase of leads’ temperature, and the peak value of the sideband increases with the increasing of leads’
temperature because this results in an increasing number of leads’ electrons above the Fermi surface.
With the increasing of leads’ temperature, the weight of main peak becomes larger, accompanied with
compressed width for both thermal state and Fock state compared with Figure 6.
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Figure 11. DOS for the thermal and Fock state optical fields with the same parameters as those in
Figure 6, except that β = 1. The unit of ε is }ω0.

Comparing Figure 12 with Figure 6, it can be seen that the properties of the DOS, for the antiparallel
(AP) configuration are similar to those in parallel (P) configuration, and there is no difference in DOS
between the spin-down and spin-up orientations at zero bias voltage. Thus, it is not necessary to
discuss these further for the AP configuration.
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Figure 12. DOS for the thermal and Fock state optical fields with the same parameters as those in
Figure 6, except that the AP configuration is used. The unit of ε is }ω0.

3.2. Current

From the discussions above, we find that the DOS is sensitive to the QD energy level,
electron–photon interaction and bias voltage at the leads, and the evolution characteristics of DOS for
the cases of external optical fields in the thermal and Fock states are quite different. Thus, in this section,
we will investigate the properties of the tunneling current–voltage characteristics upon changing the
QD energy level, and the electron–photon interaction for the cases of external optical fields in the
thermal and Fock states.

Because the mismatch of spin-dependent Fermi wave vectors for the AP configuration can result
in a decrease of the transmission probability of electrons or holes, the current for the P magnetization
alignment is significantly larger than that for the AP configuration [25]. Therefore, we mainly discuss
the tunneling current for the P configuration here. In the following discussion, we denote I↑ − I↓ as Is,
I↑ + I↓ as I, and the differential conductance G = dI/dVbias, respectively.

Figure 13 demonstrates the well-known staircase shape current for the different states of optical
fields [16,20,24,25]. Because the QD electron has a non-vanishing probability of occupying the photon
sidebands, once photon sidebands enter the bias window one by one, the photon-assisted channel
would open. Thus, the tunneling processes may be mediated by the photon energy levels, which results
in additional steps in the current. It shows that the currents for the cases of the thermal and Fock states
tend to have a similar value of saturation at a higher bias voltage, while the currents evolve differently
at lower bias voltage. From Figure 13, it can be found that the currents tend to reach their saturation
value in four steps in the thermal and Fock states upon increasing the bias voltage, even when there is a
little difference in the current–voltage characteristics between them. The different tunneling properties
of a QD electron dressed with different-state photons result in a different shape of the current curve.
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Figure 13. Tunneling current and differential conductance for the thermal and Fock state optical fields
at E0 = −1}ω0, g = 0.5, P = 0.1, Γ0 = 0.2}ω0, β = 100, Nth = NFock = 1 in the P configuration. The unit of
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Figure 13a also demonstrates that there is a small fluctuation of spin current at each step because
of the tiny difference of spin DOS discussed in Figure 5c.

By comparison of Figures 13c and 5, it can be found that differential conductance reflects the DOS
properties of a QD system. As the increase of bias voltage, the differential conductance peaks appear
only when the lead chemical potential is aligned with the peaks of the DOS. In the vicinity of the zero
bias voltage regions, where the sequential tunneling current is exponentially suppressed, the differential
conductance is due to higher-order tunneling processes. The amplitude of each differential conductance
peak reveals the amplitude of the main peak and photon sideband of the DOS of a QD system.

As the effective energy level E0 changes to −0.5}ω0 and 1}ω0, respectively, they have similar
current–voltage characteristics for spin current and total current in Figure 13, except that the fluctuation
of the spin current at each step becomes larger as the effective energy level E0 changes from −1}ω0 to
−0.5}ω0 and 1}ω0, respectively.

There are two types of competing mechanisms. One is that a stronger electron–photon interaction
can enhance the photon emission (absorption), through which the photon-assisted tunneling channel
forms, which is favorable to the formation of photon satellites. The other is an exponential suppression
of the effective coupling between the QD and leads. This competition may result in NDC in the
photon-assisted spin-polarized tunneling through an interacting QD with antiparallel configuration
(AP) under a finite Coulomb correlation parameter [16]. From the discussions of Figure 2, one can
find that the tunneling rates between the QD and leads can approach zero in some regions of the
electron–photon interaction, which means the tunneling through QD is critically suppressed. Thus,
we could investigate NDC in the vicinity of zero regions in Figures 2 and 14, Figures 15 and 16 confirms
this assumption.
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Figure 14. Tunneling current and differential conductance for the thermal and Fock state optical fields
with the same parameters as Figure 13 except for E0 = 0.7}ω0, g = 1.5. The unit of current is e

π}Γ0,

the unit of Vbias is }ω0/e and the unit of differential conductance is e2

5π} .
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Figure 15. Tunneling current and differential conductance for the thermal and Fock state optical fields
with the same parameters as Figure 14 except for E0 = 0.8}ω0, g = 0.6, Nth = NFock = 3. The unit of
current is e

π}Γ0, the unit of Vbias is }ω0/e and the unit of differential conductance is e2

5π} .
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Figure 16. Tunneling current and differential conductance for the thermal and Fock state optical fields
with the same parameters as Figure 14 except for E0 = 2}ω0, g = 2.3, Nth = NFock = 3. The unit of current
is e

π}Γ0, the unit of Vbias is }ω0/e and the unit of differential conductance is e2

5π} .

With the proper effective QD energy level, Figures 14–16 show that there are NDCs for a QD
system interacting with an external field of the Fock state at the vicinity of the first zero as the photon
number is 1 (Figure 14), at the vicinity of the first zero (Figure 15) and the second zero (Figure 16) as
the photon number is 3, respectively. NDC also appears in a similar parameter region as when the
photon number is 2, or with the AP configuration (not shown). Figure 16 shows that a subtle NDC also
exists for the case of the thermal state with the same parameter. This can be deduced from Figure 10,
where the height and the location of the photon sideband peaks change as the bias voltage changes,
indicating the change in the probability of photon-emission or photon-absorption. If the height of the
photon sideband or the number of photon sidebands inside the bias voltage window decreases with the
increasing bias voltage, NDC appears. The physical process can also be described as follows [16]. When
electrons tunnel through the QD from the left electrode to the right one in the vicinity of the zero bias
voltage regions, higher-order tunneling processes exist, while the sequential tunneling is exponentially
suppressed. If the Vbias is sufficiently large, the photon sideband enters the bias voltage window,
and photon-assisted tunneling current starts to flow through the QD. Subsequently, the tunneling
current plateau is observed. Above the current plateau, an NDC is observed because the tunneling
current is suppressed by an electron residing on the QD. Finally, when the next photon sideband crosses
the Fermi level of the source lead, the current increases again and shows a tendency towards saturation.

The Hamiltonian model discussed in this paper is similar to that of a single molecular junction
in [16], except that the state of the external field is the Fock state in this paper. However, we find that
obvious NDC appears in a single QD system assisted by the Fock state optical field with both P and
AP configurations, while evident NDC only emerges in an AP configuration in [16]. In this paper,
NDC can be obtained for a wide range of electron–photon interaction parameters at the vicinity of the
zeros of the Laguerre function (see Figure 2), because there is an increasing number of zeros when the
photon number of the Fock state increases.
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4. Conclusions

Based on the effect of quantum treatment on an optical field, we have investigated the quantum
transport through the single QD with ferromagnetic electrodes in the presence of an electron–photon
interaction by the Keldysh nonequilibrium Green’s function approach. The important results can be
briefly summarized as follows.

Firstly, owing to the interaction with optical fields, the shift of photon sidebands is dependent on the
electron–photon coupling strength and the photon intensity. For an increasing electron–photon coupling
strength, the shift is monotonically decreasing for the case of the thermal state optical field, while it is
oscillatory for the Fock state optical field because of the nonmonotonicity of Laguerre functions.

Secondly, the DOS and the tunneling current are sensitive to the QD energy level adjusted by
the gate voltage and the electron–photon interaction. The evolution properties of DOS and tunneling
current for photon-assisted spin-polarized tunneling with the Fock state of optical field, are quite
different from that with the thermal state case.

Thirdly, obvious NDC can be found in both P and AP configuration QD systems assisted by the
Fock state optical field in a wide range of electron–photon interaction parameters, while evident NDC
usually only arises in an AP configuration QD system assisted by the thermal state optical field.

These important results enlighten us that a single-electron tunneling transport in a QD can be
actively manipulated and controlled by quantum states of the optical field. Meanwhile, the information
of the spectral function of QD and the interaction with external optical fields could be inferred
from the spectra of the tunneling current. Furthermore, NDC has potential applications in the
realization of low-power memory devices and logic circuits. Thus, the results would deepen the
understanding of single-electron tunneling transport properties in QD, enrich the control techniques
for the transport of QD electrons, and open a new door for constructing nanostructured devices and
spin-dependent devices.
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Appendix A. The Derivation of Equation (10) and Equation (12)

Using the same method of the appendix A of [35], one can obtain:

〈NFock

∣∣∣∣eu∗a†e−ua
∣∣∣∣NFock〉 =

NFock∑
l=0

(−1)lNFock!

(l!)2(NFock − l)!
(|u|2)

l
= LNFock(|u|

2) (A1)
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where u = ζ
(
1− e−iω0t

)
, LNFock(x) is Laguerre Polynomial. Thus, the correlation function can be

rewritten as:〈
X(t)X†

〉
Fock

= exp
(
−ζ2

(
1− e−iω0t

))〈
NFock

∣∣∣∣exp
(
ζ
(
1− eiω0t

)
a†

)
exp

(
−ζ

(
1− e−iω0t

)
a
)∣∣∣∣NFock

〉
= exp

(
−ζ2

(
1− e−iω0t

)) NFock∑
l=0

(−1)lNFock!
(l!)2(NFock−l)!

(|u|2)
l

= e−ζ
2

NFock∑
l=0

(−1)lNFock!
(l!)2(NFock−l)!

(|u|2)
l
eζ

2e−iω0t

= e−ζ
2

NFock∑
l=0

(−1)lNFock!
(l!)2(NFock−l)!

ζ2l(
1− e−iω0t

)l(
1− ei}ω0t

)l
eζ

2e−iω0t

= e−ζ
2

NFock∑
l=0

(−1)lNFock!
(l!)2(NFock−l)!

ζ2l(−1)l
(
eiω0t/2

− e−iω0t/2
)2l

eζ
2e−iω0t

= e−ζ
2

NFock∑
l=0

NFock!
(l!)2(NFock−l)!

ζ2leilω0t
(
1− e−iω0t

)2l
eζ

2e−iω0t

= e−g
∞∑

k=0

NFock∑
l=0

(−1)kNFock!
(l!)2(NFock−l)!

gle−i(k−l)ω0tL2l−k
k (g)

(A2)

Here, g = ζ2. In the last step, we have used the following equation [36]:

(1 + β)αe−βx =
∞∑

k=0

Lα−k
k (x)βk

Finally, the correlation function can be rewritten in following form:

〈X(t)X†〉Fock =
∞∑

k=0

NFock∑
l=0

Φkle−i(k−l)ω0t (A3)

where Φkl = e−g (−1)kNFock!gl

(l!)2(NFock−l)!
L2l−k

k (g).

Appendix B. The Derivation of Equation (11)

Based on the Equation (A3), Equation (6) can be rewritten as:

Gr
σ(t) =

∞∑
k=0

NFock∑
l=0

Φkl
{
G̃r
σ(t)e

−(k−l)ω0t + θ(t)G̃<σ (t)
(
e−(k−l)ω0t

− e(k−l)ω0t
)}

(A4)

After the Fourier transform, one obtains:

Gr
σ(ω) =

∞∑
k=0

NFock∑
l=0

Φkl

{
G̃r
σ(ω− (k− l)ω0) +

1
2

[
G̃<σ (ω− (k− l)ω0) − G̃<σ (ω+ (k− l)ω0)

]}
(A5)

By the method of the equation of motion [26], under the limitation of U→∞ , one can obtain:

G̃r
σ(ω) =

1−
〈
nσ

〉
}ω− ε̃σ − Σ̃

r
0σ(}ω) − Σ̃

r
1σ(}ω)

Since Re(Σ̃
r
0σ) due to the hopping between QD and leads has little influence on our qualitative

results, we omit it here for convenience [25]. So, one gets Σ̃
r
0σ = −ĩΓσ. If we denote Σ̃

r
1σ(}ω) =

Bσ(}ω) + iAσ(}ω), we can obtain Equation (11) from (A5) based on the following equation [26]:

G̃<σ = i
(
G̃r
σ − G̃a

σ

)
f σ (A6)
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Appendix C. The Derivation of 〈X〉

Using the Baker-Campbell-Haussdorf relation, one can obtain:

X = exp
[
−ζ

(
a† − a

)]
= exp(−g/2) exp

(
−ζa†

)
exp(ζa) (A7)

And using the Equation (A1), we find:

〈NFock|X|NFock〉 = exp
(
−

g
2

)
LNFock

(
ζ2

)
= exp

(
−

g
2

)
LNFock(g) (A8)

which is for the Fock state.
As for our thermal state, one can find [35]:

〈X〉thermal =
(
1− e−β}ω0

)∑
∞

N=0 e−βN}ω0〈N|X|N〉
=

(
1− e−β}ω0

)
exp

(
−

g
2

)∑
∞

N=0 e−βN}ω0LN(g)
(A9)

〈X〉thermal = e−(Nth+1/2)g (A10)

Here, we have used the generating function
∑
∞

n=0 xnLn(g) = e−gx/(1−x)/(1− x) in the last step,
and Nth = 1/

(
eβ}ω0 − 1

)
.
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