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Abstract: Recently, all-inorganic perovskite light-emitting diodes (PeLEDs) have attracted both
academic and industrial interest thanks to their outstanding properties, such as high efficiency, bright
luminance, excellent color purity, low cost and potentially good operational stability. Apart from
the design and treatment of all-inorganic emitters, the device engineering is another significant
factor to guarantee the high performance. In this review, we have summarized the state-of-the-art
concepts for device engineering in all-inorganic PeLEDs, where the charge injection, transport,
balance and leakage play a critical role in the performance. First, we have described the fundamental
concepts of all-inorganic PeLEDs. Then, we have introduced the enhancement of device engineering
in all-inorganic PeLEDs. Particularly, we have comprehensively highlighted the emergence of
all-inorganic PeLEDs, strategies to improve the hole injection, approaches to enhance the electron
injection, schemes to increase the charge balance and methods to decrease the charge leakage. Finally,
we have clarified the issues and ways to further enhance the performance of all-inorganic PeLEDs.
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1. Introduction

In the recent years, halide perovskites have emerged as a novel class of optoelectronic materials
for many fields (e.g., solar cells, lasers and photodetectors) due to their excellent properties including
size-tunable optical bandgaps, narrow emission and excellent charge-transport capabilities [1–6].
In particular, the property of size-tunable optical bandgaps in perovskites is the same as that of
conventional metal chalcogenide semiconductors [7]. For example, Protesescu et al. demonstrated
size-dependent photoluminescence (PL) emission from CsPbBr3 nanocrystals, where the PL peak
shifted from 512 to 460 nm with the edge size decreasing from 11.8 to 3.8 nm [8]. Additionally,
the perovskite sizes can be controlled by reaction temperatures to tune the bandgap (e.g., the size
decreases by decreasing the reaction temperature) [9]. Such outstanding characteristics also render
that halide perovskites can be used as the emitters for light-emitting diodes (LEDs) [10–15]. In 2014,
Tan et al. reported the first hybrid organic–inorganic CH3NH3PbBr3 perovskite LED (PeLED) [16].
Although the external quantum efficiency (EQE) of their green device is only 0.1%, this groundbreaking
finding unlocks a new door for the application of perovskites in LEDs. Since then, PeLEDs have rapidly
attracted a great deal of attention from both academic and industrial researchers. To date, some groups
have realized PeLEDs with EQE exceeding 20% [17,18].
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In 2015, Zeng et al. demonstrated all-inorganic PeLEDs, where CsPb(Cl/Br)3, CsPbBr3 and
CsPb(Br/I)3 were used as the blue, green and orange emitter, respectively [19]. This finding showed that
all-inorganic perovskites could be a new class of emitters in LEDs, despite the EQE of the devices is low
(e.g., an EQE of 0.12% for the green all-inorganic PeLEDs). Compared with hybrid organic–inorganic
perovskite materials, all-inorganic perovskites (e.g., CsPbX3, X = I, Br and Cl or mixed halide systems
Br/I and Cl/Br) have better thermal stability [20–22], which is more beneficial to the practical use.
In addition, all-inorganic perovskites could possess excellent PL quantum yield (PLQY, e.g., near unity
in solution), ensuring the development of highly efficient all-inorganic PeLEDs [23–26]. Furthermore,
all-inorganic perovskites can show exceptional color purity (e.g., full width at half-maximum (FWHM)
<20 nm) and be compatible with the solution-processable technique, triggering intense interest in
applying them for PeLEDs [27–30]. Therefore, since the first report of all-inorganic PeLED [19],
the performances of all-inorganic PeLEDs (e.g., EQE, current efficiency, power efficiency, luminance or
brightness, lifetime and voltage) have been greatly enhanced over the past five years [31–35]. Currently,
the highest EQE of all-inorganic PeLEDs is above 20% [36], which is comparable to the state-of-the-art
organic LEDs (OLEDs) [37–41] and CdSe-based quantum-dot LEDs (QD-LEDs) [42–46]. As a matter
of fact, a large number of high-efficiency all-inorganic perovskite LEDs have been reported. Before
achieving the record EQE of 21.3% for red devices [36], Kido’s group reported highly efficient green
all-inorganic perovskite LEDs. For example, an EQE of 8.73% was obtained via effective washing process
and interfacial energy level alignment, which was the best efficiency in 2017 [47]. They also obtained a
green all-inorganic perovskite LED with an EQE of 8.08% by exploiting low-dielectric-constant washing
solvent “diglyme” [48]. After the first report of all-inorganic PeLEDs, Zeng’s group proposed a series of
strategies to improve the device performance. By controlling the ligand density, they achieved a green
PeLEDs with an EQE of 6.27% [49]. Later, an EQE of 11.7% was attained through room-temperature
triple-ligand surface engineering [50] and an EQE of 16.48% was yielded via organic–inorganic hybrid
passivation [51]. For red all-inorganic PeLEDs, Yu’s group designed a plenty of methods to increase
the efficiency. An EQE of 6.3% was reported by enhancing the electron injection [52], an EQE of 11.8%
was realized with the utilization of PbS capped CsPbI3 emitter [53] and an EQE of 8.2% was achieved
for flexible red devices [54]. In the case of blue all-inorganic PeLEDs, the record EQE is 1.9% [55]. Thus,
the all-inorganic PeLED technology is believed to be promising for the future-generation displays and
lighting [56–60].

To develop high-performance all-inorganic PeLEDs, one crucial way is the optimization of
emitting materials CsPbX3 [61–66]. In fact, most of the reports about all-inorganic PeLEDs are mainly
focused on this way. For the further development of all-inorganic PeLEDs, the innovation of device
engineering is essential and may be more critical [67–71]. For example, Rogach et al. sandwiched
a thin film of perfluorinated ionomer (PFI) between the perovskite emissive layer (EML) and hole
transport layer (HTL) to improve the hole injection, resulting in three times enhancement for the peak
luminance of CsPbBr3 PeLEDs [72]. To improve the device engineering, one scheme is to explore the
unique characteristic of all-inorganic PeLEDs. In addition, by drawing on the reported concepts in
OLEDs, CdSe-based QD-LEDs and other related optoelectronic technologies [73–77], high-performance
all-inorganic PeLEDs can be expected via the enhancement of device engineering.

Herein, the state-of-the-art concepts for device engineering in all-inorganic PeLEDs will be
summarized, where the charge injection, transport, balance and leakage have a great influence on
the performance. First, the fundamental concepts of all-inorganic PeLEDs will be described. Then,
the enhancement of device engineering in all-inorganic PeLEDs will be introduced. At last, the issues
and ways to further enhance the performance of all-inorganic PeLEDs will be briefly clarified.
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2. Fundamental Concepts of All-Inorganic PeLEDs

2.1. All-Inorganic Perovskite Emitters

CsPbX3 is isostructural to perovskite CaTiO3 and related oxides, which has been studied for more
than 60 years [78]. In 2015, Kovalenko et al. for the first time reported the successful form of colloidal
CsPbX3 nanocrystal QDs (4–15 nm edge lengths), which showed visible spectral region of 410–700 nm,
narrow PL emission FWHM of 12–42 nm, wide color gamut, high PLQYs of up to 90%, and short radiative
lifetimes in the range of 1–29 ns [8]. Figure 1 depicts the typical monodisperse CsPbX3 nanocrystal QDs
synthesized via the hot-injection method and their structural characterization. However, it is noted
that the hot-injection method may exhibit some shortcomings (e.g., high temperature, inert atmosphere
and high localization of injected agents exist in the hot-injection procedures). To loosen this bottleneck,
Zeng et al. in 2016 reported a facile and high-yield fabrication of stable CsPbX3 QDs with high
optical merits, where the PLQY could be up to 95% via supersaturated recrystallization at room
temperature, free from inert-gas protection and injection operation [79]. For CsPbX3 nanocrystals,
their optical characteristics can be tuned by adjusting the composition of halide ions, varying the
degree of the cations, and controlling the size of perovskite nanocrystals because of the quantum
confinement effect [80]. With such tunable properties, CsPbX3 nanocrystals have vast potential to be
one of the excellent emitters [81–85]. In PeLEDs, the ligand density of CsPbX3 nanocrystals has an
important influence on the performance. This is because ligands have double-side effect: (i) Enough
ligands can give surface passivation to eliminate surface defects, ensuring high PLQY and ink stability;
(ii) excessive ligands form insulating layers as oleylamine and oleic acid organics show weak electric
conductivity, preventing the charge injection [86–92]. Therefore, how to achieve the trade-off between
surface passivation and charge injection via ligands control is key to all-inorganic PeLEDs.
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Aside from the colloidal nanocrystals, CsPbX3 thin films, which are achieved by spin-coating or
vacuum-evaporating the precursors, can be functioned the emitters of all-inorganic PeLEDs. In 2005,
Yantara et al. reported the first all-inorganic PeLED based on CsPbBr3 thin films through controlled
modulation of the trap density by varying the CsBr-PbBr2 precursor concentration, achieving a
maximum luminance of 407 cd m−2 [93]. In the case of vacuum-evaporating CsPbX3 thin films,
Liao et al. demonstrated efficient all-inorganic PeLEDs in 2017 via co-evaporation of CsBr and PbBr2

based on a vacuum thermal evaporation process, yielding a maximum EQE of 1.55% [94]. Thus,
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the various strategies of forming CsPbX3 emitters have inspired remarkable interest in the investigation
of electrically driven devices [95–99].

2.2. Device Architectures

Similar to OLEDs and CdSe-based QD-LEDs, all-inorganic PeLEDs can be realized via the normal
or inverted architectures [100–104], as shown in Figure 2. For the electroluminescent processes,
holes and electrons will be first injected from anode and cathode, respectively. Then, by virtue of the
hole injection layer (HIL) and HTL, holes will reach the EML. On the other hand, electrons will arrive
at the EML via the electron injection layer (EIL) and electron transport layer (ETL). With the insertion
of all-inorganic perovskite emitters between HTL and ETL, holes and electrons will meet each other to
form excitons for radiative recombination. As a result, emissions will be generated [105–109]. Due to
the almost similar device architectures, many concepts in OLEDs and CdSe-based QD-LEDs can be
applied into all-inorganic PeLEDs. This may be also the reason for the fact that the EQE of all-inorganic
PeLEDs can quickly overtake 20% in about five years.
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Although both normal and inverted device architectures can be utilized to build all-inorganic
PeLEDs, high-performance devices are generally constructed by the normal architectures. As a
matter of fact, most of all-inorganic PeLEDs are reported with normal architectures [110–115]. One of
the reasons is that the energy levels of all-inorganic perovskite are well matched with neighboring
charge transport layers, which ensures enough charges can be reached the EML. For example,
the valence band maximum (VBM) of CsPbBr3 is 5.9 eV [116], matching the highest occupied
molecular orbital (HOMO) of typical HTLs, including poly-(N-vinylcarbazole) (PVK, 5.6 eV) and
poly(N,N′-bis(4-butylphenyl-N,N′-bis(phenyl) benzidine) (poly-TPD, 5.4 eV) [116]. On the other hand,
the conduction band minimum (CBM) of CsPbBr3 is 3.6 eV [105], which is much lower than the lowest
unoccupied molecular orbital (LUMO) of representative 1,3,5-tris(Nphenyl-benzimidazol-2-yl)benzene
(TPBi, 2.7 eV) ETL [117], indicating that the electrons are barrier-free when they are transported from
the ETL to the EML [118–122]. Therefore, both holes and electrons can be readily transported within the
normal architectures. However, it is deserved to point out that the ETL, EIL and cathode of all-inorganic
PeLEDs with normal architectures are usually deposited by the vacuum-evaporated technology instead
of solution-processed technique. The negligible attention was paid on all-solution-processed devices
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may be attributed to the fact the penetration effect between ETL and perovskites is still challenging to
resolve, although the all-solution-processed technique exhibits more merits (e.g., lower cost, simpler
fabrication and less time) [123–127].

For the inverted architectures, the most widely used EIL or ETL is zinc oxide (ZnO) due to its
high electron mobility (~1.3 × 10−3 cm2 V−1 s−1) [87]. However, there is an electron barrier between
the CBM of ZnO (4.4 eV) and CsPbBr3 (3.6 eV), although the electron barrier between the CBM of ZnO
and the work function of indium tin oxide (ITO, ~4.7 eV) is small [128–130]. Hence, it is not easy for
the electron injection in inverted all-inorganic PeLEDs. By adopting more efficient ETLs, modifying
the typical ZnO ETL, or inserting an interlayer between the ETL and EML to reduce the interfacial
barrier [131–135], high-performance devices may be expected. Considering the fact that the most
efficient PeLEDs were realized by using normal device architectures [17,18], there is much room for the
further investigation of inverted architecture.

3. The Device Engineering in All-Inorganic PeLEDs

3.1. Basic Aspects of Device Engineering

According to the above concepts, aside from the consideration of perovskite emitters, the innovation
of device engineering is another element to determine the performance of all-inorganic PeLEDs.
After the selection of perovskites, the EQE is vitally affected by the charge balance from the perspective
of device engineering [136–145]. This is because the EQE in LEDs is defined as follows [146–150]:

EQE = ηout · r · q · γ, (1)

where ηout represents the outcoupling factor, r represents the fraction of excitons that potentially
radiatively decay, q represents the PLQY and γ represents the charge balance. In general, ηout is not
influenced by the internal operation of LEDs, while r and q are fixed by emitters. Thus, γ plays a
significant role in the device efficiency. In fact, how to manage the charge injection, transport, balance
and leakage are key to achieve satisfactory performances, i.e., high efficiency, bright luminance and
long lifetime [151–155]. In addition, the power efficiency is inversely proportional to the operational
voltage [156–160]. Hence, the low voltage is essential to produce high power efficiency.

To enhance the device engineering, enough holes and electrons are required to meet at the
perovskite EMLs, forming excitons (i.e., excited electron−hole pairs [96]) for emissions. Generally,
the large exciton binding energy and the short exciton diffusion length are required to enhance
the efficiency of PeLEDs [161]. Thus, the charge injection and transport should be very effectively
manipulated [162–164]. In addition, the number of holes is ideal to be equal to that of electrons,
guaranteeing the charge balance [165–167]. Moreover, to reduce the charge leakage, uniform EML
films and charge blocking layers are desirable [168–173]. As a matter of fact, some innovations of
device engineering in all-inorganic PeLEDs were reported based on these concepts, which will be
introduced in the following sections.

3.2. Emergence of All-Inorganic PeLEDs

At the initial stage for the development of halide perovskite optoelectronic devices, most of the
attentions were paid on solar cells. With the step-by-step discovery of amazing characteristics of
perovskite materials, researchers are motivated to fabricate hybrid organic-inorganic PeLEDs. To solve
the stability issue of organic-inorganic perovskites, all-inorganic PeLEDs are developed [174–178].
In 2015, Zeng et al. took the first step to construct all-inorganic PeLEDs, where the emitters CsPbX3

(X = Cl, Br, I) QDs were synthesized through hot-injecting cesium stearate (CsSt) to PbBr2 solution [19].
As shown in Figure 3, the device architecture was ITO/poly(ethylenedioxythiophene):polystyrene
sulfonate (PEDOT:PSS, 40 nm), PVK (10 nm)/perovskite QDs (10 nm)/TPBi (40 nm)/LiF (1 nm)/Al
(100 nm), in which QDs were CsPb(Cl/Br)3, CsPbBr3 and CsPb(Br/I)3 for blue, green and orange
electroluminescence, respectively. For the blue, green, and orange PeLEDs, luminances of 742, 946 and
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528 cd m−2, with EQEs of 0.07%, 0.12% and 0.09% were achieved, respectively. In their device
architecture, TPBi was employed as ETL, while PVK was used as HTL and electron blocking layers.
PVK could reduce the hole injection barrier, block the electron in the active layer, and hence allow
holes and electrons to recombine in EMLs. As a result, no any notable parasitic emissions originated
from the charge transport layer could be observed in the entire electroluminescence spectrum under
varied voltages. In fact, such device architecture is very effective and becomes one of the most
popular architectures. For example, the most efficient blue all-inorganic PeLED was fabricated via this
architecture, yielding the EQE of 1.9% [55].
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Figure 3. Illustration of PeLEDs. (a) The device structure. (b) Cross-sectional TEM image showing the
multiple layers. Scale bar, 50 nm. (c) Flat-band energy level diagram. Reproduced from reference [19],
with permission from John Wiley and Sons, 2015.

At the almost same time, Yantara et al. reported all-inorganic PeLEDs by using CsPbBr3 thin
films as the emitter [93]. As shown in Figure 4, the device architecture was ITO/PEDOT:PSS/CsPbBr3/

poly(9,9-di-n-octylfluorenyl-2,7-diyl) (F8)/Ca (20 nm)/Al (80 nm), in which the trap density of low
temperature (70 ◦C) solution-processed CsPbBr3 was reduced by varying their precursor concentration
(i.e., using CsBr-rich solution). For varied CsBr/PbBr2 ratio (i.e., 0.8, 1.0, 2.0 and 3.0), the outcome of
the reactions in DMSO solvent was different. Clear solutions were obtained from CsBr/PbBr2 ratio
≤1.0 (after stirring for 5 h in room temperature), while precipitates were observed for CsBr/PbBr2

ratio ≥2.0 (i.e., CsBr-rich solutions). Polycrystalline CsPbBr3 film with additional CsPb2Br5 phase was
observed on the film deposited from the solution with CsBr/PbBr2 ratio of 0.8. The CsPb2Br5 peak
was disappeared with increasing the CsBr/PbBr2 ratio and pure CsPbBr3 were observed for films with
CsBr/PbBr2 ratio ≥1.0. Due to the lower trap density, the maximum luminance of the PeLED using
the 2.0 CsBr/PbBr2 solution (named 2-1, 407 cd m−2) was higher than that of the PeLED utilizing the
equimolar CsBr/PbBr2 solution (named 1-1, 132 cd m−2). For their device architecture, F8 was acted as
an EIL, which was dissolved in chlorobenzene (10 mg/mL) and spun onto the CsPbBr3 EML. Hence,
the device could be called all solution-processed PeLED [179–183]. However, the devices suffered from
a mismatch in the injection barrier of holes and electrons, since approximately 2 V discrepancy existed
between the current turn-on voltage and the turn-on voltage for the electroluminescence.

3.3. Strategies to Improve the Hole Injection

Owing to the multilayer device architectures, charge barriers easily exist between the adjacent
layers [184–188]. As a consequence, charges are not smoothly transported to the EML in all-inorganic
PeLEDs, reducing the probability of exciton generation. In addition, charges can be accumulated at the
interface of charge transport layers and EML, leading to the nonradiative recombination [189–192].
Therefore, it is expected that high-performance all-inorganic PeLEDs can be organized via the
enhancement of charge injection and transport. In particular, since there is usually a large barrier for the
hole transport in all-inorganic PeLEDs, how to effectively improve the hole injection and transport is
crucial to the performance. So far, three main strategies have been reported to improve the hole injection
and transport, (i) the insertion of an interlayer at the interface of the neighboring layers, forming a
step-wise layer for the hole transport; (ii) the control of the energy level alignment by modifying the
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HILs or HTLs; (iii) the use of materials with high hole mobilities [193–198]. With such strategies,
suppressed charging perovskites, prevented exciton quenching together with excellent film morphology
may be simultaneously obtained, further enhancing the performance of all-inorganic PeLEDs.Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 30 
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For the first strategy, Rogach et al. improved the hole injection by incorporating∼5 nm PFI between
the HTL and perovskite EML, leading to a 0.34 eV increase of the VBM of HTL [72]. As shown in
Figure 5, the device architecture was ITO/PEDOT:PSS (25 nm)/poly-TPD (40 nm)/CsPbBr3 nanocrystal
film (40 nm)/TPBI (40 nm)/LiF/Al. With the use of thin PFI, the VBM of poly-TPD HTL was increased,
which was beneficial to the hole injection, ensuring efficient radiative recombination of excitons in
the EML. Besides, PFI suppressed charging CsPbBr3 emitters, which were formed when CsPbBr3 was
directly contacted with poly-TPD since a spontaneous charge transfer process occurred due to the
large energy level difference. As a consequence, a three-fold increase in peak brightness reaching
1377 cd m−2 was achieved via the insertion of PFI. From the same way, Lee et al. inserted PFI between
PEDOT:PSS and CH3NH3PbBr3 in the hybrid organic-inorganic PeLEDs, achieving the highest current
efficiency of 15.5 cd A−1 at that time [199]. In their devices, PFI could facilitate the hole injection,
prevent exciton quenching at the PEDOT:PSS/perovskite particle film interface, and induce uniform
perovskite films possibly due to the low surface energy (∼23 mN/m) [200].
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virtue of BP, the EQE was enhanced to 2.8%, which was four-fold higher than that of control device 
without BP (0.07%). The enhanced performance was attributed to the fact that BP decreased the hole 

Figure 5. (a) Device structure and (b) cross-sectional SEM image of the PeLED. (c) Ultraviolet
photoelectron spectroscopy (UPS) spectra of CsPbBr3, poly-TPD and poly-TPD/PFI film deposited on
ITO. (d) Tauc plot of CsPbBr3 and poly-TPD films on quartz substrates. (e) Energy band diagram.
(f) Photoluminescence (PL) decay curves of a CsPbBr3 film on a poly-TPD, and as a film on a
PFI/poly-TPD. Reproduced from reference [72], with permission from American Chemical Society, 2016.

The introduction of PFI or metal oxides can enhance the performance of PeLEDs, however,
such materials may form aggregates and yield to wettability problems with the subsequent deposited
perovskites, resulting in electrical shorts and power losses. To alleviate this difficulty, Blom et al.
inserted the 2D material black phosphorus (BP) between PEDOT:PSS and CsPbBr3 as a HTL to
reduce the injection barrier [201]. BP had a HOMO of 5.32 eV, which lowered the injection barrier
by 0.3 eV. As shown in Figure 6, the device architecture was ITO/PEDOT:PSS/BP/polycrystalline
CsPbBr3/TPBi/LiF/Al, where solution-processable, large and ultrathin BP flakes with fewer defects
were synthesized by electrochemical exfoliation of bulk BP. By virtue of BP, the EQE was enhanced
to 2.8%, which was four-fold higher than that of control device without BP (0.07%). The enhanced
performance was attributed to the fact that BP decreased the hole injection barrier and gave rise to
uniform growth of the perovskite, resulting in a higher injected hole current and lower leakage current
and nonradiative losses, respectively.



Nanomaterials 2019, 9, 1007 9 of 30

Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 30 

Nanomaterials 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nanomaterials 

injection barrier and gave rise to uniform growth of the perovskite, resulting in a higher injected 
hole current and lower leakage current and nonradiative losses, respectively. 

 
Figure 6. (a) Schematic illustration of the device architecture and (b) the energy band alignment 
diagram. (c) EL spectrum at 6 V. Reproduced from reference [201], with permission from John Wiley 
and Sons, 2018. 

PEDOT:PSS is a well-known HIL in solution-processed LEDs due to its optical and electrical 
properties, such as smoothing the surface of substrates, reducing the current leakage and facilitating 
the hole injection [202–204]. However, there is still a hole barrier between PEDOT:PSS and HTLs, 
reducing the hole transport. To overcome this issue, Kido et al. modified PEDOT:PSS with nafion to 
greatly enhance the work function from 4.72 to 5.27 eV, which was close to the HOMO of the 
poly-TPD (5.31 eV) [47]. Hence, the hole injection barrier between modified PEDOT:PSS and 
poly-TPD is quite small. As shown in Figure 7, the device architecture was ITO (130 nm)/modified 
PEDOT:PSS (40 nm)/poly-TPD (20 nm)/CsPbBr3/TPBi (50 nm)/lithium 8-quinolate (Liq, 1 nm)/Al 
(100 nm), where the excess ligands of CsPbBr3 QDs were washed by butanol (BuOH), hexane and 
ethylacetate (AcOEt) and butylacetate (AcOBu). With such effective device architecture by 
controlling the energy level alignment, the PeLED based on CsPbBr3 QDs washed with AcOBu 
exhibited a maximum power efficiency of 31.7 lm W−1 and EQE of 8.73%, which was the highest 
among all-inorganic PeLEDs at that time. Later, Kido et al. also used the modified PEDOT:PSS with 
nafion to develop PeLEDs, achieving an EQE of 8.08% for the device using CsPbBr3 with a short 
ligand didodecyl dimethyl ammonium bromide (DDAB) [48]. Thus, the control of the energy level 
alignment of HILs or HTLs is an effective strategy to enhance the performance. 

 
Figure 7. PeLEDs performance. (a) Energy diagram. (b) EL spectra of a device at 25 mA cm−2. Inset: 
Emission image of the device. (c) Current density–voltage characteristics, (d) luminance–voltage 

Figure 6. (a) Schematic illustration of the device architecture and (b) the energy band alignment
diagram. (c) EL spectrum at 6 V. Reproduced from reference [201], with permission from John Wiley
and Sons, 2018.

PEDOT:PSS is a well-known HIL in solution-processed LEDs due to its optical and electrical
properties, such as smoothing the surface of substrates, reducing the current leakage and facilitating
the hole injection [202–204]. However, there is still a hole barrier between PEDOT:PSS and HTLs,
reducing the hole transport. To overcome this issue, Kido et al. modified PEDOT:PSS with nafion
to greatly enhance the work function from 4.72 to 5.27 eV, which was close to the HOMO of the
poly-TPD (5.31 eV) [47]. Hence, the hole injection barrier between modified PEDOT:PSS and poly-TPD
is quite small. As shown in Figure 7, the device architecture was ITO (130 nm)/modified PEDOT:PSS
(40 nm)/poly-TPD (20 nm)/CsPbBr3/TPBi (50 nm)/lithium 8-quinolate (Liq, 1 nm)/Al (100 nm), where the
excess ligands of CsPbBr3 QDs were washed by butanol (BuOH), hexane and ethylacetate (AcOEt) and
butylacetate (AcOBu). With such effective device architecture by controlling the energy level alignment,
the PeLED based on CsPbBr3 QDs washed with AcOBu exhibited a maximum power efficiency of
31.7 lm W−1 and EQE of 8.73%, which was the highest among all-inorganic PeLEDs at that time. Later,
Kido et al. also used the modified PEDOT:PSS with nafion to develop PeLEDs, achieving an EQE
of 8.08% for the device using CsPbBr3 with a short ligand didodecyl dimethyl ammonium bromide
(DDAB) [48]. Thus, the control of the energy level alignment of HILs or HTLs is an effective strategy to
enhance the performance.
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Figure 7. PeLEDs performance. (a) Energy diagram. (b) EL spectra of a device at 25 mA cm−2. Inset:
Emission image of the device. (c) Current density–voltage characteristics, (d) luminance–voltage
characteristics, (e) power efficiency–current density characteristics and (f) EQE–current density
characteristics. Reproduced from reference [47], with permission from American Chemical Society, 2017.
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The use of charge transport materials with high mobility is another effective strategy to boost the
charge injection and transport, which has been broadly exploited in various types of LEDs [205–210].
In the case of all-inorganic PeLEDs, Zeng et al. replaced the PVK HTL with the poly-TPD HTL,
achieving a 2.6-fold higher EQE [49]. As shown in Figure 8, the device architecture was ITO/PEDOT:PSS
(30 nm)/HTL (40 nm)/CsPbBr3/TPBi (40 nm)/LiF (1 nm)/Al (100 nm), where the HTL was PVK or
poly-TPD. The enhancement of EQE for the poly-TPD based device could be attributed to the fact that
the hole mobility of poly-TPD (~1 × 10−4 cm2 V−1 s−1) is two orders of magnitude higher than that of
PVK (~1 × 10−6 cm2 V−1 s−1), which improved the hole injection. With the selection of more effective
solvents for the treatment of CsPbBr3 QDs (appropriate hexane/ethyl acetate treating cycles), the EQE
was enhanced to 6.27%. Furthermore, Kido et al. used the almost similar device architecture (i.e.,
ITO/PEDOT:PSS/poly-TPD/perovskites/TPBi/Liq/Al) with efficient red emitter CsPb(Br/I)3, realizing
the first all-inorganic PeLED with EQE of >20% [36].
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3.4. Approaches to Enhance the Electron Injection

As mentioned above, the electron transport between the organic ETLs and the EML is usually
barrier-free for all-inorganic PeLEDs with normal device architectures. In terms of inorganic ETLs
(e.g., the most commonly used ZnO), the electron injection efficiency should be considered due to
the barrier existing between the ETL and perovskite EMLs [211]. To enhance the electron injection,
some approaches were proposed, including (i) the exploitation of impurity doped inorganic ETLs to
optimize the energy band alignment, (ii) the employment of interfacial engineering between inorganic
ETLs and perovskite EMLs.

For the first approach, Shi et al. enhanced the electron injection through energy band engineering of
carrier injectors by Mg incorporation and the thickness optimization, attaining an inverted all-inorganic
PeLED with the maximum EQE of 2.39% [212]. As shown in Figure 9, the device architecture
was double-polished c-Al2O3 substrates/patterned low-resistance n+-GaN (2 µm)/n-Mg0.38Zn0.62O
(45 nm)/CsPbBr3 QDs (55 nm)/p-Mg0.23Ni0.77O (80 nm)/Au (30 nm), in which n+-GaN was used as
the electron source, conducting template and a transparent window. Due to the matched electron
affinity with CsPbBr3 and a deep VBM, n-type MgZnO was deemed as the electron-injection and
hole-blocking layer. Specifically, the decreased electron affinity from −3.6 eV (ZnO) to −3.25 eV
(Mg0.38Zn0.62O) favored an almost barrier-free electron injection process. Besides, the VBM above
−7.2 eV for Mg0.38Zn0.62O implied a favorable hole-blocking effect and thereby provided a leakage
suppression. Analogously, an Mg2+ content of ∼23% (mole percent) was alloyed in the NiO film to
adjust its conduction and valence bands for a matched energy level with CsPbBr3, guaranteeing the
hole injection. Thus, an efficient and stable PeLED was developed. Owing to MgZnO possessing
effective electron injection and hole confining ability, Shi et al. then used it to prepare all-inorganic
PeLEDs with the normal architecture of ITO/p-NiO/CsPbBr3 QDs/Mg0.2Zn0.8O/Al, achieving an EQE
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of 3.79% [213]. Furthermore, Tan et al. for the first time used the solution-processed ZnMgO as the ETL
in a normal device architecture of ITO/NiOx/CsPbBr3/ZnMgO/Al, obtaining a maximum luminance of
17017 cd m−2 and a current efficiency of 3.41 cd A−1 [214]. Additionally, lithium-doped TiO2 has also
been demonstrated to be an excellent ETL in all-inorganic PeLEDs [215,216].
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For the enhancement of interfacial engineering, a thin multifunctional layer (e.g., polyethyleneimine
(PEI), polyethylenimine ethoxylated (PEIE)) is generally introduced between inorganic ETLs
and EMLs [217,218]. With such interfacial layer, not only the perovskite film formation quality
during solution processing can be enhanced, but also the work function of cathode contacts is
lowered. Huang et al. for the first time investigated this approach in hybrid organic-inorganic
PeLEDs with the device architecture of ITO/PEI-modified ZnO (20 nm)/CH3NH3PbI3-xClx
(50 nm)/poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)diphenylamine) (TFB, 25 nm)/molybdenum
oxide (MoOx, 8 nm)/Au (100 nm) [219].

In the case of all-inorganic PeLEDs, Yu et al. also demonstrated that the use of PEI between the
ZnO ETL and the EML was effective to realize high-efficiency devices, since PEI facilitated the electron
injection and prevented the charging of emitters [52]. After the PEI modification, a reduction of 0.44 eV
in the CBM of small ZnO nanocrystals (~2 nm) was achieved, providing an efficient electron injection.
As shown in Figure 10, the device architecture was ITO/PEI-modified ZnO (50 nm)/CsPb(Br/I)3

(60 nm)/4,4′-bis(carbazole-9-yl)biphenyl (CBP)/4,4′,4”- tris(carbazol-9-yl)triphenylamine (TCTA)
(50 nm)/MoOx/Au, in which the double HTL (CBP and TCTA) ensure enough hole injection. As a
result, the PeLED gave an EQE up to 6.3%, which is the highest value reported among perovskite
nanocrystal LEDs at that time. Since PEI is effective to enhance the electron injection and maintain
charge neutrality of CsPbX3 emitters, Yu et al. then used a more efficient red emitter, PbS capped
CsPbI3, in the similar device architecture of ITO/PEI-modified ZnO/CsPbI3/TCTA/MoOx/Au, exhibiting
a peak EQE of 11.8% [53]. More recently, Yu et al. applied the architecture of Ag cathode/PEI-modified
ZnO/CsPbI3/TCTA/MoOx/Au onto a photopolymer flexible substrate, attaining a flexible all-inorganic
PeLED with the EQE of 8.2% [54].

3.5. Schemes to Increase the Charge Balance

Since EQE is directly decided by the charge balance, the increase of charge balance is essential to
high-performance all-inorganic PeLEDs. In particular, excess electrons occur easily when organic ETLs
are used because of the barrier-free electron injection behavior between organic ETLs and all-inorganic
perovskite EMLs. To resolve this issue, the enhancement of hole injection is conducive [220–225].
Alternatively, the reduction of electron injection is also useful. This scheme is very flexible, since plenty
of means can be utilized to reduce the electron injection, such as the insertion of an insulating layer
between the ETL and EML [42], the use of electron transport materials with low mobilities [226],
the employment of ETLs with thick thickness [227] and the introduction of HTL between the ETL and
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ZnO. Reproduced from reference [52], with permission from American Chemical Society, 2016.

To balance the charges, Liu et al. reduced the electron injection by adopting a proper ETL in
all-inorganic PeLEDs [229]. In detail, tris(8-hydroxyquinoline) aluminum (Alq3) was incorporated
into TPBi to form an ETL TPBi/Alq3/TPBi, simultaneously enabling charge balance and confinement.
The green PeLED with the device architecture of ITO/PEDOT:PSS (40 nm)/PVK (10 nm)/CsPbBr3

(20 nm, 10 mg mL−1, 2000 rpm, 45 s)/TPBi (15 nm)/Alq3 (10 nm)/TPBi (10 nm)/Cs2CO3 (1 nm)/Al
(100 nm) exhibited a maximum EQE of 1.43%, which was 191%, higher than that of PeLEDs with
conventional ETL TPBi (35 nm). The maximum current density of the PeLED with TPBi/Alq3/TPBi was
186 mA cm−2. The highest EQE was obtained at a very low current density of 0.44 mA cm−2, which is a
common issue for all-inorganic PeLEDs [47]. As shown in Figure 11, since the electron mobility of Alq3

(1.4 × 10−6 cm2 V−1 s−1) was almost equal to the hole mobility of PVK (1.0 × 10−6 cm2 V−1 s−1) while
the electron mobility of TPBi (3.3 × 10−5 cm2 V−1 s−1) and Bphen (3.9 × 10−4 cm2 V−1 s−1) was much
higher than the hole mobility of PVK, the incorporation of Alq3 could impede the electron transport in
order to balance the holes. In other words, the Alq3 reduced the number of electrons passing through
the ETL. As a result, a relatively appropriate number of electrons could reach the CsPbBr3 EML. On the
other hand, TPBi could confine the hole transport, further guaranteeing the performance. However,
it is deserved to point out that some perovskite papers that discuss deliberate charge imbalance being
okay, since the charge imbalance may result in good performance (e.g., ultralow voltages) [86].



Nanomaterials 2019, 9, 1007 13 of 30

Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 30 

Nanomaterials 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nanomaterials 

other hand, TPBi could confine the hole transport, further guaranteeing the performance. However, 
it is deserved to point out that some perovskite papers that discuss deliberate charge imbalance 
being okay, since the charge imbalance may result in good performance (e.g., ultralow voltages) [86]. 

 
Figure 11. The working mechanisms of CsPbBr3 PeLEDs: (a) Device with Alq3 ETL, (b) device with 
TPBi ETL, (c) device G3 with Bphen ETL and (d) device with TPBi/Alq3/TPBi ETL. The red and black 
arrows represented the hole and electron transport, respectively. Reproduced from reference [229], 
with permission from John Wiley and Sons, 2018. 

3.6. Methods to Decrease the Charge Leakage 

In some cases, holes and electrons can escape from the perovskite EMLs to the ETL and HTL, 
respectively. For example, holes may arrive at the ETL if there is no hole blocking layer or the energy 
level of ETLs is not deep enough compared with that of perovskite EMLs. On the other hand, 
electrons may reach the HTL when no electron blocking layer exists or the energy level of HTLs is 
not shallow enough. To loosen these bottlenecks, the addition of charge blocking layer or the charge 
transport layer with high charge blocking capability is required [230–234]. In addition, 3D perovskite 
film is prone to be rough or discontinuous because of the crystalline property, resulting in strong 
leakage current [235–239]. Thus, the performance of all-inorganic PeLEDs will be deteriorated due to 
the poor film morphology. 

To form a dense and uniform perovskite film with full coverage, Wu et al. proposed an 
“insulator–perovskite–insulator” device architecture to tailor PeLEDs [240]. As shown in Figure 12, 
the architecture of Device C was ITO/LiF (4 nm)/perovskite/LiF (8 nm)/Bphen (60 nm)/LiF (0.8 
nm)/Al (100 nm), where perovskite was sandwiched between the two LiF insulating layers. For 
various types of perovskites, the proposed device architecture could simultaneously induce charges 
into perovskite crystals, block current leakage via pinholes in the perovskite film and avoid exciton 
quenching. Consequently, the EQE of FAPbBr3 PeLEDs was increased to 5.53%, which was much 
higher than that of the control device with the conventional HIL (PEDOT:PSS, Device A) or 
PEDOT:PSS/PVK (0.174%, Device B). For the case of MAPbBr3 PeLEDs, the EQE was increased from 
0.057% to 2.36%. In terms of the all-inorganic PeLEDs, both current efficiency and lifetime of CsPbBr3 

PeLEDs were improved from 1.42 and 4 h to 9.86 cd A−1 and 96 h compared with the control device. 
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arrows represented the hole and electron transport, respectively. Reproduced from reference [229],
with permission from John Wiley and Sons, 2018.

3.6. Methods to Decrease the Charge Leakage

In some cases, holes and electrons can escape from the perovskite EMLs to the ETL and HTL,
respectively. For example, holes may arrive at the ETL if there is no hole blocking layer or the energy
level of ETLs is not deep enough compared with that of perovskite EMLs. On the other hand, electrons
may reach the HTL when no electron blocking layer exists or the energy level of HTLs is not shallow
enough. To loosen these bottlenecks, the addition of charge blocking layer or the charge transport
layer with high charge blocking capability is required [230–234]. In addition, 3D perovskite film is
prone to be rough or discontinuous because of the crystalline property, resulting in strong leakage
current [235–239]. Thus, the performance of all-inorganic PeLEDs will be deteriorated due to the poor
film morphology.

To form a dense and uniform perovskite film with full coverage, Wu et al. proposed an
“insulator–perovskite–insulator” device architecture to tailor PeLEDs [240]. As shown in Figure 12,
the architecture of Device C was ITO/LiF (4 nm)/perovskite/LiF (8 nm)/Bphen (60 nm)/LiF (0.8 nm)/Al
(100 nm), where perovskite was sandwiched between the two LiF insulating layers. For various types
of perovskites, the proposed device architecture could simultaneously induce charges into perovskite
crystals, block current leakage via pinholes in the perovskite film and avoid exciton quenching.
Consequently, the EQE of FAPbBr3 PeLEDs was increased to 5.53%, which was much higher than that
of the control device with the conventional HIL (PEDOT:PSS, Device A) or PEDOT:PSS/PVK (0.174%,
Device B). For the case of MAPbBr3 PeLEDs, the EQE was increased from 0.057% to 2.36%. In terms of
the all-inorganic PeLEDs, both current efficiency and lifetime of CsPbBr3 PeLEDs were improved from
1.42 and 4 h to 9.86 cd A−1 and 96 h compared with the control device.
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4. Summary and Outlook

Since all-inorganic PeLEDs can show high efficiency, low driving voltage, bright luminance,
outstanding color-purity and long lifetime, the excellent characteristics have rendered that all-inorganic
PeLEDs are very promising for the new-generation displays and lighting. Nowadays, the efficiency of
state-of-the-art all-inorganic PeLEDs can be comparable to that of the best OLEDs and CdSe-based
QD-LEDs. In this review, we have mainly focused on recent advances in the device engineering
of all-inorganic PeLEDs. Particularly, we have emphasized the emergence of all-inorganic PeLEDs,
strategies to improve the hole injection, approaches to enhance the electron injection, schemes to
increase the charge balance and methods to decrease the charge leakage. The detailed performances
for all-inorganic PeLEDs have been described in Table 1.

Table 1. Summarized performances for representative all-inorganic PeLEDs.

PeLEDs a Von
b

(v)
EQEmax

c

(%)
PEmax

d

(lm W−1)
CEmax

e

(cd A−1)
Lmax

f

(cd m−2)

Ref. [19] 4.2 0.12 0.18 0.43 946
Ref. [47] 2.6 8.73 31.7 26.2 1660
Ref. [49] 3.4 6.27 5.24 13.3 15185
Ref. [52] 1.9 6.3 4.05 3.4 2216
Ref. [72] 2.5 0.06 - 0.19 1337
Ref. [93] 3.0 0.008 - 0.035 407

Ref. [201] - 2.8 - 12.3 20636
Ref. [212] 3.0 2.39 - 2.25 3809
Ref. [229] 4.8 1.43 1.84 4.69 452
Ref. [240] - 2.99 - 9.86 ~13000

a Representative all-inorganic PeLEDs. b Turn-on voltage. c Peak EQE. d Peak PE. e Peak CE. f Peak luminance.

After approximate five years of development, the performance of all-inorganic PeLEDs has been
step-by-step enhanced. In addition to the optimization of perovskite emitters, the PeLED performance
has been greatly boosted by the innovation of device engineering. Currently, all-inorganic PeLEDs
are also being explored in flexible as well as transparent optoelectronics, which further widen their
general applications [241–243]. In addition, it can be easily predicted that all-inorganic PeLEDs will
show higher performance by virtue of effective outcoupling technologies [244–247], despite negligible
attention has been paid on the improvement of the outcoupling factor thus far. Moreover, compared
with OLEDs and CdSe-based QD-LEDs, the outstanding color-purity of all-inorganic PeLEDs is more
desirable for displays [248–250].
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Nowadays, there are still many challenges hindering the real commercialization of all-inorganic
PeLEDs, such as the efficiency, efficiency roll-off, toxicity and particularly for the operational stability.
For the issue of efficiency, although the EQE of all-inorganic PeLEDs have been demonstrated to show
>20%, the current efficiency and power efficiency are still not comparable to those of the best OLEDs
and CdSe-based QD-LEDs [251–253]. Besides, the efficiency of blue all-inorganic PeLEDs is urgently
needed to be enhanced, considering the highest EQE of blue device is only 1.9% [55]. To boost the
efficiency, the charge injection, transport, balance and leakage should be carefully manipulated, which is
also beneficial to the efficiency roll-off, color stability and lifetime. To solve the issue of toxicity, lead-free
all-inorganic perovskites are helpful, although their performance is not satisfactory enough [245–258].

For the issue of lifetime, it is a key factor to determine whether all-inorganic PeLEDs can meet
the demand of the commercial demands. In general, the lifetime of ≥10 000 h at ≥1000 cd m−2 is
required for the commercial solid-state lighting products and ≥100 000 h at ≥100 cd m−2 is needed for
the display applications [259–261]. Hence, there is still much room to prolong the lifetime. Previously,
some effective approaches have been reported to enhance the stability of all-inorganic perovskite
materials, including resistance to moisture and oxygen. For example, Zou et al. demonstrated a
method to improve the formation energies of perovskite lattices by doping Mn2+ into CsPbX3 QDs,
achieving stable CsPbX3 even at high temperatures up to 200 ◦C under ambient air conditions [262].
Ding et al. reported an approach to prepare stable and water-soluble CsPbX3/SiO2 nanocomposites by
encapsulating the CsPbX3 QDs into silica nanoplates, where the application of CsPbX3/SiO2 in white
LEDs and cell imaging showed ultrastability and high biocompatibility [263]. Zhu et al. provided a
scheme to improve the stability of CsPbBr3 nanocrystals film by depositing Al2O3 on nanocrystals
film surface for via plasma enhanced atomic layer deposition [264], where the dense Al2O3 film
also exhibited an encapsulation effect [265]. Shi et al. presented an approach to combine localized
surface plasmons and core/shell nanostructure configuration in a single PeLED, where the PeLEDs
without encapsulation presented a substantially improved operation stability against water and oxygen
degradation (30-day storage in air ambient, 85% humidity) [266]. Another effective approach is the
hybridization of CsPbX3 with other matrix materials (e.g., synthesizing a chemically and structurally
stable CsPbBr3 perovskite material by using polymer nanofiber as the protective layer [267], presenting
a high molecular weight polymer matrix (polymethylmethacrylate, PMMA) to incorporate into CsPbBr3

QDs to improve its stability and maintain excellent optical properties [268]). Apart from the exploration
of stable perovskite emitters, the further enhancement of device engineering is also urgently necessary
(e.g., the use of stable inorganic charge transport layers, the exploitation of insulators, the introduction
of advanced encapsulation techniques) [269–274]. After solving the mentioned issues, the prospect for
mass production for all-inorganic PeLEDs will be bright and the proposed solutions are also beneficial
to the related optoelectronic fields [275–279]. In particular, since the design concept of sensors [280–282]
and photodetectors [283–285] are somewhat similar to that of LEDs, the new-emerging all-inorganic
perovskite materials have also been extensively investigated for these applications.
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