Article

Improvement of the Bias Stress Stability in 2D MoS₂ and WS₂ Transistors with a TiO₂ Interfacial Layer

Woojin Park ^{1,†}, Yusin Pak ^{2,†}, Hye Yeon Jang ¹, Jae Hyeon Nam ¹, Tae Hyeon Kim ¹, Seyoung Oh ¹, Sung Mook Choi ³ Yonghun Kim ³ and Byungjin Cho ^{1,*}

- ¹ Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea
- ² Department of Nanobio Materials and Electronics, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Korea
- ³ Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Korea
- * Correspondence: bjcho@chungbuk.ac.kr; Tel.: +82-(0)43-261-2417
- + These authors contributed equally to this work.

Received: 11 July 2019; Accepted: 8 August 2019; Published: date

1. Fabrication process and band diagram for Fermi-level pinning with various metals

Figure S1. Fabrication process and band diagram for Fermi-level pinning with various metals.

Figure S1 shows fabrication process and the schematic for Fermi-level pinning in MoS₂. This is corresponding to the previous study [1].

2. Transfer and output curves for MoS₂ FETs without and with a TiO₂ layer

Figure S2. Transfer and output curves for MoS₂ FETs without and with a TiO₂ layer.

Figure S2 shows transfer and output curves for MoS₂ FETs without and with a TiO₂ layer. In the transfer curve, V_{BG} sweep was -50 ~ 20 V with V_{DS} = $0.1 \sim 0.5$ V with 0.2 V of step. Improved performance was shown in the device with a TiO₂ layer, showing increased drain current. In the output curve, increased drain current and reduced series resistance (R_{SD}) were observed in the device with a TiO₂ layer.

3. Field-effect mobility (μ_{FE}) for MoS₂ FETs without and with a TiO₂ layer

Figure S3. Field-effect mobility (μ FE) for MoS₂ FETs without and with a TiO₂ layer.

Figure S3 shows field-effect mobility (μ_{FE}) for MoS₂ FETs without and with a TiO₂ layer. μ_{FE} values are changed as a function of V_{BG}, featuring maximum transconductance (g_m)

4. Transfer curves for WS2-Ti, WS2-TiO2-Ti, WS2-Pd, and WS2-TiO2-Pd structured FET device

Figure S4. Transfer curves for WS2-Ti, WS2-TiO2-Ti, WS2-Pd, and WS2-TiO2-Pd structured FET devices.

Figure S4 shows the transfer curves for WS₂-Ti, WS₂-TiO₂-Ti, WS₂-Pd, and WS₂-TiO₂-Pd stack FETs. By inserting a TiO₂ layer, improved drive current was observed. Interestingly, type change behavior was observed from bi-polar to uni-polar behavior. Bi-polar behavior was observed from WS₂-Ti stack and it was changed to n-type unipolar behavior by using a TiO₂ layer. For Pd contact electrode, it was changed from bipolar to p-type unipolar behavior with the help of a TiO₂ layer. Previously, WS₂ FET have shown bipolar behavior and using a TiO₂ layer offers a benefit to achieve unipolar behavior which is usually used for an integrated circuit [2].

5. Energy band diagrams for TMDC-Ti and TMDC-TiO2-Ti structures

Figure S5. Energy band diagrams for TMDC-Ti and TMDC-TiO2-Ti stacks.

Figure S5 shows band diagram for TMD-Ti and TMD-TiO₂-Ti stacks. The role of a TiO₂ layer is a buffer layer to cover dangling bonds to induce both Fermi-level pinning and device performance deviation. The effective Schottky barrier height becomes decreased in the TMD-TiO₂-Ti structure, leading to the increase in the electron conduction.

6. Bias stress measurement sequence

Figure S6. Bias stress measurement sequence.

Figure S6 shows the stress measurement set up environment and sequence. We followed the conventional repetitive stress-measurement-stress sequence. The stress measurements were conducted for 10000s and transfer curve was achieved every interval time with logarithmic scale (1s, 10s, 100s, 1000s, 1000s).

References

- C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. J. Yoo, Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano. 2017, 11, 1588.
- [2] W. S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. D. Chao, P. Zhao, A. Konar, H. Xing, A. Seabaugh and D. Jena, Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. *Appl. Phys. Lett.* **2012**, *101*, 013107.