Support information

New Insight on Hydrogen Evolution Reaction Activity of MoP₂ from Theoretical Perspective

Yuyue Gao 1,2, Hongyan Li 1,2, Jingyu Wang 3, Jianyi Ma 1 and Haisheng Ren 2,*

- ¹ Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China; jianyima@scu.edu.cn
- ² School of Chemical Engineering, Sichuan University, Chengdu, 610065, China;
- ³ School of Aeronautics and Astronautics, Sichuan University, Chengdu, Sichuan 610065, China; wangjingyu@scu.edu.cn
- * Correspondence: renhs@scu.edu.cn; Tel./Fax: +86 2885402951

Table S1. Adsorption energy of the optimized hydrogen adsorption sites for (111) facet. (unit in eV)

Adsorption	Mo1	P1	Mo2	P2	Mo1-P2	Mo1-P3
sites						
111-facet	-0.106	-0.038	0.083	0.402	0.251	0.016

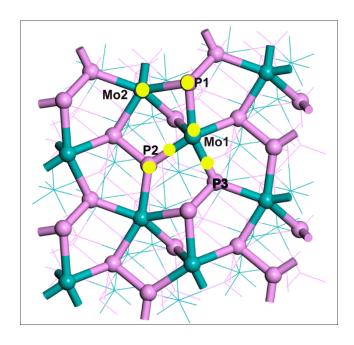
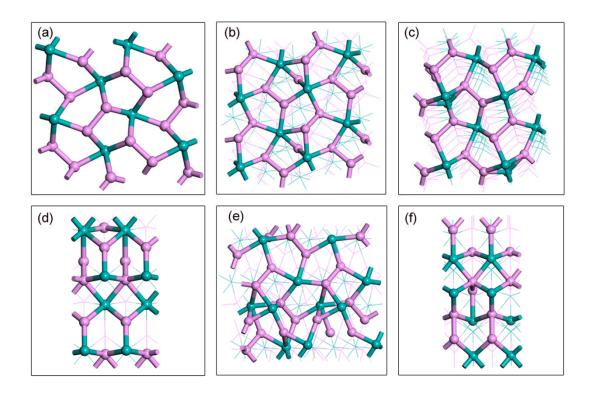



Figure S1. All possible adsorption sites on (111) facet.

Figure S2. Top view of six clean MoP₂ surfaces, including (a) (100), (b) (111), (c) (110), (d) (001), (e) (101) and (f) (011) facets. Mo: dark green; P: purple.